Ⅰ 馬氏體時效鋼的熱處理工藝及性能
鋼號 固溶溫度/℃ 時效溫度/℃ 硬度HRC 抗拉強度/MPa 18Ni(250) 815 482 50~52 1850 18Ni(300) 816 482 53 2060 18Ni(350) 816 510 57~60 2490

Ⅱ 模具鋼為什麼要熱處理
熱處理的作用就是提高材料的機械性能、消除殘余應力和改善金屬的切削加工性。
按照熱處回理不同的目的答,熱處理工藝可分為兩大類:預備熱處理和最終熱處理。
1.預備熱處理
預備熱處理的目的是改善加工性能、消除內應力和為最終熱處理准備良好的金相組織。其熱處理工藝有退火、正火、時效、調質等。
2.最終熱處理
最終熱處理的目的是提高硬度、耐磨性和強度等力學性能。
Ⅲ 請問什麼是固溶處理,時效處理
固溶處理是指將合金加熱到高溫單相區恆溫保持,使過剩相充分溶解到固溶體中後快速冷卻,以得到過飽和固溶體的熱處理工藝。
固溶處理是為了溶解基體內碳化物、γ』相等以得到均勻的過飽和固溶體,便於時效時重新析出顆粒細小、分布均勻的碳化物和γ』等強化相,同時消除由於冷熱加工產生的應力,使合金發生再結晶。
其次,固溶處理是為了獲得適宜的晶粒度,以保證合金高溫抗蠕變性能。
固溶處理的溫度范圍大約在980~1250℃之間,主要根據各個合金中相析出和溶解規律及使用要求來選擇,以保證主要強化相必要的析出條件和一定的晶粒度。
時效處理:指合金工件經固溶處理,冷塑性變形或鑄造,鍛造後,在較高的溫度或室溫放置,其性能、形狀、尺寸隨時間而變化的熱處理工藝。
為了消除精密量具或模具、零件在長期使用中尺寸、形狀發生變化,常在低溫回火後(低溫回火溫度150-250℃)精加工前,把工件重新加熱到100-150℃,保持5-20小時,這種為穩定精密製件質量的處理,稱為時效處理。

(3)一些模具鋼為什麼要進行時效處理擴展閱讀:
固溶處理與時效處理的關系
固溶處理適用范圍:多種特殊鋼,高溫合金,特殊性能合金,有色金屬。尤其適用於熱處理後須要再加工的零件、消除成形工序間的冷作硬化以及焊接後工件。
經過時效處理後金屬或合金工件硬度和強度有所增加,塑性韌性和內應力則有所降低。 含碳較高的鋼,淬火後立即獲得很高的硬度,但其塑性變得很低,能夠達到比較理想的強化效果。
而在時效處理前進行固溶處理時,加熱溫度必須嚴格控制,以便使溶質原子能最大限度地固溶到固溶體中,同時又不致使合金發生熔化,使得時效處理能夠達到高質量要求。
Ⅳ 精密復雜模具的變形原因往往是復雜的嗎
精密復雜模具的變形原因往往是復雜的,但是我們只要掌握其變形規律,分析其產生的原因,採用不同的方法進行預防模具的變形是能夠減少的,也是能夠控制的。一般來說,對精密復雜模具的熱處理變形可採取以下方法預防。
(1)合理選材。對精密復雜模具應選擇材質好的微變形模具鋼(如空淬鋼),對碳化物偏析嚴重的模具鋼應進行合理鍛造並進行調質熱處理,對較大和無法鍛造模具鋼可進行固溶雙細化熱處理。
(2)模具結構設計要合理,厚薄不要太懸殊,形狀要對稱,對於變形較大模具要掌握變形規律,預留加工餘量,對於大型、精密復雜模具可採用組合結構。
(3)精密復雜模具要進行預先熱處理,消除機械加工過程中產生的殘余應力。
(4)合理選擇加熱溫度,控制加熱速度,對於精密復雜模具可採取緩慢加熱、預熱和其他均衡加熱的方法來減少模具熱處理變形。
(5)在保證模具硬度的前提下,盡量採用預冷、分級冷卻淬火或溫淬火工藝。
(6)對精密復雜模具,在條件許可的情況下,盡量採用真空加熱淬火和淬火後的深冷處理。
(7)對一些精密復雜的模具可採用預先熱處理、時效熱處理、調質氮化熱處理來控制模具的精度。
(8)在修補模具砂眼、氣孔、磨損等缺陷時,選用冷焊機等熱影響小的修復設備以避免修補過程中變形的產生。

Ⅳ 精密模具熱處理時應提前做好哪些工作
熱處理變形是模具處理過程的主要缺陷,精密復雜模具常因熱處理變形而報廢,控制精密復雜模具的變形一直成為熱處理生產中的關鍵問題。
模具在在淬火過程中,由於模具截面各部分加熱和冷卻速度的不一致而引起的溫度差,使得模具截面各部分體積脹縮不均勻,組織轉變的不均勻,從而引起「組織應力」和模具內外溫差所引起的熱應力。當其內應力超過模具的屈服極限時,就會引起模具的變形或者碎裂!
