① A335P92是什麼材質
P92鋼的焊接性分析
1焊接裂紋敏感性比傳統的鐵素體耐熱鋼低
P91鋼需要預熱到180℃裂紋率為零,P92鋼只需預熱到100℃,而P22鋼需預熱到300℃才能達到。
2具有較明顯的時效傾向。
P92鋼經3000小時時效後,其韌性下降了許多。P92鋼的沖擊功從時效前的220J左右降到了70J左右,在3000小時時效以後,沖擊功繼續下降的傾向不明顯,沖擊功將穩定在時效3000小時的水平。時效傾向發生在550~650℃的范圍內,這個溫度范圍正是該鋼材的工作溫度范圍。母材具有明顯的時效傾向,與母材成分相近的焊縫也會有同樣的傾向。
3焊縫韌性低於母材
焊縫金屬是從溫度非常高的熔融狀態冷卻下來的鑄造結構,它沒有機會經過TMCP過程(Thermal-Mechanical Control Process)即熱控軋加工過程,晶粒得不到細化,Nb等微合金化元素還固熔在基體內,沒有機會充分析出的緣故。
4焊接接頭是影響機組運行安全的最薄弱環節
由於P92鋼合金元素含量高,焊接上有較大的技術難度,容易出現接頭沖擊功低和長期運行中的IV型開裂早期失效,如果焊接質量得不到保證,P92的優勢將不復存在,並對機組運行安全性帶來威脅。
焊接工藝
1焊材、保護氣體的選擇
焊絲:9CrWV(ER90S-G)規格:Ф2.4;焊條:CHROMET92(E9015-G)規格:Ф3.2;
鎢極:WCe-20規格:Ф2.4
氣體種類:Ar≥99.95%流量:7-12L/min背面保護:Ar≥99.95%流量:20-7L/min
2.安裝對口
大徑管:對口間隙3-6mm;小徑管:對口間隙2-3mm
3背面充氬方案
採用背面充氬保護工藝,以避免焊縫根部氧化。大徑管充氬方法一般情況下,可製作專用工具,無法採取專用裝置時,可用耐高溫應紙板配合耐溫膠布等材料在焊口附近形成形成密閉氣室。
小徑管充氬可利用水溶紙堵塞管口兩端。充氬位置:①從探傷孔進行充氬。②利用對口間隙,將細長銅管或不銹鋼管敲扁後通過坡口伸進焊接區域,進行充氣保護。③從管道開口端,利用製作的充氬工具進行充氬。
4焊接預熱
焊前進行預熱:T≥150℃,加熱寬度每側≥200mm,層間溫度≤300℃。
大徑管道:採用電腦溫控設備對焊口進行跟蹤預熱,熱電偶對稱布置,熱電偶與管件應接觸良好,並校驗合格。
小徑管採用火焰預熱,用測溫筆測量溫度。
5氬弧焊打底
氬弧焊打底在管道預熱到規定溫度並加熱均勻後進行;打底採用直流正接法、兩人對稱焊接。
P92材質大徑管道:打底焊採用內填絲法。P92材質小徑管:打底焊採用外填絲法。氬弧焊打底時,焊接速度不宜太快,焊層厚度不少於3mm。
氬弧焊打底應焊兩遍,目的是防止電焊擊穿打底層,造成根部氧化。充氬保護:正面氣流量7L/min,背部氣流量20-7L/min
6電弧焊
打底完成後,將預熱溫度升至200-250℃,可以開始電弧焊;採用直流反接法、兩人對稱焊接。第一、二層電弧焊,採用∮2.5mm焊條,在保證熔化良好的前提下,盡量減小焊接電流,嚴防燒穿氬弧焊打底焊縫,採用背部充氬保護。
中間層採用∮3.2mm焊條,;各層接頭應互相錯開,焊工要加強層間打磨,嚴防焊接缺陷。採用多層多道焊,各焊道的單層厚度約2.5-3mm,單焊道的擺動寬度≤3倍焊條直徑。每層焊道須清理干凈,尤其注意清理接頭及焊道兩側。中間不需要除氫。
7焊後熱處理
焊接完畢後,降溫至80-100℃後進行熱處理:加熱溫度到750-770℃,升溫速度≤145℃/h,加熱寬度每側200mm,保溫寬度每側350mm,保溫5小時.,降溫速度:300℃以上≤145℃/h
返修焊口和處理
焊接缺陷。常見的焊接缺陷入氣孔、夾渣就不講了。存在爭議最大的是裂紋問題
1重大缺陷進行割管處理
2局部缺陷進行挖補
② P91和P92鍛制溫度怎麼樣控制
表1.T91鋼的化學成分
成分 C Mn Si S p Cr Ni Mo Nb V N
下限 0.08 0.30 0.20 - - 8.00 - 0.85 0.06 0.18 0.03
上限 0.12 0.60 0.50 0.01 0.02 9.50 0.40 1.05 0.10 0.25 0.07
由表1可以看出T91鋼的化學成分限制是十分嚴格的。
1.1.1.2 新型馬氏體耐熱鋼的焊接
超超臨界機組鍋爐用新型馬氏體耐熱鋼常用於超超臨界機組管道和過熱器管上。T/P91鋼使用溫度小於593℃。T/P92是在T/P91耐熱鋼基礎上發展起來的新型耐熱鋼,其中T/P92是在T/P91的基礎上通過加入1.5%~2.0%W代替部分Mo元素,Mo元素含量下降到0.3%~0.6%而形成的。這些9%Cr鋼具有良好的力學性能。馬氏體鋼的下一步發展是在這些鋼的基礎上加入Co、B等合金元素來進一步提高抗蠕變性能和抗氧化性能。
