㈠ 什麼叫焊接金屬
你好,凡是能焊接的金屬,都叫焊接金屬。
㈡ 金屬的焊接分哪三類,其各自的特點是什麼
【金屬焊接的種類】
普通焊接與硬釺焊(brazing)和軟釺焊(soldering)的區別在於軟釺焊通過融化熔點較低(低於工件本身的熔點)的焊料來形成連接,無需加熱熔化工件本身。 焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。除了在工廠中使用外,焊接還可以在多種環境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須採取適當的防護措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。 19世紀末之前,唯一的焊接工藝是鐵匠沿用了數百年的金屬鍛焊。最早的現代焊接技術出現在19世紀末,先是弧焊和氧燃氣焊,稍後出現了電阻焊。20世紀早期,第一次世界大戰和第二次世界大戰中對軍用設備的需求量很大,與之相應的廉價可靠的金屬連接工藝受到重視,進而促進了焊接技術的發展。戰後,先後出現了幾種現代焊接技術,包括目前最流行的手工電弧焊、以及諸如熔化極氣體保護電弧焊、埋弧焊、葯芯焊絲電弧焊和電渣焊這樣的自動或半自動焊接技術。20世紀下半葉,焊接技術的發展日新月異,激光焊接和電子束焊接被開發出來。今天,焊接機器人在工業生產中得到了廣泛的應用。研究人員仍在深入研究焊接的本質,繼續開發新的焊接方法,並進一步提高焊接質量。
編輯本段【金屬焊接的方法】
金屬焊接方法有40種以上,主要分為熔焊、壓焊和釺焊三大類:
1.熔焊
熔焊是在焊接過程中將工件介面加熱至熔化狀態,不加壓力完成焊接的方法。熔焊時,熱源將待焊兩工件介面處迅速加熱熔化,形成熔池。熔池隨熱源向前移動,冷卻後形成連續焊縫而將兩工件連接成為一體。 在熔焊過程中,如果大氣與高溫的熔池直接接觸,大氣中的氧就會氧化金屬和各種合金元素。大氣中的氮、水蒸汽等進入熔池,還會在隨後冷卻過程中在焊縫中形成氣孔、夾渣、裂紋等缺陷,惡化焊縫的質量和性能。 為了提高焊接質量,人們研究出了各種保護方法。例如,氣體保護電弧焊就是用氬、二氧化碳等氣體隔絕大氣,以保護焊接時的電弧和熔池率;又如鋼材焊接時,在焊條葯皮中加入對氧親和力大的鈦鐵粉進行脫氧,就可以保護焊條中有益元素錳、硅等免於氧化而進入熔池,冷卻後獲得優質焊縫。
2.壓焊
壓焊是在加壓條件下,使兩工件在固態下實現原子間結合,又稱固態焊接。常用的壓焊工藝是電阻對焊,當電流通過兩工件的連接端時,該處因電阻很大而溫度上升,當加熱至塑性狀態時,在軸向壓力作用下連接成為一體。 各種壓焊方法的共同特點是在焊接過程中施加壓力而不加填充材料。多數壓焊方法如擴散焊、高頻焊、冷壓焊等都沒有熔化過程,因而沒有象熔焊那樣的有益合金元素燒損,和有害元素侵入焊縫的問題,從而簡化了焊接過程,也改善了焊接安全衛生條件。同時由於加熱溫度比熔焊低、加熱時間短,因而熱影響區小。許多難以用熔化焊焊接的材料,往往可以用壓焊焊成與母材同等強度的優質接頭。
3.釺焊
釺焊是使用比工件熔點低的金屬材料作釺料,將工件和釺料加熱到高於釺料熔點、低於工件熔點的溫度,利用液態釺料潤濕工件,填充介面間隙並與工件實現原子間的相互擴散,從而實現焊接的方法。
㈢ 焊接的概念及焊接機理是什麼
1焊接的概念
焊接,就是用加熱的方式使兩件金屬物體結合起來。如果在焊接的過程中需要熔入第三種物質,則稱之為「釺焊」,所熔入的第三種物質稱為「焊料」。按焊料熔點的高低不同又將釺焊分為「硬釺焊」和「軟釺焊」,通常以450℃為界,低於450℃的稱為「軟釺焊」。電子產品安裝的所謂「焊接」就是軟釺焊的一種,主要是用錫、鉛等低熔點合金作焊料,因此俗稱「錫焊」。
2錫焊的機理
