导航:首页 > 模具设计 > 大模具怎么进行离子氮化加工

大模具怎么进行离子氮化加工

发布时间:2022-09-20 13:57:57

1. 氮化技术是什么技术

一、氮化的机理
氮化是将工件放入大量活性氮原子的介质中,在一定温度与压力下,把氮原子渗入钢件表面,形成富氮硬化层的热处理。
二、氮化的作用
1、氮化能使零件表面有更高的硬度和耐磨性。例如用38CrMoAlA钢制作的零件经氮化处理后表面的硬度可达HV=950—1200,相当于HRC=65—72,而且氮化后的高强度和高耐磨性保持到500—600℃,不会发生显著的改变。
2、能提高抗疲劳能力。由于氮化层内形成了更大的压应力,因此在交变载荷作用下,零件表现出具有更高的疲劳极限和较低的缺口敏感性,氮化后工件的疲劳极限可提高15—35%。
3、提高工件抗腐蚀能力,由于氮化使工件表面形成一层致密的、化学稳定性较高的ε相层,在水蒸气中及碱性溶液中具有高的抗腐蚀性,此种氮化法又简单又经济,可以代替镀锌、发蓝,以及其它化学镀层处理。此外,有些模具经过氮化,不但可以提高耐磨性和抗腐性,还能减少模具与零件的粘合现象,延长模具的工作寿命。
二、氮化的实现方法
1、气体氮化
气体氮化是将工件放入一个密封空间内,通入氨气,加热到500-580℃保温几个小时到几十个小时。氨气在400℃以上将发生如下分解反应:2NH3—→3H2+2[N],从而炉内就有大量活性氮原子,活性氮原子[N]被钢表面吸收,并向内部扩散,从而形成了氮化层。
以提高硬度和耐磨性的氮化通常渗氮温度为500—520℃。停留时间取决于渗氮层所需要的厚度,一般以0.01mm/h计算。因此为获得0.25—0.65mm的厚度,所需要的时间约为20—60h。提高渗氮温度,虽然可以加速渗氮过程,但会使氮化物聚集、粗化,从而使零件表面层的硬度降低。
对于提高硬度和耐磨性的氮化,在氮化时必须采用含Mo、A、V等元素的合金钢,如38CrMoAlA、38CrMoAA等钢。这些钢经氮很后,在氮化层中含有各种合金氮化物,如:AlN、CrN、MoN、VN等。这些氮化物具有很高的硬度和稳定性,并且均匀弥散地分布于钢中,使钢的氮化层具有很高的硬度和耐磨性。Cr还能提高钢的淬透性,使大型零件在氮化前调质时能得到均匀的机械性能。Mo还能细化晶粒,并降低钢的第二类回火脆性。如果用普通碳钢,在氮化层中形成纯氮化铁,当加热到较高温度时,易于分解聚集粗化,不能获得高硬度和高耐磨性。
抗腐蚀氮化温度一般在600—700℃之间,分解率大致在40—70%范围,停留时间由15分钟到4小时不等,深度一般不超过0.05m m。对于抗腐蚀的氮化用钢,可应用任何钢种,都能获得良好的效果。
2、液体氮化
液体氮化它是一种较新的化学热处理工艺,温度不超过570℃,处理时间短,仅1—3h;而且不要专用钢材,试验表明:40Cr经液体氮化处理比一般淬火回火后的抗磨能力提高50%;铸铁经液体氮化处理其抗磨能力提高更多。不仅如此,实践证明:经过液体氮化处理的零件,在耐疲劳性、耐腐蚀性等方面都有不同程度的提高;高速钢刀具经液体氮化处理,一般能提高使用寿命20—200%;3Cr2W8V压铸模经液体氮化处理后,可提高使用寿命3—5倍。液体氮化表层硬而不脆,并且具有一定的韧性,不容易发生剥落现象。