1.1.2 SA-213T91鋼焊接工藝試驗
1.1.2.1 試驗條件
(1)鋼材 T91鋼,¢42×5mm
(2) 焊接方法 採用手工鎢極氬弧焊,氬氣流量8-10L/min(背面充氬6-8L/min)
(3)環境溫度 20-30℃,濕度<60%。
(4)焊接位置 水平固定(5G),垂直固定(2G)。
(5)熱處理設備 LWK-12×(0-220)-B。
(6)焊接設備 ZX7-400STG。
(7)焊接材料 焊絲:MTS-3,¢2.4mm。
1.1.2.2 焊接工藝規范
(1)焊前坡口制備(機械加工出V型30°坡口)
(2)焊前清理 清除坡口內外母材表面兩側10mm范圍內及焊絲表面的油污、鐵銹、水分等,直至露出金屬光澤。
(3)對口點固焊 將焊絲熔化金屬直接點固在對口的根部,對口錯邊不超過0.5mm;點固焊前用電阻加熱坡口區到150℃;點固焊及正常施焊過程中不得在管子表面試電流,亂引弧。
(4)焊前預熱 焊前採用電阻加熱坡口兩側150mm左右,預熱溫度為150℃。層間溫度保持在200-300℃左右。
(5)焊前規范參數
焊接方法:Ws;焊絲牌號:MTS-3;直徑:¢2.4;極性:直流正接;電流:90-100A
電壓范圍:10-12V;焊接速度:45-55 mm/min;焊接層數:2層。
(6)焊後採用高溫回火熱處理方法
溫度:760±10℃;恆溫時間:1h;
升溫速度:150℃/h;降溫速度:150℃/h;
熱處理降溫到300℃以下可不控制。
1.1.2.3 焊接加熱規范
根據國外有關資料介紹,P91鋼除TIG焊外,其他工藝,不論材料厚度多少,預熱溫度都需要至少200℃,而對TIG焊來說,由於其非常低的擴散氫含量,預熱溫度可以放寬至100-150℃左右,最高層間溫度一般限制在300℃左右,這樣可以保證每道焊縫都轉變為馬氏體組織,從而在下一道焊縫的熱循環下都得到部分回火。
焊後熱處理溫度的選擇也有一些限制因素:這一溫度須高於各種標准所規定的最低溫度,即高於730℃,在實際操作中,為使焊縫金屬獲得足夠的回火,實際的處理溫度明顯需要高於這一水平(但不超過780~790℃)。實際焊接施工中,經755℃保溫4~5小時的熱處理,可得到滿意的沖擊韌性,而且也保證了熱處理後整個焊接接頭區的硬度在300HV左右,焊縫金屬硬度一般為240~280HV。
預熱是避免再熱裂紋和冷裂紋產生的有效手段。有關標准規定預熱和層間溫度應在180~250℃,不要超過300℃,焊後熱處理之前,必須將材料冷卻到150℃以下,應力較大時,冷卻溫度不要低於125℃。如果在室溫下冷卻,應嚴禁潮濕。同時,還可以適當降低焊接電流,避免出現弧坑裂紋,並有利於防止冷裂紋和再熱裂紋。
為了盡可能降低焊接殘余應力,應採用較高的溫度,但溫度過高,有可能降低鋼材的抗拉強度,破壞鋼材的原有組織和性能,促使碳化物的聚集和長大。為得到合適的硬度和良好的韌性,我們選擇750~770℃的焊後熱處理溫度,從實際情況看,是可行的。
綜合分析以上因素,最終確定的加熱規范如圖1所示,技術要求如下:
(1)升、降溫速度≤150℃;
(2)溫度在300℃以下可不控制;
(3)焊後若來不及進行回火熱處理,應立即進行消氫處理,處理溫度為300~350℃,恆溫2h。
1.1.2.4 P91大口焊接操作工藝
焊接工藝為手工鎢極氬弧焊打底,電弧焊蓋面,管內壁充氬保護。接頭形式為雙V形坡口對接焊縫,該坡口擴大了底層的焊接空間,易於焊絲擺動,熔合良好,使溶滴准確到位並焊透,以保證背面成形的均勻性。
(1)雙層TIG打底焊
採用雙層TIG焊打底,這樣一是因為TIG打底一層時焊層較薄會導致擊穿,影響根層焊縫質量;二是因為TIG焊第二層時能降低對第一層背面焊縫的氧化程度。應注意,第一層打底時,應邊打底邊揭開充氬保護膠布,以防止空氣進入焊後內部影響打底質量。
(2)合理控制管內保護氬氣流量
P91鋼根層焊接存在較大的表面氧化問題,因此必須採取管內充氬保護措施。一方面要合理控制氬氣流量,大徑管一般控制在20~30L/min為宜;另外要使管內氬氣有流動性以提高保護氬氣純度,從而再次降低焊接接頭的熱輸入量。考慮到焊接根部第二道焊縫時對第一道焊縫的高溫氧化影響,內保護氣一直持續到第二道焊縫焊完。
(3)多層多道焊
採用多層多道焊不僅可以控制焊接線能量,而且後層焊道對前層的熱處理能細化晶粒,改善接頭性能。
(4)雙人焊接操作
大徑厚壁P91管均應採用雙人焊接,打底時一人焊接,一人從另一側進行觀察打底焊情況。填充和蓋面時,兩人對稱同時焊接(如圖2所示)。
1.1.3 焊後檢測
焊後進行了外觀檢查包括:焊縫余高、余高差、焊縫寬窄差、根部凸出均合格。小徑管通過RT無損探傷,大口通過了UT無損探傷均合格。斷口檢查指標均合格,