從物理學的角度來看,任何焊接都是一個「擴散」的過程,是一個在高溫下兩個或兩個以上物體表面分子相互滲透的過程。錫焊,就是讓熔化的焊料滲透到兩個被焊物體(比如元器件引腳與印刷電路板焊盤)的金屬表面分子中,然後冷凝而使之結合。
錫焊的機理可以由以下三個過程來表述。
1)浸潤
加熱後呈熔融狀態的焊料(錫鉛合金),沿著工件金屬的凹凸表面,靠毛細管的作用擴展。如果焊料和工件金屬表面足夠清潔,焊料原子與工件金屬原子就可以接近到能夠相互結合的距離,即接近原子引力相互作用的距離,上述過程稱為焊料的浸潤。
2)擴散
由於金屬原子在晶格點陣中呈熱振動狀態,所以在溫度升高時,它會從一個晶格點陣自動地轉移到其他晶格點陣,這種現象稱為擴散。錫焊時,焊料和工件金屬表面的溫度較高,焊料與工件金屬表面的原子相互擴散,在兩者界面形成新的合金。
3)界面層結晶與凝固
焊件或焊點降溫到室溫,在焊接處形成由焊料層和工件金屬表面層組成的結合結構,成為「界面層」或「合金層」。冷卻時,界面層首先以適當的合金狀態開始凝固,形成金屬結晶,而後結晶向未凝固的焊料擴展,最終形成固體焊點。
3錫焊的條件
1)被焊金屬材料必須具有可焊性
可焊性可浸潤性,它是指被焊接的金屬材料與焊錫在適當的溫度和助焊劑作用下形成良好結合的性能。在金屬材料中,金、銀、銅的可焊性較好,其中銅應用最廣,鐵、鎳次之,鋁的可焊性最差。為了便於焊接,常在較難焊接的金屬材料和合金錶面鍍上可焊性較好的金屬材料,如錫鉛合金、金、銀等。
2)被焊金屬表面應潔凈
金屬表面的氧化物和粉塵、油污等會妨礙焊料浸潤被焊金屬表面。在焊接前可用機械方法(用小刀或砂紙刮引線的表面)或化學方法(酒精等)清除這些雜質。
3)正確選用助焊劑
助焊劑的種類繁多,效果也不一樣,使用時必須根據被焊件材料的性質、表面狀況和焊接方法來選取。助焊劑的用量越大,助焊效果越好,可焊性越強,但助焊劑殘渣也越多。助焊劑殘渣不僅會腐蝕元器件,而且會使產品的絕緣性能變差,因此在錫焊完成後應進行清洗除渣。
4)正確選用焊料
錫焊工藝中使用的焊料是錫鉛合金,電子產品的裝配和維修中要用共晶合金。
5)控制好焊接溫度和時間
熱能是進行焊接必不可少的條件。熱能的作用是熔化焊料,提高工件金屬的溫度,加速原子運動,使焊料浸潤工件金屬界面,擴散到金屬界面晶格中去,形成合金層。溫度過低,則達不到上述要求而難於焊接,造成虛焊。提高錫焊的溫度雖然可以提高錫焊的速度,但溫度過高會使焊料處於非共晶狀態,加速助焊劑的分解,使焊料性能下降,還會導致印刷電路板上的焊盤脫落,甚至損壞電子元器件。合適的溫度是保證焊點質量的重要因素。在手工焊接時,控制溫度的關鍵是選用具有適當功率的電烙鐵和掌握焊接時間。根據焊接面積的大小,經過反復多次實踐才能把握好焊接工藝的這兩個要素。焊接時間過短,會使溫度太低,焊接時間過長,會使溫度太高。一般情況下,焊接時間應不超過5s。
4錫焊的質量要求
電子產品的組裝其主要任務是在印刷電路板上對電子元器件進行錫焊。焊點的個數從幾十個到成千上萬個,如果有一個焊點達不到要求,就要影響整機的質量,因此在錫焊時,必須做到以下幾點
1)電氣性能良好
高質量的焊點應是焊料與工件金屬界面形成牢固的合金層,才能保證導電性能。不能簡單地將焊料堆附在工件金屬表面而形成虛焊,這是焊接工藝中的大忌。
2)焊點要有足夠的機械強度
焊點的作用是連接兩個或兩個以上的元器件,並使電氣接觸良好。電子設備有時要工作在振動的環境中,為使焊件不松動或脫落,焊點必須具有一定的機械強度。錫鉛焊料中的錫和鉛的強度都比較低,有時在焊接較大和較重的元器件時,為了增加強度,可根據需要增加焊接面積,或將元器件引線、導線元件先行網繞、絞合、鉤接在接點上再行焊接。
3)焊點上的焊料要適量
