1. 我是学模具的是一名大专生,如果往模具行业发展。。。大家有什么提议
我做了3年模具了,光说模具行业是个很大的范畴,且不谈模具的类别,光工种就有模具设计、模具编程、CNC操作员、工程、模具工(钳工修模的)……
总体而言这个行业的黄金期已经过了(大多数身在其中的人都是这个感受),因为当年最早做模具的那一批人,不是做了老板,就是当了主管,只剩下那些最烂的还在打工。同时现在我们最大的感受就是,普工工资老在涨,可做模具的整体工资不进反退,行业工资之间的差距越来越小。但每年还是有不少的人往这个行业钻,尤其是大学毕业生,他们抱着学技术的心态进来,工资要求非常低,可这行随着软件的发展导致技术门槛越来越低,一个新手只要头脑灵活,再得到一点机会,要不了多久就能干活。使得不少老板将裁员的大刀对准那些拿着高工资的老员工,一般一个公司只留下一个资深的技术员来解决最难的问题,所以那些生活在水深火热之中的老员工亲切的称那些新手为“入门杀手”。
依我看,如果你在模具行业没有靠山,只是为了所谓的学习技术而进来,那我劝你还是去干点别的。“当年的理想很美好,如今的现实很残酷”这绝对是大多数模具人的心声,我很多老同事如今已经转行了,只剩下我们几个还在饱受煎熬,不知该何去何从。(哥是做模具编程的)
2. 什么是3D打印机,3D打印机有何用途,另外3D打印机会不会在未来代替机械与模具行业加工生产,使机械
3D打印机又称三维打印机(3DP),是一种累积制造技术,即快速成形技术的一种机器,它是一种数字模型文件为基础,运用特殊蜡材、粉末状金属或塑料等可粘合材料,通过打印一层层的粘合材料来制造三维的物体。现阶段三维打印机被用来制造产品。逐层打印的方式来构造物体的技术。3D打印机的原理是把数据和原料放进3D打印机中,机器会按照程序把产品一层层造出来。
3D打印机堆叠薄层的形式有多种多样。3D打印机与传统打印机最大的区别在于它使用的“墨水”是实实在在的原材料,堆叠薄层的形式有多种多样,可用于打印的介质种类多样,从繁多的塑料到金属、陶瓷以及橡胶类物质。有些打印机还能结合不同介质,令打印出来的物体一头坚硬而另 一头柔软。
1、有些3D打印机使用“喷墨”的方式。即使用打印机喷头将一层极薄的液态塑料物质 喷涂在铸模托盘上,此涂层然后被置于紫外线下进行处理。之后铸模托盘下降极小的距离,以供下一层堆叠上来。
2、还有的使用一种叫做“熔积成型”的技术,整个流程是在喷头内熔化塑料,然后通过沉积塑料纤维的方式才形成薄层。
3、还有一些系统使用一种叫做“激光烧结”的技术,以粉末微粒作为打印介质。粉末微粒被喷撒在铸模托盘上形成一层极薄的粉末层,熔铸成指定形状,然后由喷出的液态粘合剂进行固化。
4、有的则是利用真空中的电子流熔化粉末微粒,当遇到包含孔洞及悬臂这样的复杂结构时,介质中就需要加入凝胶剂或其他物质以提供支撑或用来占据空间。这部分粉末不会被熔铸,最后只需用水或气流冲洗掉支撑物便可形成孔隙。
3D打印带来了世界性制造业革命,以前是部件设计完全依赖于生产工艺能否实现,而3D打印机的出现,将会颠覆这一生产思路,这使得企业在生产部件的时候不再考虑生产工艺问题,任何复杂形状的设计均可以通过3D打印机来实现。
3D打印无需机械加工或模具,就能直接从计算机图形数据中生成任何形状的物体, 从而极大地所缩短了产品的生产周期,提高了生产率。尽管仍有待完善,但3D打印技术市场潜力巨大,势必成为未来制造业的众多突破技术之一。
3D打印使得人们可以在一些电子产品商店购买到这类打印机,工厂也在进行直接销售。科学家们表示,三维打印机的使用范围还很有限,不过在未来的某一天人们一定可以通过3D打印机打印出更实用的物品。
3D打印技术对美国太空总署的太空探索任务来说至关重要,国际空间站现有的三成以上的备用部件都可由这台3D打印机制造。这台设备将使用聚合物和其他材料,利用挤压增量制造技术逐层制造物品。3D打印实验是美国太空总署未来重点研究项目之一,3D打印零部件和工具将增强太空任务的可靠性和安全性,同时由于不必从地球运输,可降低太空任务成本。
你说的机械是必须要的,因为电脑也是机械啊!至于模具,可能会退伍。总而言之,不管什么高科技物品,都有一个必不可少的东西,就是人(没有人怎么操作)。
