⑴ 拉絲模的優劣對比
各種拉絲模的材質各有特點。其中,天然金剛石拉絲模的價格最為昂貴,加工也極其困難,同時因為天然金剛石的各向異性,在徑向范圍內硬度差別很大,容易在某一方向上產生劇烈磨損,所以天然金剛石模只適用於加工直徑很小的絲材。硬質合金模硬度較低,用硬質合金模拉拔的線材質量較高,表面粗糙度低,但硬質合金模的耐磨性較差,模具的使用壽命短。聚晶金剛石模的硬度僅次於天然金剛石,因其具有各向同性的特點,不會產生單一徑向磨損加劇的現象,但其價格十分昂貴,加工困難,製造成本很高。CVD塗層拉絲模因具有金剛石的性能而具有良好的耐磨性,拉拔線材的表面粗糙度較低,但是CVD塗層拉絲模的製作工藝復雜,加工困難,成本較高;當塗層磨耗後模具將迅速磨損,不僅難以保證加工質量,而且不能重復使用,只能報廢。陶瓷材料具有比硬質合金高的硬度和耐磨性,製作成本低廉,是介於金剛石與硬質合金之間的製作拉絲模的優良材料。但由於陶瓷材料的韌性差、熱沖擊差且加工困難,至今尚未獲得大范圍應用。各種拉絲模材質的優缺點對比見表2。
表2 幾種拉絲模材料的優缺點對比
拉拔模材質-優點-缺點-應用范圍
合金鋼模-製作簡便-耐磨性差、壽命短-基本淘汰
天然金剛石-硬度高、耐磨性能好-脆性大,加工難-直徑1.2mm以下的線模
硬質合金-拋光性好、能量消耗低-耐磨性差、加工困難-各種直徑線材
聚晶人造金剛石-硬度高、耐磨性好-加工困難、成本高-小型線材、絲材
CVD塗層材料-光潔度高、耐溫性好-工藝復雜、加工困難-小型線材、絲材
陶瓷材料-耐磨、耐高溫、耐腐蝕性好-熱沖擊、韌性差、加工難-沒有大范圍應用
在小型線材、絲材的拉拔加工中,天然金剛石、聚晶金剛石和CVD塗層模是常用的拉絲模材料。在拉拔小直徑絲材時,CVD塗層金剛石模克服了天然金剛石模的各向異性,同時具有優良的強度和硬度,拉拔產量最高,表面質量也達到要求。試驗證明,CVD塗層金剛石拉絲模的壽命等同於天然金剛石模具,產品合格率高,表面質量優於國產聚晶金剛石。因此,對於小直徑絲材拉拔加工,CVD塗層金剛石拉絲模是較為理想的選擇。
盡管拉絲模可用於加工各種鋼鐵、銅、鎢、鉬等金屬和合金材料,但不同材質的拉絲模各有其適用的加工范圍,不同材質的拉絲模加工相同的線材時其磨損形態和使用壽命存在很大差別,因此合理選用拉絲模材質是保證成功應用的關鍵。不同材質的拉絲模都有其相對合理的加工對象。拉拔加工的合理性主要指拉絲模與線材兩者的力學、物理和化學性能相互匹配,以獲得最長的模具使用壽命。例如,在拉拔相同直徑的銅絲時,聚晶金剛石模的使用壽命是硬質合金模壽命的300~500倍,拉拔鎳絲時僅為80~100倍,拉拔鉬絲時,其壽命只有硬質合金模壽命的50~80倍,而拉拔碳鋼時,聚晶金剛石模的壽命只有硬質合金模的20~60倍。由於國內對拉拔模與線材的匹配理論缺乏系統研究,導致了盲目選擇,造成資源浪費。拉絲模的摩擦磨損情況十分復雜,一般分為破壞和摩擦磨損兩大類。拉絲模的破壞又可以分為環狀破壞、拉伸破壞、剪切破壞和支撐面破壞等,摩擦磨損可分為磨耗磨損、磨擦磨損、腐蝕磨損、擦傷和細顆粒產生的磨損等。工作條件(線材材料、拉絲模材質、潤滑劑等)的不同,使得拉絲模的磨損和破壞都有其獨特的過程。拉絲模的磨損破壞之間的相互關系,在本質上是相互關聯的。拉絲模內部的情況可能非常微妙,一些因素可能會同時起作用,它們的疊加作用非常復雜,不易理解。可能一個因素的作用會掩蓋其他因素的作用,上述幾種破壞和摩擦磨損的形式可能經常交織在一起,為分析拉絲模的破壞磨損機理增加了難度。但總的來說,各種材質拉絲模的耐磨性由高到低的排序是:金剛石拉絲模(沒有考慮天然金剛石各向異性的問題)——陶瓷拉絲模——硬質合金模——已淘汰的合金鋼模。
通過對拉絲模的材質的研究,拉絲模正在向著高強度、高硬度、高耐磨性發展,各種符合要求的新材料層出不窮,拉絲模的耐磨性大幅度提高,磨損、破壞的時間明顯延遲,拉絲模壽命不斷增加,加工精度也有了一定的提高。拉拔加工的適用范圍正逐步擴大,從粗到細各種規格的線材都可以加工,並出現了用於加工不規則線材的異型模。
⑵ 模具塗層有哪幾種
CVD(化學氣相沉積)和PVD(物理氣相沉積)技術均被廣泛應用於模具表面處理,其中CVD塗層技術具有更卓越的抗高溫氧化性能和強大的塗層結合力,在高速鋼切邊模、擠壓模上應用效果良好。
TD覆層處理是一種表面超硬化處理技術,是熱擴散法碳化物覆層處理(Thermal Diffision Carbide Coating Process)的簡稱,英文簡稱「TD Coating」。
模具表面處理--激光表面
技術亮點
(1)激光淬火層硬度達HV800~1100,具有極好的耐磨性和抗拉傷能力,一次修模後壽命較火焰淬火提高5~50倍。
(2)激光淬火層硬度、層深均勻,與基體有很強的結合力。
(3)激光淬火處理後變形量極小,無須作任何校正和加工處理。
(4)激光熔焊技術可對模具表面局部拉傷等損傷部位進行修復,修復效果明顯優於其他焊接方法。
(5)具有很高的處理速度,通常可達0.5m2/h。
(6)只需對模具磨損部位進行針對性處理,而無須全部處理模具表面。
(7)顯著提高拉延件表面質量。
脈沖高能電子束技術
模具表面處理--脈沖
1. 技術原理及特點
利用脈沖高能束可以實現多種表面處理工藝,究其本質,就是通過瞬時高能量密度作用在材料表層產生一種遠離平衡態的極端處理條件,使能量影響區內的材料發生質量分布、化學及力學狀態變化,最終獲得常規方法難以達到的表面結構和使用性能。目前,脈沖高能束流主要包括激光束、離子束、電子束和等離子體束幾種。其中,使用電子束進行表面處理具有以下優勢:以加速電子為能量載體,與材料表面相互作用時能量轉化效率比激光處理高出70%~80%,並且無元素注入問題,真空中進行處理可避免氧化和污染問題等。