常溫力學性能試驗,進行了拉伸和彎曲數據都合格。微觀金相組織觀察了:母材(500×回火索氏體+鐵素體)、焊縫(100×回火索氏體)、熱影響區(500×回火索氏體)組織合格。
1.1.4 焊接工藝評定結果
P91鋼最容易產生的缺陷是夾渣,主要分布於坡口邊緣,主要是由於清渣不徹底造成。當焊條烘乾效果不佳時,出現焊接缺陷的可能性會進一步加大。
P91鋼的焊態硬度為300~330HB,從熱處理後的實際情況看,焊縫硬度主要是在180~270HB,評定合格。
1.1.5 焊接操作工藝要領
施焊過程分為:對口定位焊、根層打底施焊、中間填充層施焊和蓋面層施焊。
(1)對口定位焊 採用高頻引弧法引燃電弧,將坡口兩側鈍邊熔化後加絲焊接。注意觀察坡口兩側的熔合情況,必須使熔敷金屬與母材充分熔合。
(2)根層打底施焊 採用內填絲法焊接,焊槍呈鋸齒形擺動,在兩側適當停留,填絲動作要穩。
(3)中間填充層施焊 採用連續送絲法,焊槍做鋸齒形擺動,焊絲要始終處在氬氣保護區內,焊接速度盡量加快,避免焊縫表面氧化。
(4)蓋面層施焊 採用連續送絲法,焊槍做鋸齒形擺動,焊絲要始終在熔池中間並處在氬氣保護區內,焊接速度盡量加快,避免焊縫表面氧化。
1.2 T/P92鋼的焊接工藝
T/P92鋼是在T/P91鋼中添加鎢(1.8%W)和降低鉬(0.5%Mo)而開發的新鋼種,因為W可以顯著提高鋼材的高溫蠕變斷裂強度,T/P92鋼的工作溫度比T/P91鋼工作溫度高,可以達到630℃。但是,鋼中過量添加鎢會促進δ-鐵素體的形成,降低沖擊韌性和蠕變斷裂溫度。
1.2.1 T/P92鋼的化學成分
表-2為T/P92鋼的化學成分(wt%)和 T/P92鋼的力學性能(最小值)
表2(T/P92鋼的化學成分(wt%)和 T/P92鋼的力學性能)
1.2.2 T/P92鋼焊接工藝特點及分析
T/P92鋼屬於低碳馬氏體耐熱鋼,其焊接工藝的特點和焊接技術要求較過去常用的馬氏體耐熱鋼的焊接工藝具有以下特點及改進:
1.2.2.1 焊接預熱溫度明顯降低
T/P92馬氏體鋼是低碳馬氏體鋼,允許在馬氏體組織區內焊接,這意味著焊接預熱溫度和層間溫度可以大大降低,一般推薦焊接預熱溫度為200~250℃,根據國外的研究經驗,預熱150℃以上可以完全防止產生冷裂紋。根據相關單位斜Y形坡口焊接裂紋試驗法提供的數據,測定的止裂(無裂紋)預熱溫度見表3。(可供我們試驗直接參考)
表3 常用鋼材Y坡口焊接裂紋試驗的止裂溫度
由表3可見,P91、T/P92、P9、F12鋼同屬於化學成分相近的馬氏體耐熱鋼,防止焊接冷裂紋的預熱溫度卻相差非常大。由表3可見,T/P92鋼是其中相對容易焊接的馬氏體耐熱鋼,焊接預熱溫度較低,比P22低合金鐵素體耐熱鋼的預熱溫度還低。
1.2.2.2 對層間溫度的控制要求比較高
為了獲得滿意的沖擊韌性,推薦層間溫度<300℃。由於T/P92鋼的導熱系數比較小,小口徑和大口徑管道的焊接熱量比較集中,層間溫度比較高。如果不採取措施,層間溫度可以達到300~350℃,沖擊韌性將會大大降低。必須採用低焊接輸入熱量的焊接工藝施焊。
1.2.2.3 對焊接熱輸入的控制要求比較高
多項試驗數據證明:焊件輸入熱量對焊接接頭的沖擊韌性有較大的影響,焊件輸入熱量越大,焊接接頭的沖擊韌性越低。實踐經驗證明,如果採用普通低合金鋼的焊接熱輸入量焊接馬氏體耐熱鋼,焊接接頭的沖擊功只有10~30J。必須採用比較小的焊接輸入熱量施焊,如採用小直徑焊條、比較小的焊接電流,比較快的焊接速度,比較低的層間溫度,沖擊功可以達到50~100J。
1.2.2.4 焊後消氫處理
如檢驗規定要分層探傷及設備故障等原因要求分層停焊等情況下,為了避免氫致冷裂紋,建議焊件在焊接中停之後,以及在焊件冷卻到室溫之前進行去氫出來,即焊後待馬氏體轉變完加熱到250~350℃保溫2小時後保溫緩冷。
1.2.2.5 焊後熱處理
厚壁管焊件焊接結束後,必須冷卻到<100℃,才能進行焊後熱處理。熱處理溫度和保溫時間對沖擊韌性影響的試驗結果見表4。隨著焊後熱處理溫度和保溫時間增加,沖擊韌性得到改善。提高焊後熱處理溫度,可以大大縮短焊後熱處理保溫時間,但熱處理溫度不能超過Ac1溫度。推薦焊後熱處理溫度為760±10℃,保溫時間為4~6小時。應特別仔細測量和控制焊後熱處理溫度。對於厚壁焊件,特別是進行單面加熱熱處理的管道焊縫,為了獲得比較高的蠕變斷裂強度和沖擊韌性,保溫時間為5~6小時。對於薄壁焊件可以選用比較短的保溫時間,薄壁管氬弧焊焊件可以採用比較低的熱處理溫度,或者採用比較短的熱處理保溫時間。熱處理的升溫速度一般為80~120℃/h,熱處理的冷卻速度一般為≤150℃/h。
表4 熱處理溫度和恆溫時間對沖擊韌性的影響
1.2.2.6 焊接操作工藝對接頭質量的影響及其分析
