A. 壓鑄壓機比亞與鑄造壓力怎麼換算比如200T壓機的壓力值,澆口直徑為50,怎麼算
壓射力
壓射力是壓鑄機壓射機構中推動壓射活塞運動的力.它是反映壓鑄機功能的
一個主要參數.
壓射力的大小,由壓射缸的截面積和工作液的壓力所決定.壓射力的計算公式如下:
P壓射力=P壓射油缸×π×D2/4
式中:P壓射力-壓射力(N-牛)
P壓射油缸-壓射油缸內工作液的壓力(Pa-帕)
D-壓射缸的直徑(m-米)
π=3.1416
比壓
壓室內熔融金屬在單位面積上所受的壓力稱為比壓.比壓也是壓射力與壓室
截面積的比值關系換算的結果.其計算公式如下:
P比壓=P壓射力/F壓室截面積
式中:P比壓-比壓(Pa-帕)
P壓射力-壓射力(N-牛)
F壓室截面積-壓室截面積(m2-米2)
即F壓室截面積=πD2/4 式中D(m-米)為壓室直徑
π=3.1416
B. 壓鑄機上的800噸壓力等於多少兆帕
壓鑄機上的800噸壓力等於多少兆帕?
800噸力就是800000千克力,1千克力約等於0.098兆帕。換算過來就是78400兆帕。
嚴格來說,一千克力不能等同於一個大氣壓。
一個工程大氣壓(工程上簡稱一個公斤壓力)
一個工程大氣壓=1千克力/平方厘米
一帕斯卡=1牛頓/平方米
1千克力=9.8牛頓
1.壓鑄機的壓力是怎麼形成的
比如一個打氣筒,你把充氣的皮管子接自來水龍頭,一開水龍頭,打氣筒里邊的活塞就會被水頂動,進而帶動打氣筒的推桿,這個就叫慢壓射。自來水龍頭就是油泵,打氣筒就是壓射缸,推桿就是壓射活塞桿。
壓射缸前頭產生個比壓。那麼壓射缸後頭還有比壓,就是又弄個缸,活塞桿,往壓射缸里按。這個弄出來的缸叫增壓缸。打增壓時模具里的壓強又大了,叫增壓比壓。
又果再說細點,壓鑄機很關鍵一點,就是壓射單向閥的運用。就是你這個打氣筒(壓射缸),是一個氣球放水推動的。那麼後端再接個比壓推桿,比壓推桿一動,壓射缸的壓強成倍增加。這里有個問題,水就會放氣球里回躥,導致壓力升得很慢。(再說壓鑄上的建壓時間極重要,極短)所以在氣球放完水時要自動關上,增壓時以防水回躥。這個單向閥單迴路壓鑄機(小機子),是直通單向閥,雙迴路用得是浮動活塞,有點象液控單向閥,靠的是增太活塞的推桿關上的。
2,壓鑄機的沖油壓力是什麼!一般為多少!
壓鑄機的沖有壓力和氮其壓力是什麼關系啊!
一台設備上加工不同的壓鑄件是不是要不同的沖油壓力呢??