3. 镭射强化技术提高模具使用寿命
摘 要:介绍了用于模具表面的镭射强化加工系统和镭射强化工艺方法,讨论了镭射强化模具表面的硬化层深度和耐磨效能与镭射强化工艺引数之间的关系,采用镭射强化技术能大幅度提高模具的使用寿命。
关键词:镭射强化;模具;磨损/寿命
随着我国汽车、家电工业的迅猛发展,对模具工业提出了更高的要求。如何提高模具的加工质量和使用寿命,一直是人们不断探索的课题。采用表面强化处理是提高模具质量和使用寿命的重要途径,它对于改善模具的综合性能、大幅度降低成本、充分发挥传统模具的潜力,具有十分重要的意义。常用的模具表面强化处理工艺有化学热处理***如渗碳、碳氮共渗等***、表面复层处理***如堆焊、热喷涂、电火花表面强化、PVD和CVD等***、表面加工强化处理***如喷丸等***。这些方法大多工艺较为复杂,处理周期较长,处理后存在较大变形。近年来,随着大功率镭射器的出现及镭射加工技术在工业上的应用日趋广泛、成熟,为模具表面的强化提供了一种新的技术途径。
1 激光表面强化处理方法
镭射用于表面处理的方法多,其中包括:镭射相变硬化***LTH***,激光表面熔化处理***LSM***,激光表面涂覆及合金化***LSC/LSA***,激光表面化学气相沉积***LCVD***,镭射物理气相沉积***LPVD***,镭射冲击***LSH***和镭射非晶化等,其中已被研究用于提高模具寿命的方法有镭射相变硬化和激光表面熔覆和合金化,本文主要讨论利用镭射相变硬化技术提高模具寿命的机理和方法。
镭射相变硬化***镭射淬火***是利用镭射辐照到金属表面,使其表面以很高的升温速度迅速达到相变温度而形成奥氏体,当镭射束离开后,利用金属本身热传导而发生“自淬火”,使金属表面发生马氏体转变。与传统淬火方法相比,镭射淬火是在急热、急冷过程中进行的,温度梯度高,从而在表面形成了一层硬度极高的特殊淬火组织,如晶粒细化、高位错密度等。其淬火层的硬度比普通淬火的硬度还高15%~20%。淬硬层深度可达0.1~2.5mm,因而可大大提高模具的耐磨性,延长模具的使用寿命。
2 镭射强化加工系统的组成
图1为一个具有多轴联动的镭射强化加工系统工作原理示意图。它由三部分组成:第一部分为镭射器系统,由镭射头、激励电源、冷却系统和谐振腔引数变换装置组成;第二部分为光束传输与变换装置,把镭射束按加工要求引导到待处理零件表面,同时对镭射束进行空间强度分布的变换,以满足对模具表面不同受力部位进行有效的强化处理。光束经变换后即可在模具表面产生所需的强化单元,通过多轴联动的数控系统即可对模具的三维曲面进行可控的、快速和有效的强化处理;第三部分为计算机数控系统,控制镭射工作头和数控工作台等多轴运动,其镭射束相对于工件的运动轨迹决定了强化的带形状,以实现复杂模具表面的镭射强化处理。
3 镭射强化处理工艺
3.1 工件表面预处理涂层
当镭射器确定后,金属材料对镭射的吸收能力主要取决于其表面状态。一般需镭射处理的金属材料表面都经过机械加工,表面粗糙度值很小,其反射率可达 80%~90%,使大部分镭射能量被反射掉。为了提高金属表面对镭射的吸收率,在镭射热处理前要对材料表面进行表面处理***常称黑化处理***,即在需要镭射处理的金属表面涂上一层对镭射有较高吸收能力的涂料。
表面预处理的方法包括磷化法、提高表面粗糙度法、氧化法、喷***刷***涂料法、镀膜法等多种方法,其中较为常用的是磷化法和喷***刷***涂料法。常用的涂料骨料有石墨、炭黑、磷酸锰、磷酸锌、水玻璃等。也有直接使用碳素墨汁和无光漆作为预处理涂料的。对于有些低碳钢材料,在其表面用炭黑粉末处理,在进行镭射淬火时可起渗碳作用。我们采用上海光机所研制的黑化溶液***86-1型***,其处理方法简单,可直接喷刷在工件表面,镭射吸收率达90%以上。
3.2 工艺引数优化