通過對T/P92焊材進行大量的焊接工藝試驗,總結出來許多有利於提高焊接質量的焊接操作方法,總結以下幾點:
1)氬弧焊打底時必須進行有效背面氬氣保護,因為鋼中Cr含量高達10%左右,以防止焊縫背面氧化。
2)坡口焊的焊道排列對沖擊韌性有比較大的影響,採用一層兩道焊接操作方法比一層三道的沖擊韌性好。
3)熔敷金屬和焊接接頭的沖擊韌性有比較大的差別,一般大口徑管道焊接接頭的沖擊韌性比熔敷金屬的沖擊韌性好。
4)不同焊接位置對沖擊韌性有很大的影響,一般大口徑管道橫焊的沖擊韌性比平焊和立焊的沖擊韌性好。
5)薄焊道比厚焊道的沖擊韌性高,一般希望焊道的厚度<2.5mm。GTAW工藝焊層應盡量厚。
6)快速擺焊比慢速直道焊的沖擊韌性好。
7)管道單面加熱熱處理和雙面加熱熱處理方法對焊縫的沖擊韌性也有很大的影響,單面加熱熱處理的內、外壁存在較大的溫差,影響焊接接頭的沖擊韌性。故有人建議採用比較低的熱處理溫度和比較長的熱處理時間。
1.2.3 T/P92鋼的焊接材料分析
採用新鋼種之前,必須證明焊接材料具有足夠高的常溫力學性能和高溫蠕變斷裂強度。製造電站設備的耐熱鋼應該具有足夠高的常沖擊韌性,在水壓試驗時,較高的沖擊韌性可以降低水壓試驗的溫度,降低熱能消耗,並確保電站設備足夠安全。
電站鍋爐製造中常用的焊接方法有:GTAW、SMAW等焊接方法,為此必須開發與之相適應的氬弧焊用實心焊絲,手工電弧焊用焊條,不少焊材生產公司為了提高焊接材料的蠕變斷裂強度和沖擊韌性,進行了大量焊材性能和蠕變斷裂強度試驗研究工作。
1.2.3.1 德國蒂森公司T/P92焊材的典型化學成分和機械性能見表-5。
表-5
1.2.3.2 焊條電弧焊
用於焊接T/P92鋼的焊條為ThemanitMTS616(E9015-B9或E9015-G),ThemanitMTS616焊條的焊接工藝參數見表6。ThemanitMTS616焊條熔敷金屬的化學成分見表7。熔敷金屬的力學性能見表8。P92大口徑鋼管對接焊接接頭的力學性能見表9。
表6 焊條電弧焊的焊接工藝參數
表7 ThemanitMTS616焊條熔敷金屬的化學成分(wt%)
表8 ThemanitMTS616焊條熔敷金屬的力學性能
表9 ThemanitMTS616焊接接頭的力學性能(規格300*40mm)
1.2.4 焊接操作工藝要領
通過實際操作試驗發現,由於母材、焊材的合金元素含量高,液態金屬的流動性較差,因此焊接時應特別主要以下幾點:
(1)焊條必須按照說明書中規定的300~350℃保溫2h烘焙,以保證焊條的乾燥性。
(2)由於液態金屬流動性差,安裝對口時應適當加大對口間隙(3~4mm),打底時,焊接電流應適當,以保證根部焊接質量。
(3)焊條的引弧電流過小,易粘焊條;但焊接電流過大,則造成熔池不清,易形成夾渣缺陷。因此,選擇適當的焊接電流是保證焊接質量的關鍵。
(4)由於P92鋼易出現冷裂紋和弧坑裂紋,因此焊接時應注意將弧坑填滿,可以採用逐漸減少電流或採用斷弧疊加法收弧。
(5)該焊條的焊渣不易清理,應注意層間清理,特別是接頭部位,必要時採用砂輪機打磨,以保證接頭質量。
(6)每層焊道不可過厚一般不超過焊條的直徑。
2 結論
通過對T/P91和T/P92新型馬氏體耐熱鋼的焊接工藝分析研究及對焊接材料的分析介紹,使我們對T/P92的性能有了進一步的了解,為我們下一階段編制T/P92焊接工藝任務書及評定方案有了可靠的理論依據。對今後對這類鋼的焊接工作研究具有重要的指導性意義。
由於化學成份上的接近,T/P92鋼的焊接工藝性能與T/P92鋼的基本相同,T/P92鋼焊接工藝參數、預熱、層間溫度和焊後熱處理與T/P91非常接近。T/P92具體的焊接工藝規范這里就不一一羅列了。
超超臨界鍋爐中的一些新型耐熱鋼在我國雖然已經應用,有一定的經驗,但不是很成熟。我們應繼續加強研究,以保障我國超超臨界機組的製造和安裝質量,確保超超臨界機組的安全運行。
參考文獻
〔1〕楊富.21世紀火電站焊接技術的發展趨勢〔C〕.新型9%~12%Cr系列熱強鋼焊接技術資料選編.
〔2〕楊富等.新型耐熱鋼焊接中國電力出版社,2006-7-1
〔3〕吳世初.金屬可焊性試驗方法[M]中國工業出版社,1964年.
〔4〕周振豐.金屬熔焊原理及工藝[M].機械工業出版社,1981年.
〔5〕Fabrication of T91 Tubes Sumitomo Metal Instries, Ltd.and P91 Pipe[M].
〔6〕P91.Nf616(P92)銘鉬鋼焊接經驗[R].德國蒂森焊接技術公司
〔7〕趙健倉,曾富強,何海,等.國產300MW火電機組安裝工程焊接技術〔M〕.山西電力建設第一公司焊接培訓中心,2002年11月.