焊點上焊料過少,不僅降低機械強度,而且由於表面氧化層逐漸加深,會導致焊點早期失效。焊點上焊料過多,既增加成本,又容易造成焊點橋連(短路),也會掩蓋焊接缺陷,所以焊點上的焊料要適量。印刷電路板焊接時,焊料布滿焊盤呈裙狀展開時最合適,如圖3-7所示。
圖3-7典型焊點的外觀
1—焊錫絲;2—電烙鐵;3—焊點剖面呈「雙曲線」;4—平滑過渡;5—半弓形凹下;6—元器件引線;7—銅箔;8—基板
4)焊點表面應光亮均勻
良好的焊點表面應光亮且色澤均勻。這主要是助焊劑中未完全揮發的樹脂成分形成的薄膜覆蓋在焊點表面,能防止焊點表面氧化。
5)焊點不應該有毛刺、空隙
焊點表面存在毛刺、空隙不僅不美觀,還會給電子產品帶來危害,尤其在高壓電路部分,將會產生尖端放電而損壞電子設備。
6)焊點表面必須清潔
焊點表面的污垢、尤其是助焊劑的有害殘留物質,如果不及時清除,酸性物質會腐蝕元器件引線、接點及印刷電路,吸潮會造成漏電甚至短路燃燒等而帶來嚴重隱患。
㈣ 金屬焊接的特點有哪些
1)異種金屬焊接特點,主要在於熔敷金屬和焊縫的合金成分明顯的差異,隨回著焊縫的形狀、母材厚度、焊答條葯皮或焊劑,保護氣體種類的不同,焊接熔池的行為也不一致,因此,母材的融化量也也不一樣,熔敷金屬與母材融化區域的化學成分的濃度相互稀釋的作用也將發生變化,由此可見,異種金屬焊接接頭各隨區域化學成分的不均勻程度不僅取決於焊件和填充材料各自的原始成分同時也焊接工藝不同而變化。
2)組織的不均勻性,經歷了焊接熱循環後,焊接接頭各區域將出現不同的金相組織,它與母材和填充材料的化學成分、焊接方法、焊接層次、焊接工藝及熱處理有關。
3)性能的不均勻性,由於接頭的化學成分,金屬組織的不同,造成了接頭力學性能的不同,沿接頭各區域的強度、硬度、塑性、韌性等都有很大的差別,在焊縫兩側熱影響區,其沖擊值甚至有幾倍的差異,高溫下的蠕變極限和持久強度也會因成分和組織的不同而相差較大。
4)應力場分布的不均勻性,異種金屬接頭中的殘余應力分布是不均勻的,這主要是因為接頭各區域具有不同的塑性而決定的。
㈤ 什麼是金屬的焊接性
焊接性能好的金屬在焊縫部位不易產生裂紋氣孔夾雜等缺陷。
金屬材料的好壞,不取決於不僅取決於材料的好壞,還取決於什麼。
焊接的性能。
㈥ 焊接金屬有哪幾種方式
金屬的焊接,按其工藝過程的特點分有熔焊,壓焊和釺焊三大類.
熔焊是在焊接過程中將工件介面加熱至熔化狀態,不加壓力完成焊接的方法。熔焊時,熱源將待焊兩工件介面處迅速加熱熔化,形成熔池。熔池隨熱源向前移動,冷卻後形成連續焊縫而將兩工件連接成為一體。
在熔焊過程中,如果大氣與高溫的熔池直接接觸,大氣中的氧就會氧化金屬和各種合金元素。大氣中的氮、水蒸汽等進入熔池,還會在隨後冷卻過程中在焊縫中形成氣孔、夾渣、裂紋等缺陷,惡化焊縫的質量和性能。
為了提高焊接質量,人們研究出了各種保護方法。例如,氣體保護電弧焊就是用氬、二氧化碳等氣體隔絕大氣,以保護焊接時的電弧和熔池率;又如鋼材焊接時,在焊條葯皮中加入對氧親和力大的鈦鐵粉進行脫氧,就可以保護焊條中有益元素錳、硅等免於氧化而進入熔池,冷卻後獲得優質焊縫。
壓焊是在加壓條件下,使兩工件在固態下實現原子間結合,又稱固態焊接。常用的壓焊工藝是電阻對焊,當電流通過兩工件的連接端時,該處因電阻很大而溫度上升,當加熱至塑性狀態時,在軸向壓力作用下連接成為一體。
各種壓焊方法的共同特點是在焊接過程中施加壓力而不加填充材料。多數壓焊方法如擴散焊、高頻焊、冷壓焊等都沒有熔化過程,因而沒有象熔焊那樣的有益合金元素燒損,和有害元素侵入焊縫的問題,從而簡化了焊接過程,也改善了焊接安全衛生條件。同時由於加熱溫度比熔焊低、加熱時間短,因而熱影響區小。許多難以用熔化焊焊接的材料,往往可以用壓焊焊成與母材同等強度的優質接頭。