镭射相变硬化工艺引数主要有镭射器输出功率P,光斑大小D及扫描速度v,在其它条件一定的条件下,镭射硬化层的深度H与P、D、v有如下关系:H=P/***D.v***。为了得到最优工艺引数,基本方法是根据已有成功的资料,确定一个工艺引数范围,再以P、D、v三个因子,各取三个水平,做出正交试验表在试件上进行试验研究。图2为汽车尾灯支架拉深模具所采用的材料Cr-Mo铸铁,在不同扫描速度下,镭射功率与硬化层深的关系曲线。图3为不同的镭射功率下,扫描速度与硬化层的关系曲线。图示表明:在一般情况下,镭射功率越高,硬化层越深;扫描速度越大,硬化层越浅。图4为在镭射功率 P=1200W,扫描速度v=15mm/s,光斑直径D=4.5mm的工艺引数条件下,淬火层的硬度及硬化层深之间的关系。从中可看出,经镭射处理后材料表面的硬度有较为显著的提高。
4 硬化层残余应力和耐磨效能
在镭射硬化处理过程中,金属材料表面组织结构的变化及表面相对于材料内部温差的产生和消失,必将产生残余应力。残余应力的大小和分布状况对模具的实用效能有很大影响,镭射硬化产生的残余应力沿淬硬层深的分布情况如图5。由图5可见,镭射相变硬化在模具表面产生较大的残余压应力,能有效地防止疲劳裂纹的产生,提高模具的疲劳寿命。
模具表面的耐磨效能与材料的显微结构、晶粒大小、硬度高低、表面状态等多种因素有关,而这些因素又受处理工艺引数的影响,因而镭射强化的工艺引数直接影响模具的耐磨效能。图6和图7为镭射功率及扫描速度对35CrMn钢耐磨效能的影响。由图可见,在一定范围内,当扫描速度一定时,提高功率耐磨性有所增加;在功率一定时,扫描速度的提高也有助于提高耐磨性。图8为42CrMo材料经镭射处理***P=1200W,v=55mm/s,D=3.5mm***后与常规处理之间的磨损对比,可见采用镭射强化技术能大大提高材料的耐磨效能。
5 结论
通过对几种不同的模具材料所进行的镭射强化处理,并与实际工作情况进行检查对比,表明采用镭射强化技术能大幅度提高模具的使用寿命,而冷冲模的强化效果更为明显。如对T8A钢制造的冲头和Cr12Mo钢制造的凹模进行镭射硬化处理,镭射硬化层为0.15mm,硬度为1200HV,使用寿命明显增加,由冲压2.5万件提高到10万件,即寿命提高3~4倍。采用镭射强化技术,其优越性在于:
***1***可根据模具的形状特点、使用要求在指定区域内进行,且对表面质量没有任何损伤。经镭射处理后的模具,不需后续加工即可直接投入生产使用,从而降低了模具的制造成本。
***2***通过编制专用的镭射强化处理软体,可实现镭射处理工艺引数的计算机自动优化、处理过程的计算机模拟模拟和实时监控及镭射处理后表面组织结构和效能的计算机预测,实现模具的复杂形状和人工智慧化的表面处理。
***3***采用镭射熔覆和合金化等技术,可在廉价金属材料表层得到任意成分的合金和相应的微观组织,从而获得良好的综合机械效能,改善和提高材料表面的耐磨、耐蚀和耐热效能。这些技术用于报废模具的修复和强化,具有较为广泛的市场前景
参考文献: [1]蒋昌生,蒋勇.模具表面强化处理.锻压技术,1993***4*** [2]陈大明,徐有容.模具钢表面镭射熔覆硬面合金层改性研究.金属热处理,1998***1*** [3]陈光南.镭射热处理新技术及其应用.金属热处理,1998***7*** [4]李儒荀,平雪良.连续镭射强化模具刃口的工艺研究.电加工,1995***6*** [5]关振中.镭射加工工艺手册.北京:中国计量出版社,1998. [6]刘江龙,邹至荣.高能束热处理.北京:机械工业出版社,1997
4. 快速成型的工作原理
RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是分层制造、逐层叠加。这种工艺可以形象地叫做增长法或加法。
每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个积分的过程。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有UV、SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下: Stereo lithography Appearance的缩写,即立体光固化成型法.