一、模具材料的影響
1.模具材質的影響
某廠一批Cr12MoV鋼較復雜模具,模具都帶有¢60mm圓孔,模具熱處理後,部分模具圓孔出現橢圓,造成模具報廢。
一般來說Cr12MoV鋼是微變形鋼,不應該出現較大變形。對變形嚴重的模具進行金相分析發現,模具鋼中含有大量共晶碳化物,且呈帶狀和塊狀分布。
(1)模具橢圓(變形)產生的原因這是因為模具鋼中呈一定方向分布的不均勻碳化物的存在,碳化物的膨脹系數比鋼的基體組織小30%左右,加熱時它阻止模具內孔膨脹,冷卻時又阻止模具內孔收縮,使模具內孔發生不均勻的變形,使模具的圓孔出現橢圓。
(2)預防措施①在製造精密復雜模具時,要盡量選擇碳化物偏析較小的模具鋼,不要圖便宜,選用小鋼廠生產的材質較差鋼材。②對存在碳化物嚴重偏析的模具鋼要進行合理鍛造,來打碎碳化物晶塊,降低碳化物不均勻分布的等級,消除性能的各向異性。③對鍛後的模具鋼要進行調質熱處理,使之獲得碳化物分布均勻、細小和彌散的索氏體組織、從而減少精密復雜模具熱處理後的變形。④對於尺寸較大或無法鍛造的模具,可採用固溶雙細化處理,使碳化物細化、分布均勻,稜角圓整化,可達到減少模具熱處理變形的目的。
2.模具的選材
製造精密復雜、要求變形較小的模具,要盡量選用微變形鋼,如空淬鋼等。
二、模具結構設計的影響
即使模具選材和鋼的材質都很好,但是如果模具結構設計不合理,如薄邊、尖角、溝槽、突變的台階、厚薄懸殊等,也容易造成模具熱處理後變形較大。
1、變形的原因
由於模具各處厚薄不均或存在尖銳圓角,因此在淬火時引起模具各部位之間的熱應力和組織應力的不同,導致各部位體積膨脹的不同,使模具淬火後產生變形。
2、預防措施
設計模具時,在滿足實際生產需要的情況下,應盡量減少模具厚薄懸殊,結構不對稱,在模具的厚薄交界處,盡可能採用平滑過渡等結構設計。根據模具的變形規律,預留加工餘量,在淬火後不致於因為模具變形而使模具報廢。對形狀特別復雜的模具,為使淬火時冷卻均勻,可採用給合結構。
三、熱處理加熱工藝的影響
1、加熱速度的影響
模具熱處理後的變形一般都認為是冷卻造成的,這是不正確的。模具特別是復雜模具,加工工藝的正確與否對模具的變形往往產生較大的影響,對一些模具加熱工藝的對比可明顯看出,加熱速度較快,往往產生較大的變形。
任何金屬加熱時都要膨脹,由於鋼在加熱時,同一個模具內,各部分的溫度不均(即加熱的不均勻)就必然會造成模具內各部分的膨脹的不一致性,從而形成因加熱不均的內應力。在鋼的相變點以下溫度,不均勻的加熱主要產生熱應力,超過相變溫度加熱不均勻,還會產生組織轉變的不等時性,既產生組織應力。因此加熱速度越快,模具表面與心部的溫度差別越大,應力也越大,模具熱處理後產生的變形也越大。
對復雜模具在相變點以下加熱時應緩慢加熱,一般來說,模具真空熱處理變形要比鹽浴爐加熱淬火小得多。採用預熱,對於低合金鋼模具可採用一次預熱(550-620℃);對於高合金剛模具應採用二次預熱(550-620℃和800-850℃)。
2、加熱溫度的影響
一些廠家為了保證模具達到較高硬度,認為需提高淬火加熱溫度。但是生產實踐表明,這種做法是不恰當的,對於復雜模具,同樣是採用正常的加熱溫度下進行加熱淬火,在允許的上限溫度加熱後的熱處理變形要比在允許的下限溫度加熱的熱處理變形大得多。
四、殘留奧氏體的影響
一些高合金模具鋼,如Cr12MoV模具鋼在淬火和低溫回火後,模具的長、寬、高皆發生縮小現象,這是因為模具淬火後殘留奧氏體量過多而引起的。
1、變形原因