但是,液体氮化也有缺点:如它的氮化表层中的氮铁化合物层厚度比较薄,仅仅只有0.01—0.02mm。国外多采用氰化盐作原料液体氮化,国内已改用无毒原料液体氮化。我国无毒液体氮化的配方是:尿素40%,碳酸钠30%、氯化钾20%,氢氧化钾10%(混合盐溶点为340℃左右)。液体氮化虽然有很多优点,但由于溶盐反应有毒性,影响操作人员身体健康,废盐也不好处理。因此,与用越来越受到限制。
3、离子氮化
离子氮化又叫“辉光离子氮化”是最近起来的一种热处理工艺,它具有生产周期短,零件表面硬度高,能控制氮化层脆性等优点。因而,近几年来国内发展迅速,使用范围很广。
辉光离子氮化的基本原理:
辉光离子氮化是将零件放到离子氮化的真空室内,氮化的零件接高压直流电源的阴极(负极),电炉外壳接直流高压电源的阳极(正极),当向真空容器内充入氨气,但容器内压强保持200-1000PA之间,在阴极和阳极间加800—1000伏直流电压,氨气就会电离,这种气体经电离作用后,产生带正电的氮阳离子[N+]和带负电的阴离子[N-],形成了一个等离子区。在等离子区内,氮的正离子在高压电场加速下,快速冲向阴极,轰击清洗需氮化的零件表面,将动能转变为热能,还由于氮离子转变成氮原子时,又放出大量的热能并发出很亮的淡紫色光,另外电压降落在工件附近时也产生热量,这三种热量将零件加热到需要氮化温度。
在这种温度下,氮离子与零件金属表面发生化学反应,氮原子渗入到零件表面并扩散到内部,形成了氮化层。
辉光离子氮化的特点:
(1)、表面加热速度快,可缩短加热及冷却时间,到十分之一至十二分之一。而且除处理表面加热外其余部分均处在低温(100℃左右)状态,既节约了加热功率又减少零件的变形。
(2)、扩散过程快,在高压电场作用下,由于氮化原子的运动速度比气体氮化快许多倍,渗入速度更快,一般只需要3—10h。
(3)、氮化层韧性好,具有高抗疲劳和高抗磨性能,氮化层脆性白色ε相(Fe2N)控制在0—0.2mm范围,从而免去氮化零件的磨削加工。
表面硬度高达HV900(HRC64),氮化层深度可掌握在0.09—0.87mm。
四、各种氮化法的成本分析
1、盐浴氮化炉结构简单,价格低,操作工艺很容易掌握,氮化成本也低,但氮化质量不高,废弃物有污染,通常很少采用。
2、气体氮化炉构复杂,价格稍高,操作相比而言稍有难度,但氮化质量好,可以达到很深的渗层与较高的硬度,但需要较长的时间,氨气的用量也很高
3、离子氮化炉生产制造工艺要求很高,所用材料也很讲究,电气控制技术含量很高,对操作人员的整体要求高,但氮化质量最好,渗入速度快,氮化成本低于气体氮化,是很好的发展趋势。
以一次性装炉量在400公斤为例:初步投资别如下
盐浴氮化炉投资在贰万元左右
气体氮化炉在肆万元左右
离子氮化要在玖万元左右
达到同样的渗层,离子氮化的成本约为气体氮化的60%(由于盐浴氮化很难达到气体氮化与离子氮化的渗层,所以不能比较它们的运行成本)