用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体.
SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。其工艺过程是,首先通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;激光光束通过 数控装置控制的扫描器,按设计的扫描路径 照射到液态光敏树脂表面 , 使表面特定区域内的一层树脂固化后, 当一层加工完毕后,就生成零件的一个截面;然后 升降台下降一定距离 , 固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型。将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。
SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。
3D Systems 推出的Viper Pro SLA system
SLA 的优势
⒈ 光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时间的检验.
⒉ 由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具.
⒊可以加工结构外形复杂或使用传统手段难于成型的原型和模具.
⒋ 使CAD数字模型直观化,降低错误修复的成本.
⒌ 为实验提供试样,可以对计算机仿真计算的结果进行验证与校核.
⒍ 可联机操作,可远程控制,利于生产的自动化.
SLA 的缺憾
⒈ SLA系统造价高昂,使用和维护成本过高.
⒉ SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻.
⒊ 成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存.
⒋ 预处理软件与驱动软件运算量大,与加工效果关联性太高.
⒌ 软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员熟悉.
⒍ 立体光固化成型技术被单一公司所垄断.
SLA 的发展趋势与前景
立体光固化成型法的的发展趋势是高速化,节能环保与微型化.
不断提高的加工精度使之有最先可能在生物,医药,微电子等领域大有作为. 选择性激光烧结(以下简称SLS)技术最初是由美国德克萨斯大学奥斯汀分校的Carl ckard于1989年在其硕士论文中提出的。后美国DTM公司于1992年推出了该工艺的商业化生产设备Sinter Sation。几十年来,奥斯汀分校和DTM公司在SLS领域做了大量的研究工作,在设备研制和工艺、材料开发上取得了丰硕成果。德国的EOS公司在这一领域也做了很多研究工作,并开发了相应的系列成型设备。
国内也有多家单位进行SLS的相关研究工作,如西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心,华中科技大学、南京航空航天大学、西北工业大学、中北大学和北京隆源自动成型有限公司等,也取得了许多重大成果,如南京航空航天大学研制的RAP-I型激光烧结快速成型系统、北京隆源自动成型有限公司开发的AFS一300激光快速成型的商品化设备。
选择性激光烧结是采用激光有选择地分层烧结固体粉末,并使烧结成型的固化层层层叠加生成所需形状的零件。其整个工艺过程包括CAD模型的建立及数据处理、铺粉、烧结以及后处理等。SLS技术的快速成型系统工作原理见图1。