氮氣壓強包括壓射氮氣壓強,與增壓氮氣壓強。壓射氮氣推動壓射活塞,增壓氮氣推動增壓活塞。
首先比壓原理應知道。如土釘,往牆上按時,兩頭面積相差幾倍,壓強便相差幾倍,面積小的那頭壓強高。活塞桿與活塞就如土釘的兩頭,壓射活塞桿的小端面積,實則是沖頭面積,大端當然是壓活塞面積,壓射活塞上的壓強為氮氣壓強,沖頭上的壓強為氮氣壓強乘兩頭面積相差的倍數。所以沖頭上壓強極大,而此壓強乘鑄件的投影面積才為漲型力,極大。
那麼在開增壓時,壓射活塞上承受的壓強便不再為壓射氮氣壓強了。多了增壓活塞與增壓活塞桿之間的比壓(由於增壓活塞桿是插入壓射缸里的,這個和壓射活塞桿插入料筒一個道理。所以增壓活塞兩頭面積相差幾倍,便將增壓氮氣壓強放大幾倍,傳到壓射缸與壓射活塞上),所以壓射壓強在增壓時能提高三四倍,此壓強再經沖頭放大(沖頭面積小),壓射比壓更大大加大。
3.壓鑄機怎麼調沖壓力
實質上指的沖壓力,是指快壓射速度,而不是什麼力。就是二快手輪的事,就是壓射閥板側面那個手輪。但速度快慢對沖擊力影響大,所以說是力量也行。但那是調速的。如果產品薄,凝固快,那速度就調大,如果模具排氣不好,那速度就調慢(或將快壓射行程調短,不是有接近開關么,移一移),以方便型腔排氣。當然還有其它講究,自個沒事上網查查,也就那點知識量,但主要是結合實際經驗,幾個月就成有經驗的壓鑄工了。關鍵字,壓鑄工藝。
那麼閥板側面還有一個小手柄,是一快手柄,調壓射跟蹤速度的,就是開模時壓射頭要跟蹤,把鑄件推離靜模,一般這個手柄不太動。
那麼閥板後面還有一個增壓手輪,這個東西是調增壓速度的。二快手輪調壓射缸速度,增壓手輪調增壓缸速度。
缸的速度關繫到壓鑄工藝,比如二快速度要根據零件厚薄與鋁水模具溫度等壓鑄工藝來調快慢。同時液壓本身,只有缸打到頭,壓力才升到最高,因為力的作用是相互的,缸里活塞在運動時,阻力只是一些磨擦力與排氣阻力(有時也高),並不大。只有缸打到頭,那麼推力才全部傳上來,瞬間壓力激增,你可以看缸上的表,因為推動缸的油沒出路了么。缸打到頭的瞬間,這個推力全部傳上來也要有個時間,缸的速度越快,缸打到頭的瞬間推力傳上來的時間越短,這個叫升壓時間。所以調增壓手輪,實質上是調增壓缸的升壓時間。
另有一個調建壓時間的小手柄,在機器側面,建壓時間是指,壓射打到頭後(這時壓力急增,急增後的壓力足以推開增壓啟動閥,增壓缸開始放油增壓),壓射缸里急增的油壓,推開增壓啟動閥,開始增壓的時間。也就是壓射和增壓的間隔時間,也就是壓射結束後增壓過多長時間才開始(一般就也幾十毫秒,也就是百分之幾秒)。是為建壓時間。那手柄的原理就是一自來水龍頭,水就是由壓射缸引來的油,推增壓啟動閥換向,你把流量關小,換向時間就長,增壓啟動就遲些,反之亦然。
而增壓大手輪調的是升壓時間,是指增壓已經開始打,打的速度問題。此速度關繫到增壓打到頭後壓力升起來的時間,就是增壓活塞打到頭的瞬間,增壓缸壓力從零,升到最大的時間。
C. 什麼才是真正的鎂合金壓鑄模溫機的壓力值
隨著鎂合金壓鑄模溫機的興起與發展,對鎂合金的壓鑄工藝特點及安全操作要點進行探討,有利於安全、優質地生產。針對鎂合金的不同特點,應該有特別的防護措施及設備。
鎂合金壓鑄模溫機需要達到較高的使用溫度,需要採用加壓加熱的方式。所以在不同的控制溫度下,模溫機進出水壓也是不同的,一般情況下,我們可以按照下面的經驗值來參考:
運水式模溫機在 100℃時系統壓力大概是0.4Mpa運水式模溫機在 120℃是系統壓力大概是0.6Mpa
運水式模溫機在 180℃是系統壓力大概是1.2Mpa與運水式控溫系統不同,運油式模溫機不需要加壓運行,所以管路系統要求沒有高溫水溫機要求嚴格,模溫機出口壓力主要取決於泵浦的功率和揚程,標准油溫機的出口壓力一般是在0.2~0.5Mpa之間,當然如果系統有特殊要求的除外。