2. 铝型材挤压模具的氮化工艺流程是怎样的

铝型材挤压模具制造工艺流程挤压模具
工艺一般如下:
模子任务的提出(型材图)

锻坯改锻、退火

挤压模具设计

编制程序


车削加工
程序检查


粗磨
平面

划线

数控程序磁带或纸带程序

钻、铣削加工

检验

电火花加工

电极加工

热处理
线切割加工

磨削加工
检验、修正

挤压珩磨

挤压、试模、修模

氮化处理

3. 离子氮化的原理

离子渗氮
又称辉光渗氮,是利用辉光放电原理进行的。离子渗氮是在充以含氮气体的低真空炉体内把金属工件作为阴极炉体为阳极,通电后介质中的氮氢原子在高压直流电场下被电离,在阴阳极之间形成等离子区。在等离子区强电场作用下,氮和氢的正离子以高速向工件表面轰击。离子的高动能转变为热能,加热工件表面至所需温度。由于离子的轰击,工件表面产生原子溅射,因而得到净化,同时由于吸附和扩散作用,氮遂渗入工件表面。
单热源的离子氮化是老的产品,无法满足产品要求炉温的均匀性和稳定性,必须要具有双热源的离子氮化设备才能满足炉温±5度且可以随意控温,目前已广泛应用于航空航天军工等重点领域。

4. 模具的表面强化热处理有哪些

模具表面强化处理工艺主要有气体氮化法、离子氮化法、电火 花表面强化法、渗硼、TD法、CVD法、PVD法、激光表面强化 法、离子注入法、等离子喷涂法等。

(1)气体软氮化:使氮在氮化温度分解后产生活性氮原子,被 金属表面吸收渗入钢中并且不断自表面向内扩散,形成氮化层。模 具经氮化处理后,表面硬度可达950〜1200HV,使模具具有很高 的红硬度和高的疲劳强度,并提高模具表面的光洁度和抗咬合
能力


(2)离子氮化:将待处理的模具放在真空容器中,充以一定压 力的含氮气体(如氮或氮氢混合气),然后以被处理模具作阴极, 以真空容器的罩壁作阳极,在阴阳极之间加400〜600V的直流电 压,阴阳极间便产生辉光放电,容器里的气体被电离,在空间产生 大量的电子与离子。在电场的作用下,正离子冲向阴极,以很高的 速度轰击模具表面,将模具加热。正离子冲入模具表面,获得电子,变成氮原子被模具表面吸收,并向内扩散形成氮化层。应用离 子氮化法可提高模具的耐磨性和疲劳强度。

(3)电火花表面强化:这是一种直接利用电能的高能量密度对 模具表面进行强化处理的工艺。它是通过火花放电的作用,把作为 电极的导电材料渗进金属工件表层,从而形成合金化的表面强化 层,使工件表面的物理、化学性能和力学性能得到改善。例如采用 WC、TiC等硬质合金电极材料强化高速钢或合金工具钢表面,可 形成显微硬度1100HV以上的耐磨、耐蚀和具有红硬性的强化层, 使模具的使用寿命明显提高。电火花表面强化的优点是设备简单、 操作方便,处理后的模具耐磨性提高显著;缺点是强化表面较粗 糙,强化层厚度较薄,强化处理的效率低。

(4)渗硼:由于渗硼层具有良好的红硬性、耐磨性,通过渗硼 能显著提高模具表面硬度(达到1300〜2000HV)和耐磨性,可广 泛用于模具表面强化,尤其适用于处理在磨粒磨损条件下的模具。 但渗硼层往往存着较大的脆性,这也限制了它的应用。

(5)TD热处理:在空气炉或盐槽中放入一个耐热钢制的坩埚, 将硼砂放入坩埚加热熔化至800〜1200℃,然后加入相应的碳化物 形成粉末(如钦、钡、铌、铬),再将钢或硬质合金工件放入坩埚 中浸渍保温1〜2h,加入元素将扩散至工件表面并与钢中的碳发生 反应形成碳化物层,所得到的碳化物层具有很高的硬度和耐磨性。

(6)CVD法(化学气相沉积):将模具放在氢气(或其它保护 气体)中加热至900〜1200℃后,以其为载气,把低温汽化挥发的 金属化合物气体如四氯化钛和甲烷(或其它碳氢化合物)蒸气带入 炉中,使TiCl4中的钛和碳氢化合物中的碳(以及钢表面的碳分) 在模具表面进行化学反应,从而生成一层所需金属化合物涂层(如 碳化钦)。