釺焊是使用比工件熔點低的金屬材料作釺料,將工件和釺料加熱到高於釺料熔點、低於工件熔點的溫度,利用液態釺料潤濕工件,填充介面間隙並與工件實現原子間的相互擴散,從而實現焊接的方法。
㈦ 什麼是金屬的焊接性
焊接性是指材料在規定的施焊條件下,焊接成設計要求所規定的構件並滿足預定服役要求的能力。焊接性好的金屬,焊接接頭不易產生裂紋、氣孔和夾渣缺陷,而且有較高的力學性能。
是指金屬材料對焊接加工的適應性。主要指在一定的焊接工藝條件下,獲得優質焊接接頭的難易程度;或材料在限定的施工條件下,焊接成按規定設計要求的構件,並滿足預先服役要求的能力。
焊接性受材料,焊接方法,構件類型及使用要求四個因素的影響。
㈧ 焊接的定義是什麼
焊接是通過加熱、加壓,或兩者並用,使同性或異性兩工件產生原子間結合的加工工藝和聯接方式。焊接應用廣泛,既可用於金屬,也可用於非金屬。
焊接技術主要應用在金屬母材上,常用的有電弧焊,氬弧焊,CO2保護焊,氧氣-乙炔焊,激光焊接,電渣壓力焊等多種,塑料等非金屬材料亦可進行焊接。
金屬焊接方法有40種以上,主要分為熔焊、壓焊和釺焊三大類。
1、熔焊是在焊接過程中將工件介面加熱至熔化狀態,不加壓力完成焊接的方法。熔焊時,熱源將待焊兩工件介面處迅速加熱熔化,形成熔池。熔池隨熱源向前移動,冷卻後形成連續焊縫而將兩工件連接成為一體。
2、壓焊是在加壓條件下,使兩工件在固態下實現原子間結合,又稱固態焊接。常用的壓焊工藝是電阻對焊,當電流通過兩工件的連接端時,該處因電阻很大而溫度上升,當加熱至塑性狀態時,在軸向壓力作用下連接成為一體。
3、釺焊是使用比工件熔點低的金屬材料作釺料,將工件和釺料加熱到高於釺料熔點、低於工件熔點的溫度,利用液態釺料潤濕工件,填充介面間隙並與工件實現原子間的相互擴散,從而實現焊接的方法。
(8)什麼是金屬焊接擴展閱讀
焊接是一個局部的迅速加熱和冷卻過程,焊接區由於受到四周工件本體的拘束而不能自由膨脹和收縮,冷卻後在焊件中便產生焊接應力和變形。重要產品焊後都需要消除焊接應力,矯正焊接變形。
現代焊接技術已能焊出無內外缺陷的、機械性能等於甚至高於被連接體的焊縫。被焊接體在空間的相互位置稱為焊接接頭,接頭處的強度除受焊縫質量影響外,還與其幾何形狀、尺寸、受力情況和工作條件等有關。接頭的基本形式有對接、搭接、丁字接(正交接)和角接等。
對接接頭焊縫的橫截面形狀,決定於被焊接體在焊接前的厚度和兩接邊的坡口形式。焊接較厚的鋼板時,為了焊透而在接邊處開出各種形狀的坡口,以便較容易地送入焊條或焊絲。坡口形式有單面施焊的坡口和兩面施焊的坡口。
選擇坡口形式時,除保證焊透外還應考慮施焊方便,填充金屬量少,焊接變形小和坡口加工費用低等因素。
厚度不同的兩塊鋼板對接時,為避免截面急劇變化引起嚴重的應力集中,常把較厚的板邊逐漸削薄,達到兩接邊處等厚。對接接頭的靜強度和疲勞強度比其他接頭高。在交變、沖擊載荷下或在低溫高壓容器中工作的聯接,常優先採用對接接頭的焊接。
㈨ 什麼是金屬焊接。
金屬焊接的工作原理是什麼,金屬焊接都有什麼方法?
金屬焊接的工作原理:
金屬焊接是指通過版適當的手段,權使兩個分離的金屬物體(同種金屬或異種金屬)產生原子(分子)間結合而連接成一體的連接方法。焊接不僅可以解決各種鋼材的連接,而且還可以解決鋁、銅等有色金屬及鈦、鋯等特種金屬材料的連接,因而已廣泛應用於機械製造、造船、海洋開發、汽車製造、石油化工、航天技術、原子能、電力、電子技術及建築等部門。隨著現代工業生產的需要和科學技術的蓬勃發展,焊接技術不斷進步。僅以新型焊接方法而言,到目前為止,已達數十種之多。 生產中選擇焊接方法時,不但要了解各種焊接方法的特點和選用范圍,而且要考慮產品的要求,然後還要根據所焊產品的結構、材料以及生產技術等條件作出初步選擇。