希望可以幫到你。
D. 壓鑄模具內澆口設計以及料筒的大小是怎麼定的
1、壓鑄澆口面積可以採用日本的尾關公式:A=5√G
2、料筒的大小取決於充滿度。一般充滿度取65%
E. 急求有關壓鑄模具設計相關資料!
一、 壓鑄簡介 壓力鑄造簡稱壓鑄,是一種將熔融合金液倒入壓室內,以高速充填鋼制模具的型腔,並使合金液在壓力下凝固而形成鑄件的鑄造方法。 壓鑄區別於其它鑄造方法的主要特點是高壓和高速。①金屬液是在壓力下填充型腔的,並在更高的壓力下結晶凝固,常見的壓力為15—100MPa。②金屬液以高速充填型腔,通常在10—50米/秒,有的還可超過80米/秒,(通過內澆口導入型腔的線速度—內澆口速度),因此金屬液的充型時間極短,約0.01—0.2秒(須視鑄件的大小而不同)內即可填滿型腔。 壓鑄機、壓鑄合金與壓鑄模具是壓鑄生產的三大要素,缺一不可。所謂壓鑄工藝就是將這三大要素有機地加以綜合運用,使能穩定地有節奏地和高效地生產出外觀、內在質量好的、尺寸符合圖樣或協議規定要求的合格鑄件,甚至優質鑄件。 1、 壓鑄機 (1) 壓鑄機的分類 壓鑄機按壓室的受熱條件可分為熱壓室與冷壓室兩大類。而按壓室和模具安放位置的不同,冷室壓鑄機又可分為立式、卧式和全立式三種形式的壓鑄機。 熱室 壓鑄機 立式 冷室 卧室 全立式 (2) 壓鑄機的主要參數 a合型力(鎖模力) (千牛)————————KN b壓射力 (千牛)—————————————KN c動、定型板間的最大開距——————————mm d動、定型板間的最小開距——————————mm e動型板的行程———————————————mm f大杠內間距(水平×垂直)—————————mm g大杠直徑—————————————————mm h頂出力——————————————————KN i頂出行程—————————————————mm j壓射位置(中心、偏心)——————————mm k一次金屬澆入量(Zn、Al、Cu)———————Kg l壓室內徑(Ф)——————————————mm m空循環周期————————————————s n鑄件在分型面上的各種比壓條件下的投影面積 註:還應有動型板、定型板的安裝尺寸圖等。 2、 壓鑄合金 壓鑄件所採用的合金主要是有色合金,至於黑色金屬(鋼、鐵等)由於模具材料等問題,目前較少使用。而有色合金壓鑄件中又以鋁合金使用較廣泛,鋅合金次之。 下面簡單介紹一下壓鑄有色金屬的情況。 (1)、壓鑄有色合金的分類 受阻收縮 混合收縮 自由收縮 鉛合金 -----0.2-0.3% 0.3-0.4% 0.4-0.5% 低熔點合金 錫合金 鋅合金--------0.3-0.4% 0.4-0.6% 0.6-0.8% 鋁硅系--0.3-0.5% 0.5-0.7% 0.7-0.9% 壓鑄有色合金 鋁合金 鋁銅系 鋁鎂系---0.5-0.7% 0.7-0.9% 0.9-1.1% 高熔點合金 鋁鋅系 鎂合金----------0.5-0.7% 0.7-0.9% 0.9-1.1% 銅合金 (2)、各類壓鑄合金推薦的澆鑄溫度 合金種類 鑄件平均壁厚≤3mm 鑄件平均壁厚>3mm 結構簡單 結構復雜 結構簡單 結構復雜
鋁合金 鋁硅系 610-650℃ 640-680℃ 600-620℃ 610-650℃
鋁銅系 630-660℃ 660-700℃ 600-640℃ 630-660℃
鋁鎂系 640-680℃ 660-700℃ 640-670℃ 650-690℃