整个工艺装置由粉末缸和成型缸组成,工作时粉末缸活塞(送粉活塞)上升,由铺粉辊将粉末在成型缸活塞(工作活塞)上均匀铺上一层,计算机根据原型的切片模型控制激光束的二维扫描轨迹,有选择地烧结固体粉末材料以形成零件的一个层面。粉末完成一层后,工作活塞下降一个层厚,铺粉系统铺上新粉.控制激光束再扫描烧结新层。如此循环往复,层层叠加,直到三维零件成型。最后,将未烧结的粉末回收到粉末缸中,并取出成型件。对于金属粉末激光烧结,在烧结之前,整个工作台被加热至一定温度,可减少成型中的热变形,并利于层与层之间的结合。
与其它快速成型(RP)方法相比,SLS最突出的优点在于它所使用的成型材料十分广泛。从理论上说,任何加热后能够形成原子间粘结的粉末材料都可以作为SLS的成型材料。可成功进行SLS成型加工的材料有石蜡、高分子、金属、陶瓷粉末和它们的复合粉末材料。由于SLS成型材料品种多、用料节省、成型件性能分布广泛、适合多种用途以及SLS无需设计和制造复杂的支撑系统,所以SLS的应用越来越广泛。
SLS技术的金属粉末烧结方法
3.1金属粉末和粘结剂混合烧结
首先将金属粉末和某种粘结剂按一定比例混合均匀,用激光束对混合粉末进行选择性扫描,激光的作用使混合粉末中的粘结剂熔化并将金属粉末粘结在一起,形成金属零件的坯体。再将金属零件坯体进行适当的后处理,如进行二次烧结来进一步提高金属零件的强度和其它力学性能。这种工艺方法较为成熟,已经能够制造出金属零件,并在实际中得到使用。南京航空航天大学用金属粉末作基体材料(铁粉),加人适量的枯结剂,烧结成形得到原型件,然后进行后续处理,包括烧失粘结剂、高温焙烧、金属熔渗(如渗铜)等工序,最终制造出电火花加工电极(见图2)。并用此电极在电火花机床上加工出三维模具型腔(见图3)。
3.2金属粉末激光烧结
激光直接烧结金属粉末制造零件工艺还不十分成熟,研究较多的是两种金属粉末混合烧结,其中一种熔点较低,另一种较高。激光烧结将低熔点的粉末熔化,熔化的金属将高熔点金属粉末粘结在一起。由于烧结好的零件强度较低,需要经过后处理才能达到较高的强度。美国Texas大学Austin分校进行了没有聚合物粘结剂的金属粉末如CuSn NiSn青铜镍粉复合粉末的SLS成形研究,并成功地制造出金属零件。他们对单一金属粉末激光烧结成形进行了研究,成功地制造了用于F1战斗机和AIM9导弹的工NCONEL625超合金和Ti6A 14合金的金属零件。美国航空材料公司已成功研究开发了先进的钦合金构件的激光快速成形技术。中国科学院金属所和西安交通大学等单位正致力于高熔点金属的激光快速成形研究,南京航空航天大学也在这方面进行了研究,用Ni基合金混铜粉进行烧结成形的试验,成功地制造出具有较大角度的倒锥形状的金属零件(见图4)。
3.3金属粉末压坯烧结
金属粉末压坯烧结是将高低熔点的两种金属粉末预压成薄片坯料,用适当的工艺参数进行激光烧结,低熔点的金属熔化,流人到高熔点的颗粒孔隙之间,使得高熔点的粉末颗粒重新排列,得到致密度很高的试样。吉林大学郭作兴等用此方法对FeCu,Fe C等合金进行试验研究,发现压坯激光烧结具有与常规烧结完全不同的致密化现象,激光烧结后的组织随冷却方式而异,空冷得到细珠光体,淬火后得到马氏体和粒状。
4 SLS技术金属粉末成型存在的问题
SLS技术是非常年轻的一个制造领域,在许多方面还不够完善,如制造的三维零件普遍存在强度不高、精度较低及表面质量较差等问题。SLS工艺过程中涉及到很多参数(如材料的物理与化学性质、激光参数和烧结工艺参数等),这些参数影响着烧结过程、成型精度和质量。零件在成型过程中,由于各种材料因素、工艺因素等的影响,会使烧结件产生各种冶金缺陷(如裂纹、变形、气孔、组织不均匀等)。
4.1粉末材料的影响
粉末材料的物理特性,如粉末粒度、密度、热膨胀系数以及流动性等对零件中缺陷形成具有重要的影响。粉末粒度和密度不仅影响成型件中缺陷的形成,还对成型件的精度和粗糙度有着显著的影响。粉末的膨胀和凝固机制对烧结过程的影响可导致成型件孔隙增加和抗拉强度降低。