因合金鋼(如Cr12MoV鋼)淬火後含有大量殘留奧氏體,鋼中各種組織有不同的比體積,奧氏體的比體積最小,這是高合金鋼模具淬火低溫回火後體積發生縮小的主要原因。鋼的各種組織的比體積按下列順序遞減:馬氏體-回火索氏體-珠光體-奧氏體
2、預防措施
(1)適當降低淬火溫度。正如前面敘述過的淬火加熱溫度越高,殘留奧氏體量越大,因此選擇適當的淬火加熱溫度是減少模具縮小的重要措施。一般在保證模具技術要求的情況下,要考慮模具的綜合性能,適當降低模具的淬火加熱溫度。
(2)一些數據表明,Cr12MoV模具鋼淬火後,500℃回火較200℃回火的殘留奧氏體量少了一半,所以在保證模具技術要求的前提下,應適當提高回火溫度。生產實踐表明:Cr12MoV鋼模具500℃回火模具變形量最小,而硬度降低不多(2~3HRC)。
(3)模具淬火後採取冷處理是減少殘留奧氏體量的最佳工藝,也是減少模具變形、穩定使用時發生尺寸變化的最佳措施,因此精密復雜模具一般應採用深冷處理。
結論:
精密復雜模具的變形原因往往是復雜的,但是我們只要掌握其變形規律,分析其產生的原因,採用不同的方法進行預防模具的變形是能夠減少的,也是能夠控制的。一般來說,對精密復雜模具的熱處理變形可採取一下方法預防。
(1)合理選材。對精密復雜模應選擇材質好的微變形模具鋼(如空淬鋼),對碳化物偏析嚴重的模具鋼應進行合理鍛造並進行調質熱處理,對較大和無法鍛造模具鋼可進行固溶雙細化熱處理。
(2)模具結構設計要合理,厚薄不要太懸殊,形狀要對稱,對於變形較大模具要掌握變形規律,預留加工餘量,對於大型、精密復雜模具可採用組合結構。
(3)精密復雜模具要進行預先熱處理,消除機械加工過程中產生的殘余應力。
(4)合理選擇加熱溫度,控制加熱速度,對於精密復雜模具可採取緩慢加熱、預熱和其他均衡加熱的方法來減少模具熱處理變形。
(5)在保證模具硬度的前提下,盡量採用預冷、分級冷卻淬火或溫淬火工藝。
(6)對精密復雜模具,在條件許可的情況下,盡量採用真空加熱淬火和淬火後的深冷處理。
(7)對一些精密復雜的模具可採用預先熱處理、時效熱處理、調質氮化熱處理來控制模具的精度。
最後,正確的熱處理工藝操作(如堵孔、綁孔、機械固定、適宜的加熱方法、正確選擇模具的冷卻方向和在冷卻介質中的運動方向等)和合理的回火熱處理工藝也是減少精密復雜模具變形的有效措施。
Ⅵ 一些模具鋼為什麼要進行真空熱處理
真空熱處理是在極稀薄的氣氛中進行,爐內殘存的微量氣體不足以被處理的金屬材料產生氧化脫碳、增碳等作用。所以它的好處是可以使金屬材料表面的化學成分和原來的光亮度保持不變。
另外真空熱處理還能幫助金屬脫脂和排除H2
、
O2
、
N2
、
CO
等氣體以及分解氧化物等好處。
熱處理最好是交給有能力做熱處理的材料供給商去做,能保證品質和時長,因為現在價格競爭較大,很多熱處理廠報價極低,大家都知道熱處理是高耗電加工,少做一秒,就少不少錢,所以價格低就有可能做的時間不夠,也不一定是真空熱處理。
Ⅶ 固溶處理的時效處理
固溶熱處理
將合金加熱至高溫單相區恆溫保持,使過剩相充分溶於固溶體中,再快速冷卻,以得到過飽和固溶體的熱處理工藝。
時效處理
時效處理可分為自然時效和人工時效兩種。
自然時效是將鑄件置於露天場地半年以上,使其緩緩地發生形變,從而使殘余應力消除或減少;
人工時效是將鑄件加熱到550~650℃進行去應力退火,它比自然時效節省時間,殘余應力去除較為徹底。
根據合金本性和用途確定採用何種時效方法。高溫下工作的鋁合金適宜用人工時效,室溫下工作的鋁合金有些採用自然時效,有些必須人工時效。