備註:此篇論文被評為二類優秀論文並收入到《中國職工焊接技術協會2008焊接技術論文集》。
③ 影響焊接接頭沖擊試驗的主要因素
你是抄要做評定吧?通常,指定母材和焊材時,焊接熱輸入量,焊接層數,道數,層間溫度都有影響。一般來說,熱輸入不要太大,焊接層數多一些,焊層偏薄一些,嚴格控制層間溫度,不要過高,都對沖擊值有好處。另外每一焊道間一定要清理干凈,見金屬光澤。如果是不銹鋼,還應注意冷卻速率,注意t-800/500區間不能停留太久。以上是經過實踐的哦。
④ 模具鋼P92
P92鋼的焊接性分析
1焊接裂紋敏感性比傳統的鐵素體耐熱鋼低
P91鋼需要預熱到180℃裂紋率為零,P92鋼只需預熱到100℃,而P22鋼需預熱到300℃才能達到。
2具有較明顯的時效傾向。
P92鋼經3000小時時效後,其韌性下降了許多。P92鋼的沖擊功從時效前的220J左右降到了70J左右,在3000小時時效以後,沖擊功繼續下降的傾向不明顯,沖擊功將穩定在時效3000小時的水平。時效傾向發生在550~650℃的范圍內,這個溫度范圍正是該鋼材的工作溫度范圍。母材具有明顯的時效傾向,與母材成分相近的焊縫也會有同樣的傾向。
3焊縫韌性低於母材
焊縫金屬是從溫度非常高的熔融狀態冷卻下來的鑄造結構,它沒有機會經過TMCP過程(Thermal-Mechanical Control Process)即熱控軋加工過程,晶粒得不到細化,Nb等微合金化元素還固熔在基體內,沒有機會充分析出的緣故。
4焊接接頭是影響機組運行安全的最薄弱環節
由於P92鋼合金元素含量高,焊接上有較大的技術難度,容易出現接頭沖擊功低和長期運行中的IV型開裂早期失效,如果焊接質量得不到保證,P92的優勢將不復存在,並對機組運行安全性帶來威脅。
焊接工藝
1焊材、保護氣體的選擇
焊絲:9CrWV(ER90S-G)規格:Ф2.4;焊條:CHROMET92(E9015-G)規格:Ф3.2;
鎢極:WCe-20規格:Ф2.4
氣體種類:Ar≥99.95%流量:7-12L/min背面保護:Ar≥99.95%流量:20-7L/min
2.安裝對口
大徑管:對口間隙3-6mm;小徑管:對口間隙2-3mm
3背面充氬方案
採用背面充氬保護工藝,以避免焊縫根部氧化。大徑管充氬方法一般情況下,可製作專用工具,無法採取專用裝置時,可用耐高溫應紙板配合耐溫膠布等材料在焊口附近形成形成密閉氣室。
小徑管充氬可利用水溶紙堵塞管口兩端。充氬位置:①從探傷孔進行充氬。②利用對口間隙,將細長銅管或不銹鋼管敲扁後通過坡口伸進焊接區域,進行充氣保護。③從管道開口端,利用製作的充氬工具進行充氬。
4焊接預熱
焊前進行預熱:T≥150℃,加熱寬度每側≥200mm,層間溫度≤300℃。
大徑管道:採用電腦溫控設備對焊口進行跟蹤預熱,熱電偶對稱布置,熱電偶與管件應接觸良好,並校驗合格。
小徑管採用火焰預熱,用測溫筆測量溫度。
5氬弧焊打底
氬弧焊打底在管道預熱到規定溫度並加熱均勻後進行;打底採用直流正接法、兩人對稱焊接。
P92材質大徑管道:打底焊採用內填絲法。P92材質小徑管:打底焊採用外填絲法。氬弧焊打底時,焊接速度不宜太快,焊層厚度不少於3mm。
氬弧焊打底應焊兩遍,目的是防止電焊擊穿打底層,造成根部氧化。充氬保護:正面氣流量7L/min,背部氣流量20-7L/min
6電弧焊
打底完成後,將預熱溫度升至200-250℃,可以開始電弧焊;採用直流反接法、兩人對稱焊接。第一、二層電弧焊,採用∮2.5mm焊條,在保證熔化良好的前提下,盡量減小焊接電流,嚴防燒穿氬弧焊打底焊縫,採用背部充氬保護。
中間層採用∮3.2mm焊條,;各層接頭應互相錯開,焊工要加強層間打磨,嚴防焊接缺陷。採用多層多道焊,各焊道的單層厚度約2.5-3mm,單焊道的擺動寬度≤3倍焊條直徑。每層焊道須清理干凈,尤其注意清理接頭及焊道兩側。中間不需要除氫。
7焊後熱處理
焊接完畢後,降溫至80-100℃後進行熱處理:加熱溫度到750-770℃,升溫速度≤145℃/h,加熱寬度每側200mm,保溫寬度每側350mm,保溫5小時.,降溫速度:300℃以上≤145℃/h
返修焊口和處理
焊接缺陷。常見的焊接缺陷入氣孔、夾渣就不講了。存在爭議最大的是裂紋問題
1重大缺陷進行割管處理
2局部缺陷進行挖補
⑤ 焊接工藝評定沖擊試驗問題
問題一:要不要做沖擊一般以設計圖紙要求為准,性能是由設計人員考慮的
問題二:平焊的工藝評定能代替立焊,但是焊工資格平焊不能覆蓋立焊
⑥ P92鋼的化學成分
P92鋼的焊接性分析
1焊接裂紋敏感性比傳統的鐵素體耐熱鋼低
P91鋼需要預熱到180℃裂紋率為零,P92鋼只需預熱到100℃,而鋼需預熱到300℃才能達到。