4.2工艺参数的影响
激光和烧结工艺参数,如激光功率、扫描速度和方向及间距、烧结温度、烧结时间以及层厚度等对层与层之间的粘接、烧结体的收缩变形、翘曲变形甚至开裂都会产生影响。上述各种参数在成型过程中往往是相互影响的,如Yong Ak Song等研究表明降低扫描速度和扫描间距或增大激光功率可减小表面粗糙度,但扫描间距的减小会导致翘曲趋向增大。
因此,在进行最优化设计时就需要从总体上考虑各参数的优化,以得到对成型件质量的改善最为有效的参数组。制造出来的零件普遍存在着致密度、强度及精度较低、机械性能和热学性能不能满足使用要求等一些问题。这些成型件不能作为功能性零件直接使用,需要进行后处理(如热等静压HIP、液相烧结LPS、高温烧结及熔浸)后才能投人实际使用。此外,还需注意的是,由于金属粉末的SLS温度较高,为了防止金属粉末氧化,烧结时必须将金属粉末封闭在充有保护气体的容器中。
5 总结与展望
快速成型技术中,金属粉末SLS技术是人们研究的一个热点。实现使用高熔点金属直接烧结成型零件,对用传统切削加工方法难以制造出高强度零件,对快速成型技术更广泛的应用具有特别重要的意义。展望未来,SLS形技术在金属材料领域中研究方向应该是单元体系金属零件烧结成型,多元合金材料零件的烧结成型,先进金属材料如金属纳米材料,非晶态金属合金等的激光烧结成型等,尤其适合于硬质合金材料微型元件的成型。此外,根据零件的具体功能及经济要求来烧结形成具有功能梯度和结构梯度的零件。我们相信,随着人们对激光烧结金属粉末成型机理的掌握,对各种金属材料最佳烧结参数的获得,以及专用的快速成型材料的出现,SLS技术的研究和引用必将进入一个新的境界。 分层实体制造(LOM——Laminated Object Manufacturing)法,LOM又称层叠法成形,它以片材(如纸片、塑料薄膜或复合材料)为原材料,其成形原理如图所示,激光切割系统按照计算机提取的横截面轮廓线数据,将背面涂有热熔胶的纸用激光切割出工件的内外轮廓。切割完一层后,送料机构将新的一层纸叠加上去,利用热粘压装置将已切割层粘合在一起,然后再进行切割,这样一层层地切割、粘合,最终成为三维工件。LOM常用材料是纸、金属箔、塑料膜、陶瓷膜等,此方法除了可以制造模具、模型外,还可以直接制造结构件或功能件。该方法的特点是原材料价格便宜、成本低。
成形材料:涂敷有热敏胶的纤维纸;
制件性能:相当于高级木材;
主要用途:快速制造新产品样件、模型或铸造用木模。 熔积成型(FDM——Fused Deposition Modeling)法,该方法使用丝状材料(石蜡、金属、塑料、低熔点合金丝)为原料,利用电加热方式将丝材加热至略高于熔化温度(约比熔点高 1℃),在计算机的控制下,喷头作x-y平面运动,将熔融的材料涂覆在工作台上,冷却后形成工件的一层截面,一层成形后,喷头上移一层高度,进行下一层涂覆,这样逐层堆积形成三维工件。该方法污染小,材料可以回收,用于中、小型工件的成形。下图为FDM成形原理图。
成形材料:固体丝状工程塑料;
制件性能:相当于工程塑料或蜡模;
主要用途:塑料件、铸造用蜡模、样件或模型。
特点:1、优点:(1)操作环境干净,安全,在办公室课进行;(2)工艺干净、简单、易于操作且不产生垃圾;(3)尺寸精度高,表面质量好,易于装配,可快速构建瓶状或中空零件;(4)原材料以卷轴丝的形式提供,易于搬运和金额快速更换;(5)原料价格便宜;(6)材料利用率高;(7)可选用的材料较多,如染色的ABS、PLA和医用ABD、PC、PPSF、人造橡胶、铸造用蜡。
2、缺点:(1)精度较低,难以构建结构复杂的零件;(2)与截面垂直方向的强度小;(3)成型速度相对较慢,不适合构建大型零件。