(7)PVD法:在真空室中使强化用的金属原子蒸发,或通过荷 能粒子的轰击,在一个电流偏压的作用下,将其吸引并沉积到工件 表面形成强化层。利用PVD法可在工件表面沉积碳化钛、氮化 钛、氧化铝等多种化合物。

(8)激光表面强化:当具有一定功率的激光束以一定的扫描速 度照射到经过黑化处理的模具工作表面时,将使模具工作表面在很 短时间内由于吸收激光的能量而急剧升温。当激光束移开时,模具 工作表面由基材自身传导而迅速冷却,从而形成具有一定性能的表 面强化层,其硬度可提高15%〜20%,此外还具有耐磨性高、节 能效果显著以及可改善工作条件等优点。

(9)离子注入:利用小型低能离子加速器,将需要注入元素的 原子,在加热器的离子源中电离成离子,然后通过离子加热器的高 电压电场将其加热,成为高速离子流,再经过磁分析器提炼后,将 离子束强行打入置于靶室中的模具工作表面,从而改变模具表面的 显微硬度和表面粗糙度,降低表面摩擦系数,最终提高工件的使用 寿命。

5. 氮化一两件大模时应该怎么氮比较好

首先看你的模具有多大,我们一般分解力控制在25-30,压力在10个,氨气流量在400左右,保温时间在10个小时。这样氮化出来的颜色和硬度都很完美,不过有的氮化炉因为设备制造的原因,本来氮化出来的效果就不好。仅供参考。

6. 谁知道常见的氮化热处理工艺技术运用流程是什么

热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的金相组织结构,来控制其性能的一种金属热加工工艺。下面介绍几种常用的热处理工艺方法。

常用的热处理方法如下:
1.正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
2.退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。
3.固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。
4.时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。
5.固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型。
6.时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。
7.淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。50CrVA弹簧钢880℃淬油金相组织
8.回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。
9.钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。
10、离子渗氮在低于一个大气压的渗氮气氛中,利用工件(阴极)和阳极之间的产生的辉光放电进行渗氮的工艺称为离子渗氮。其特点是:渗氮速度快;组织易控制,氮层脆性小;变形小;易保护,节约能源;污染少。
11.调质处理:一般习惯将淬火加高温回火相结合的热处理称为调质处理。调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织为优。它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。
12.钎焊:用钎料将两种工件粘合在一起的热处理工艺。随着现代科学技术的发展、热处理技术也不断地发展的越来越先进,给工业也带来了更大的便利,而传统的热加工工艺总是需要投入很多的资源和原材才能加工出优质的金属工件,而且在过程中也会产生大量的浪费现象,原材料利用不充分等等,而如今的离子渗氮炉在进行离子渗氮热处理加工工艺过程中却更能节约能源、排放污染物和气体更少、而且也提高了工作效率。是热处理历史中又一重要的发明。