2具有較明顯的時效傾向。
P92鋼經3000小時時效後,其韌性下降了許多。P92鋼的沖擊功從時效前的220J左右降到了70J左右,在3000小時時效以後,沖擊功繼續下降的傾向不明顯,沖擊功將穩定在時效3000小時的水平。時效傾向發生在550~650℃的范圍內,這個溫度范圍正是該鋼材的工作溫度范圍。母材具有明顯的時效傾向,與母材成分相近的焊縫也會有同樣的傾向。
3焊縫韌性低於母材
焊縫金屬是從溫度非常高的熔融狀態冷卻下來的鑄造結構,它沒有機會經過TMCP過程(Thermal-Mechanical Control Process)即熱控軋加工過程,晶粒得不到細化,Nb等微合金化元素還固熔在基體內,沒有機會充分析出的緣故。
4焊接接頭是影響機組運行安全的最薄弱環節
由於P92鋼合金元素含量高,焊接上有較大的技術難度,容易出現接頭沖擊功低和長期運行中的IV型開裂早期失效,如果焊接質量得不到保證,P92的優勢將不復存在,並對機組運行安全性帶來威脅。
焊接工藝
1焊材、保護氣體的選擇
焊絲:9CrWV(ER90S-G)規格:Ф2.4;焊條:CHROMET92(E9015-G)規格:Ф3.2;
鎢極:WCe-20規格:Ф2.4
氣體種類:Ar≥99.95%流量:7-12L/min背面保護:Ar≥99.95%流量:20-7L/min
2.安裝對口
大徑管:對口間隙3-6mm;小徑管:對口間隙2-3mm
3背面充氬方案
採用背面充氬保護工藝,以避免焊縫根部氧化。大徑管充氬方法一般情況下,可製作專用工具,無法採取專用裝置時,可用耐高溫應紙板配合耐溫膠布等材料在焊口附近形成形成密閉氣室。
小徑管充氬可利用水溶紙堵塞管口兩端。充氬位置:①從探傷孔進行充氬。②利用對口間隙,將細長銅管或不銹鋼管敲扁後通過坡口伸進焊接區域,進行充氣保護。③從管道開口端,利用製作的充氬工具進行充氬。
4焊接預熱
焊前進行預熱:T≥150℃,加熱寬度每側≥200mm,層間溫度≤300℃。
大徑管道:採用電腦溫控設備對焊口進行跟蹤預熱,熱電偶對稱布置,熱電偶與管件應接觸良好,並校驗合格。
小徑管採用火焰預熱,用測溫筆測量溫度。
5氬弧焊打底
氬弧焊打底在管道預熱到規定溫度並加熱均勻後進行;打底採用直流正接法、兩人對稱焊接。
P92材質大徑管道:打底焊採用內填絲法。P92材質小徑管:打底焊採用外填絲法。氬弧焊打底時,焊接速度不宜太快,焊層厚度不少於3mm。
氬弧焊打底應焊兩遍,目的是防止電焊擊穿打底層,造成根部氧化。充氬保護:正面氣流量7L/min,背部氣流量20-7L/min
6電弧焊
打底完成後,將預熱溫度升至200-250℃,可以開始電弧焊;採用直流反接法、兩人對稱焊接。第一、二層電弧焊,採用∮2.5mm焊條,在保證熔化良好的前提下,盡量減小焊接電流,嚴防燒穿氬弧焊打底焊縫,採用背部充氬保護。
中間層採用∮3.2mm焊條,;各層接頭應互相錯開,焊工要加強層間打磨,嚴防焊接缺陷。採用多層多道焊,各焊道的單層厚度約2.5-3mm,單焊道的擺動寬度≤3倍焊條直徑。每層焊道須清理干凈,尤其注意清理接頭及焊道兩側。中間不需要除氫。
7焊後熱處理
焊接完畢後,降溫至80-100℃後進行熱處理:加熱溫度到750-770℃,升溫速度≤145℃/h,加熱寬度每側200mm,保溫寬度每側350mm,保溫5小時.,降溫速度:300℃以上≤145℃/h
返修焊口和處理
焊接缺陷。常見的焊接缺陷入氣孔、夾渣就不講了。存在爭議最大的是裂紋問題
1重大缺陷進行割管處理
2局部缺陷進行挖補
⑦ 管道材質p92採用什麼焊材焊接
P92鋼的焊接性分析
1焊接裂紋敏感性比傳統的鐵素體耐熱鋼低
P91鋼需要預熱到180℃裂紋率為零,P92鋼只需預熱到100℃,而P22鋼需預熱到300℃才能達到。
2具有較明顯的時效傾向。
P92鋼經3000小時時效後,其韌性下降了許多。P92鋼的沖擊功從時效前的220J左右降到了70J左右,在3000小時時效以後,沖擊功繼續下降的傾向不明顯,沖擊功將穩定在時效3000小時的水平。時效傾向發生在550~650℃的范圍內,這個溫度范圍正是該鋼材的工作溫度范圍。母材具有明顯的時效傾向,與母材成分相近的焊縫也會有同樣的傾向。
3焊縫韌性低於母材
焊縫金屬是從溫度非常高的熔融狀態冷卻下來的鑄造結構,它沒有機會經過TMCP過程(Thermal-Mechanical Control Process)即熱控軋加工過程,晶粒得不到細化,Nb等微合金化元素還固熔在基體內,沒有機會充分析出的緣故。
4焊接接頭是影響機組運行安全的最薄弱環節
由於P92鋼合金元素含量高,焊接上有較大的技術難度,容易出現接頭沖擊功低和長期運行中的IV型開裂早期失效,如果焊接質量得不到保證,P92的優勢將不復存在,並對機組運行安全性帶來威脅。