從合金強化相上來分析,含有S相和CuAl2等相的合金,一般採用自然時效,而需要在高溫下使用或為了提高合金的屈服強度時,就需要採用人工時效來強化。比如LY11和LY12,40度以下自然時效可以得到高的強度和耐蝕性,對於150度以上工作的LY12和125-250度工作的LY6鉚釘用合金則需要人時效。含有主要強化相為MgSi,MgZn2的T相的合金,只有採用人工時效強化,才能達到它的最高強度。
對於一般鋁合金,自然時效時,屈服強度稍低而耐蝕性較好,採用人工時效時,合金屈服強度較高而伸長率和耐蝕性都降低。對於鋁-鋅-鎂-銅系鋁合金LC4則相反,當採用人工時效時,合金耐蝕性比自然時效好。
選用不同品種鋼材作塑料模具,其化學成分和力學性能各不相同,因此製造工藝路線不同;同樣,不同類型塑料模具鋼採用的熱處理工藝也是不同的。本節主要介紹塑料模具的製造工藝路線和熱處理工藝的特點。

Ⅷ 通常模具中哪些零件需作熱處理,作哪類熱處理其作用是什麼
壓鑄模零件的熱處理:
1、淬火設備為高壓高流率真空氣淬爐。
(1)淬火前:採用熱平衡法,提高模具加熱和冷卻的整體一致性。對凡是影響到這一點的薄壁孔、溝槽、型腔等,都要進行填充、封堵,盡量做到模具能均衡加熱和冷卻;同時,注意裝爐方式,防止壓鑄模在高溫時因自重而引起的變形。
(2)模具的加熱:在加熱過程中要緩慢加熱(用200℃/h升溫),並採用兩級預熱方式,防止快速升溫造成模具內、外溫差過大,引起過大的熱應力,同時減小相變應力。
(3)淬火溫度與保溫時間:要採用下限淬火加熱溫度,均熱時間不宜過短或過長,一般由壁厚和硬度來確定均熱時間。
(4)淬火冷卻:採用預冷方式,並通過調節氣壓與風速,有效的控製冷卻速度,使之最大限度地實現理想冷卻。即:預冷到850℃後,增大冷卻速度,快速通過「C」曲線鼻部,模溫在500℃以下則逐漸降低冷卻速度,到Ms點以下則採用近似等溫轉變的冷卻方式,以最大限度地減少淬火變形。模具冷卻到約150℃時,關閉冷卻風機,讓模具自然冷卻。
2、退火包括鍛造後的球化退火和模具製作過程中的去應力退火兩部分。其主要目的:在原材料階段進行結晶組織的改良;方便加工而降低硬度;防止加工後變形和淬火裂紋而去除內應力。
(1)球化退火。模具鋼經鍛造後,鋼的內部組織變成不穩定的結晶,硬度高切削困難,且此種狀態的鋼,內應力大,加工後容易變形和淬裂,機械性能差,為使碳化物結晶變成球化穩定組織須進行球化退火。
(2)去應力退火。對有殘留應力的模具鋼進行機械加工,加工後會產生變形,如果機械加工後仍留有應力,則在淬火時會發生很大的變形或淬火裂紋。為防止這些問題發生,必須進行去應力退火。
模具製作過程中一般進行三次去應力退火:
(1)在切削掉原材料體積的1/3以上形狀或對原材料厚度1/2深度加工時,加工餘量留有5~10mm,進行第一次去應力退火。
(2)在精加工留有餘量(2~5mm)時,進行第二次去應力退火。
(3)在試模後,淬火前進行第三次去應力退火。
3、回火淬火的模具冷卻到約100℃時,就要立即進行回火,以防止繼續產生變形,甚至開裂。回火溫度由工作硬度來確定,一般要進行三次回火。
4、氮化處理一般壓鑄模經淬火、回火(45~47HRC)後就能使用,但為了提高模具的耐磨性、抗蝕性和抗氧化性,防止粘模,延長模具的壽命,必須進行氮化處理。氮化層深度一般為0.15~0.2mm。氮化後需要打光,磨去白亮層(厚約0.01mm左右)。
5、幾點說明