7. 您好,请问有没有低成本氮化的方法,我是做气门毛坯加工的模具寿命太短了,有合适的方法望告之,恭喜发财

氮化那些设备挺贵的一套好几十万
也有最简便的方法就是 水淬 加硬钢材料

8. XPM40模具钢怎么氮化XPM40模具钢好不好加工

9. 氮化处理的有哪些技术要求,都适用什么材料

新一代程控电脉冲型多功能离子轰击炉
1设置了能自动调控全炉温度的第二热源。采用多套可自动调控温的电加热器系统代替原来单套手动升温系统,并将原来提供给电加热器是低电压大电流(≤110V)的交流电改进成高电压小电流的直流电。减少了电干扰,使炉内等温带的上下部温差控制在±2℃以内;使最高使用温度提高至950℃或1100℃(结构与材料要适调);使大功率大容量离子加热设备的制造具备国产化能力。
2、开发了采用单管大功率耐高压(≥2000V)IGBT、脉频1kHz~30kHz、占空比0.1~0.9、峰值电流0~600A的脉冲电源,取消了均压均流等电路,电路工作简捷可靠、直流脉冲可调,能缓减空心阴极效应及尖角放电,使辉光工作更加稳定可靠。
特种材质的特殊热处理
更适用于的特殊高端材料,普通材料如果想突破零件的性价比,也必须采用该工艺手段
2-1 钛合金的特殊的离子氮化,使其表层生成坚硬的TiN层,呈金黄色十分美观;磨损系数极低,因此十分耐磨;由于TiN能耐较高温度,耐蒸汽气蚀,适宜制作蒸汽阀门之类器件。
2-2 某些钢去内应力,又怕氧化,可作真空退火。
2-3 在工业或民用设备中有许多软磁材料、希望能获得较高导磁率(μ)和较低的矫顽力(Hc),但在制作中材质中杂质及碳含量,对μ及Hc影响极大、为此进行释氢处理,去杂质和降低碳的含量,提高μ、降低Hc。
2-4 如F51钢、N80钢和X210CrW12钢,要求耐蚀耐磨、变形微量,经特殊热处理后,获得单相组织的白亮层分别是106um、29um和10um,脆性<一级,变形1um~5um。
2-5 奥氏体不锈钢316L球体不容易氮化、难渗,经离子特殊工艺处理后获得球体实物渗层0.15mm、1Hv685、球体变形0.0025mm。

10. 铝型材挤压模具的氮化工艺流程是怎样的

氮化的工艺:
气体软氮化的主要工艺参数为氮化温度,氮化时间,以及氮化气氛。
气体软氮化温度常用560-570℃,因该温度下氮化层硬度最高。氮化时间通常为3-4小时,因为化合物层的硬度在共渗2-3小时达到最高,而随时间的延长,氮化层深度增加缓慢。氮化气氛由氨气分解率和含碳渗剂的滴量速度所决定。

氮化的原理:
气体软氮化,即气体氮碳共渗,是指以气体渗氮为主,渗碳为辅的的低温氮碳共渗。常用介质有50%氨气+50%吸热式气体(Nitemper法);35%-50%氨气+50-60%放热式气体(Nitroc法)和通氨气时滴注乙醇或甲酰胺等数种。在软氮化时,由于碳原子在ε相中的溶解度高,软氮化的表层是碳、氮共同的化合物,这种化合物韧性好且耐磨。
在气体软氮化过程中,由于碳原子的溶解度极低,所以很快达到饱和状态,析出许多超显微的渗碳体质点。这些渗碳体质点,作为氮化物结晶的核心,促使氮化物的形成。而当表层氮浓度达到一定时便形成ε相,而ε相的碳溶解能力很高,反过来又能加速碳的溶解。
气体软氮化后,其组织由ε相,γ′相和含氮的渗碳体Fe3(C,N)所组成,碳会降低氮的扩散速度,所以热应力和组织应力较硬氮化大,渗层更薄。但同时,由于软氮化层不存在ξ相,故氮化层韧性比硬氮化后更佳

阅读全文

与大模具怎么进行离子氮化加工相关的资料

热点内容
钢管架的大棚怎么套定额 浏览:631
打水泥地面支模具的距离多少合适 浏览:201
10mm厚的钢板1t多少平米 浏览:169
跟骨取钢板正常多久不瘸 浏览:54
拆除跟骨内固定钢板要多少钱 浏览:789
钢材c含量高会有什么影响 浏览:962
30度弯头怎么切 浏览:744
圆柱梁怎么安排钢筋 浏览:804
钢板为什么会分层 浏览:195
台州模具哪里卖 浏览:163
钢铁煮黑为什么发绿 浏览:960
模具加工要转型去哪里 浏览:974
南昌防火玻璃钢化炉品牌 浏览:830
什么材质的钢材做刀好 浏览:601
h型钢焊接后如何变形 浏览:763
惠州注塑精密模具加工怎么选择 浏览:733
不锈钢防盗网下雨太响怎么办 浏览:353
水泥电缆槽模具多少钱 浏览:158
自己盖两层楼房钢筋要多少钱 浏览:473
钢方管隔墙 浏览:128