焊接工藝
1焊材、保護氣體的選擇
焊絲:9CrWV(ER90S-G)規格:Ф2.4;焊條:CHROMET92(E9015-G)規格:Ф3.2;
鎢極:WCe-20規格:Ф2.4
氣體種類:Ar≥99.95%流量:7-12L/min背面保護:Ar≥99.95%流量:20-7L/min
2.安裝對口
大徑管:對口間隙3-6mm;小徑管:對口間隙2-3mm
3背面充氬方案
採用背面充氬保護工藝,以避免焊縫根部氧化。大徑管充氬方法一般情況下,可製作專用工具,無法採取專用裝置時,可用耐高溫應紙板配合耐溫膠布等材料在焊口附近形成形成密閉氣室。
小徑管充氬可利用水溶紙堵塞管口兩端。充氬位置:①從探傷孔進行充氬。②利用對口間隙,將細長銅管或不銹鋼管敲扁後通過坡口伸進焊接區域,進行充氣保護。③從管道開口端,利用製作的充氬工具進行充氬。
4焊接預熱
焊前進行預熱:T≥150℃,加熱寬度每側≥200mm,層間溫度≤300℃。
大徑管道:採用電腦溫控設備對焊口進行跟蹤預熱,熱電偶對稱布置,熱電偶與管件應接觸良好,並校驗合格。
小徑管採用火焰預熱,用測溫筆測量溫度。
5氬弧焊打底
氬弧焊打底在管道預熱到規定溫度並加熱均勻後進行;打底採用直流正接法、兩人對稱焊接。
P92材質大徑管道:打底焊採用內填絲法。P92材質小徑管:打底焊採用外填絲法。氬弧焊打底時,焊接速度不宜太快,焊層厚度不少於3mm。
氬弧焊打底應焊兩遍,目的是防止電焊擊穿打底層,造成根部氧化。充氬保護:正面氣流量7L/min,背部氣流量20-7L/min
6電弧焊
打底完成後,將預熱溫度升至200-250℃,可以開始電弧焊;採用直流反接法、兩人對稱焊接。第一、二層電弧焊,採用∮2.5mm焊條,在保證熔化良好的前提下,盡量減小焊接電流,嚴防燒穿氬弧焊打底焊縫,採用背部充氬保護。
中間層採用∮3.2mm焊條,;各層接頭應互相錯開,焊工要加強層間打磨,嚴防焊接缺陷。採用多層多道焊,各焊道的單層厚度約2.5-3mm,單焊道的擺動寬度≤3倍焊條直徑。每層焊道須清理干凈,尤其注意清理接頭及焊道兩側。中間不需要除氫。
7焊後熱處理
焊接完畢後,降溫至80-100℃後進行熱處理:加熱溫度到750-770℃,升溫速度≤145℃/h,加熱寬度每側200mm,保溫寬度每側350mm,保溫5小時.,降溫速度:300℃以上≤145℃/h
返修焊口和處理
焊接缺陷。常見的焊接缺陷入氣孔、夾渣就不講了。存在爭議最大的是裂紋問題
1重大缺陷進行割管處理
2局部缺陷進行挖補
⑧ 確保厚板焊接質量的常見措施和辦法有哪些
1 厚板焊接工藝
由於材料為低合金結構鋼,含有少量的合金元素,淬硬傾向大,焊接性差,焊縫中極易出現裂紋,因此厚板焊接是本工程的一大難題,為防止焊接缺陷的產生,除遵循上述「焊接通則」要求外,特製定如下工藝措施:
(1)焊接材料
①選擇強度、塑性、韌性相同的焊接材料,並且焊前要進行工藝評定試驗,合格後方可正式焊接,焊接材料選擇低氫型焊接材料。
②CO2氣體保護焊:選用葯芯焊絲E71T-1或ER50-6。
CO2氣體:CO2含量(V/V)不得低於99.9%,水蒸氣與乙醇總含量(m/m)不得高於0.005%,並不得檢出液態水。
③手工電弧焊時:選用焊條為E50型, 焊接材料烘乾溫度如下所示:
(2)焊前預熱
①為減少內應力,防止裂紋,改善焊縫性能,母材焊接前必須預熱。
②預熱最低溫度:
③T型接頭應比對接接頭的預熱溫度高25-50℃。
④操作地點環境溫度低於常溫時(高於0℃)應提高預熱溫度為15-25℃。
⑤預熱方法
採用電加熱和火焰加熱兩種方式,火焰加熱僅用於個別部位且電加熱不宜施工之處,並應注意均勻加熱。電加熱預熱溫度由熱電儀自動控制,火焰加熱用測溫筆在離焊縫中心75mm的地方測溫,測溫點應選取加熱區的背面。
(3)工藝參數選擇
為提高過熱區的塑性、韌性,採取小線能量進行焊接。根據焊接工藝評定結果,選用科學合理的焊接工藝參數。
(4)焊接過程採取的措施
①由於後層對前層有消氫作用,並能改善前層焊縫和熱影響區的組織,採用多層多道焊,每一焊道完工後應將焊渣清除干凈並仔細檢查和清除缺陷後再進行下一層的焊接。
②每層焊縫始終端應相互錯開50mm左右。
③層間溫度必須保持與預熱溫度一致。
④每道焊縫一次施焊中途不可中斷。
⑤焊接過程中採用邊振邊焊技術或錘擊消除焊接應力。
在邊焊邊振過程中,可以延遲焊縫組織結晶,使焊縫中的H等有害雜質有更充足的時間逸出,從而降低焊縫金屬含氫量及雜質偏析,減少裂紋及層狀撕裂趨向;可使焊縫晶粒更加細化,提高焊接接頭塑性和韌性,從而大大提高焊接接頭的機械性能;焊縫金屬在振動狀態下結晶,可降低焊接應力,提高焊縫抗層狀撕裂及抗疲勞能力。