(1)模具的熱處理變形是由於相變應力、熱應力的共同作用引起的,受多種因素影響。因此,在正確選材的前提下,還要注意毛坯的鍛造,要採用六面鍛造的方法,反復鐓拔。同時,在模具的設計階段就必須注意,使壁厚盡量均勻(壁厚不均勻時要開工藝孔);對形狀復雜的模具,要採用鑲拼結構,而不採用整體結構;對有薄壁、尖角的模具,要採用圓角過渡和增大圓角半徑。在熱處理時要作好數據記錄,長、寬、厚各方向上的變形量,熱處理條件(裝爐方式、加熱溫度、冷卻速度、硬度等),為日後模具的熱處理積累經驗。
(2)壓鑄模的加工一般有兩種工藝流程,都是根據實際情況確定的。第一種:一般壓鑄模。鍛打→球化退火→粗加工→第一次去應力退火(留有餘量5~10mm)→粗加工→第二次去應力退火(留有餘量2~5mm)→精加工→第三次去應力退火(試模後、淬火前)→淬火→回火→鉗修→氮化。第二種:特別復雜的及淬火很易變形的模具。鍛打→球化退火→粗加工→第一次去應力退火(留有餘量5~10mm)→淬火→回火→機、電加工→第二次去應力退火(留有餘量2~5mm)→機、電加工→第三次去應力退火(試模後)→鉗修→氮化。
Ⅸ 一些模具鋼為什麼要進行真空熱處理
真空熱處理是在極稀薄的氣氛中進行,爐內殘存的微量氣體不足以被處理的內金屬材料產生氧化脫碳容、增碳等作用。所以它的好處是可以使金屬材料表面的化學成分和原來的光亮度保持不變。
另外真空熱處理還能幫助金屬脫脂和排除H2 、 O2 、 N2 、 CO 等氣體以及分解氧化物等好處。
熱處理最好是交給有能力做熱處理的材料供給商去做,能保證品質和時長,因為現在價格競爭較大,很多熱處理廠報價極低,大家都知道熱處理是高耗電加工,少做一秒,就少不少錢,所以價格低就有可能做的時間不夠,也不一定是真空熱處理。
Ⅹ 塑膠模具鋼有什麼概念簡介
塑膠模具鋼以P來表示為主,共分為五類。滲碳型塑料模具鋼:P1,P2,P3,P4,P5,P6。這類鋼含碳量很低,主要是美國早期及用擠壓成型制模法,要求冷塑性好,有高的擠壓性能,成型後表面滲碳淬火提高表面硬度,使用壽命長。芯調質型塑料模具:P20,P21。目前塑料模具中P20的用量很大,已成為主體,大多數在預硬狀態時使用。中碳合金工具鋼用於熱固性塑料模。鋼號有H13,而L2和S7,O1和A2也有應用。不銹鋼用於耐蝕性要求高的塑料模,主要鋼號有420,414L,440,416。時效鋼是經過時效處理而獲得高的使用性能。冷作模具鋼包括製造沖截用的模具(落料沖孔模、修邊模、沖頭、剪刀)、冷鐓模和冷擠壓模、壓彎模及拉絲模等。
冷作模具鋼在工作時,由於被加工材料的變形抗力比較大,模具的工作部分承受很大的壓力、彎曲力、沖擊力及摩擦力。因此,冷作模具的正常報廢原因一般是磨損.也有因斷裂、崩力和變形超差而提前失效的。
冷作模具鋼與刃具鋼相比有許多共同點。要求模具有高的硬度和耐磨性、高的抗彎強度和足夠的韌性,以保證沖壓過程的順利進行、其不同之處在於模具形狀及加I工藝復雜,而且摩擦面積大,磨損可能性大,所以修磨起來困難。因此要求具有更高的耐磨化模具工作時承受沖壓力大。又由於形狀復雜易於產生應力集中,所以要求具有較高的韌性;模具尺寸大、形狀復雜.所以要求較高的淬透性、較小的變形及開裂傾向性。總之,冷作模具鋼在淬透性、耐磨性與韌性等方面的要求要較刃具鋼高一些,而在紅硬性方面卻要求較低或基本上沒要求(因為是冷態成形),所以也相應形成了一些適於做冷作模具用的鋼種,例如,發展了高耐磨、微變形冷作模具用鋼及高韌性冷作模具用鋼等。下面結合有關鋼種選用進一步說明。