⑥焊接過程要注意每道焊縫的寬深比大於1.1。
(5)採取合理的焊接順序及坡口形式可降低焊縫內應力:
厚板接料盡量採取對稱的X型坡口,並且對稱焊接。
(6)後熱:
後熱不僅有利於氫的逸出,可在一定程度上降低殘余應力,適當改善焊縫的組織,降低淬硬性,因此焊後立即將焊縫加熱至200-250℃,並且保溫時間不得小於1小時。
(7)外觀質量控制:
焊縫加強高及過渡角的圓滑過渡可適當提高接頭的疲勞強度,因此:
①對焊縫內部質量在焊後24小時按規定進行無損檢測。
②對焊縫的外表面要進行磁粉探傷。
對焊縫外觀進行打磨處理,不得出現加強高過高、焊縫咬邊等缺陷。
(8)厚板焊接防止層狀撕裂的措施
板厚方向承受焊接拉應力的板材端頭伸出接頭焊縫區;
工藝措施:
採用氣體保護焊施焊,並匹配葯芯焊絲。
消氫處理:
消氫處理的加熱溫度應為200-250℃,保溫時間應依據工件板厚按每25mm板厚不小於0.5h、且總保溫時間不得小於1h確定。達到保溫時間後應緩冷至常溫。
消氫處理的加熱和保溫方法按上述方法中規定執行。
採用邊振動邊焊接工藝:
在邊焊邊振過程中,可以延遲焊縫組織結晶,使焊縫中的H等有害雜質有更充足的時間逸出,從而降低焊縫金屬焊量及雜質偏析,減少裂紋及層狀撕裂趨向;可使焊縫晶粒更加細化,提高焊接接頭塑性和韌性,從而大大提高焊接接頭的機械性能;焊縫金屬在振動狀態下結晶,可降低焊接應力,提高焊縫抗層狀撕裂及抗疲勞能力。
2 厚板焊接t8/5值及焊接規范控制
(1)厚板焊接存在的一個重要問題是焊接過程中,焊縫熱影響區由於冷卻速度較快,在結晶過程中最容易形成粗晶粒馬氏體組織,從而使焊接時鋼材變脆,產生冷裂紋的傾向增大。因此在厚板焊接過程中,一定要嚴格控制t8/5。即控制焊縫熱影響區尤其是焊縫熔合線處,從800℃冷卻到500℃的時間,即t8/5值。
(2)t8/5過於短暫時,焊縫熔合線處硬度過高,易出現淬硬裂紋;t8/5過長,則熔合線處的臨界轉變溫度會升高,降低沖擊韌性值,對低合金鋼,材質的組織發生變化。出現這兩種情況,皆直接影向焊接結頭的質量。
(3)對於手工電弧焊,焊接速度的控制:在工藝上規定不同直徑的焊條所焊接的長度,規定焊工按此執行,從而確保焊接速度,其它控制採用電焊機控制,從而達到控制焊接線能量的輸入,達到控制厚板焊接質量之目的。
3 厚板加熱方法
厚板焊接預熱,是工藝上必須採取的工藝措施,對於本工程鋼結構焊接施工採用電加熱板預加熱的方法。加熱時應力求均勻,預熱范圍為坡口兩側至少2t,且不小於100mm
寬,測溫點應在離電弧經過前的焊接點各方向不小於75mm處;預熱溫度宜在焊件反面測量。
經研究表明產生氫致裂紋要以下四項基本先決條件:
(1)敏感的微觀組織(硬度是敏感度的一個粗略的指標)
(2)適當的擴散氫含量
(3)合適的拘束度
(4)適宜的溫度
其中一項或幾項是處於支配地位的,但這四項條件都必須具備才會產生氫致裂紋。防止氫致裂紋的實用方法就是預熱,就是設法控制這些因素中的一項或幾項。
一般來說有兩種不同的方法來預估預熱溫度。根據大量的裂紋試驗,提出一種基於熱影響區臨界值,就可消除氫致裂紋的危險。被認可的臨界硬度可能是氫含量的函數。另一種預估預熱溫度的方法是基於控制氫。為弄清低溫時的冷卻速度即300℃~100℃之間的冷卻速度的作用,已經通過高約束度下坡口焊縫試驗確立了臨界冷卻速度,化學成份以及氫含量之間的關系。
通過上述的理論分析,經實踐試驗證明對於板厚不小於36mm的鋼板預熱溫度達到120℃即可,對於t=60~70mm的鋼板預熱溫度需達到150℃。
4 層間溫度控制
(1)厚板為防止出現裂紋採取加熱預熱後,在焊接過程中應注意的一個重要問題,就是焊縫層間溫度控制措施。如果層間溫度不控制,焊縫區域會出現多次熱應變,造成的殘余應力對焊縫質量不利,因此在焊接過程中,層間溫度必須嚴格控制。
(2)層間溫度一般控制在200℃~250℃之間。為了保持該溫度,厚板在焊接時,要求一次焊接連續作業完成。
(3)當構件較長(L>10米)時,在焊接過程中,厚板冷卻速度較快,因此在焊接過程中一直保持預加熱溫度,防止焊接後的急速冷卻造成的層間溫度的下降,焊接時還可採取焊後立即蓋上保溫板,防止焊接區域溫度過快冷卻。
⑨ 如何進行焊接接頭的沖擊試驗
沖擊試驗需要按照標准制備沖擊試樣,中國國內有壓力容器標准NBT47014,可以參考。
沖擊試驗主要驗證焊縫和母材上熱影響區的低溫韌性。
⑩ 焊接工藝評定定沖擊值低的原因
是哪裡沖擊值低,是焊縫還是熱影響區?
一般沖擊值低是由於連續焊層間溫度過高產生的。
但是有很多好的焊材,就算連續焊,沖擊值也好的。