鋁鋅系 590-620℃ 620-660℃ 580-620℃ 600-650℃
鋅合金 420-440℃ 430-450℃ 400-420℃ 420-440℃
鎂合金 640-680℃ 660-700℃ 640-670℃ 650-690℃
銅合金 普通黃銅 910-930℃ 940-980℃ 900-930℃ 900-950℃
硅黃銅 900-920℃ 930-970℃ 910-940℃ 910-940℃
注 註:①澆鑄溫度一般以保溫爐的金屬液的溫度來計量。 ②鋅合金的澆鑄溫度不能超過450℃,以免晶粒粗大。 二、 壓鑄模 壓鑄模是壓鑄生產三大要素之一,結構正確合理的模具是壓鑄生產能否順利進行的先決條件,並在保證鑄件質量方面(下機合格率)起著重要的作用。 由於壓鑄工藝的特點,正確選用各工藝參數是獲得優質鑄件的決定因素,而模具又是能夠正確選擇和調整各工藝參數的前提,模具設計實質上就是對壓鑄生產中可能出現的各種因素預計的綜合反映。如若模具設計合理,則在實際生產中遇到的問題少,鑄件下機合格率高。反之,模具設計不合理,例一鑄件設計時動定模的包裹力基本相同,而澆注系統大多在定模,且放在壓射後沖頭不能送料的灌南壓鑄機上生產,無法正常生產,鑄件一直粘在定模上。盡管定模型腔的光潔度打得很光,因型腔較深,仍出現粘在定模上的現象。所以在模具設計時,必須全面分析鑄件的結構,熟悉壓鑄機的操作過程,要了解壓鑄機及工藝參數得以調整的可能性,掌握在不同情況下的充填特性,並考慮模具加工的方法、鑽眼和固定的形式後,才能設計出切合實際、滿足生產要求的模具。 剛開始時已講過,金屬液的充型時間極短,金屬液的比壓和流速很高,這對壓鑄模來說工作條件極其惡劣,再加上激冷激熱的交變應力的沖擊作用,都對模具的使用壽命有很大影響。 模具的使用壽命通常是指通過精心的設計和製造,在正常使用的條件下,結合良好的維護保養下出現的自然損壞,在不能再修復而報廢前,所壓鑄的模數(包括壓鑄生產中的廢品數)。 實際生產中,模具失效主要有三種形式:①熱疲勞龜裂損壞失效;②碎裂失效;③溶蝕失效。 致使模具失效的因素很多,既有外因(例澆鑄溫度高低、模具是否經預熱、水劑塗料噴塗量的多少、壓鑄機噸位大小是否匹配、壓鑄壓力過高、內澆口速度過快、冷卻水開啟未與壓鑄生產同步、鑄件材料的種類及成分Fe的高低、鑄件尺寸形狀、壁厚大小、塗料類型等等)。也有內因(例模具本身材質的冶金質量、坯料的鍛制工藝、模具結構設計的合理性、澆注系統設計的合理性、模具機(電加工)加工時產生的內應力、模具的熱處理工藝、包括各種配合精度和光潔度要求等)。 模具若出現早期失效,則需找出是哪些內因或外因,以便今後改進。 ① 模具熱疲勞龜裂失效 壓鑄生產時,模具反復受激冷激熱的作用,成型表面與其內部產生變形,相互牽扯而出現反復循環的熱應力,導致組織結構二損傷和喪失韌性,引發微裂紋的出現,並繼續擴展,一旦裂紋擴大,還有熔融的金屬液擠入,加上反復的機械應力都使裂紋加速擴展。 為此,一方面壓鑄起始時模具必須充分預熱。另外,在壓鑄生產過程中模具必須保持在一定的工作溫度范圍中,以免出現早期龜裂失效。同時,要確保模具投產前和製造中的內因不發生問題。因實際生產中,多數的模具失效是熱疲勞龜裂失效。 ② 碎裂失效 在壓射力的作用下,模具會在最薄弱處萌生裂紋,尤其是模具成型面上的劃線痕跡或電加工痕跡未被打磨光,或是成型的清角處均會最先出現細微裂紋,當晶界存在脆性相或晶粒粗大時,即容易斷裂。而脆性斷裂時裂紋的擴展很快,這對模具的碎裂失效是很危險的因素。為此,一方面凡模具面上的劃痕、電加工痕跡等必須打磨光,即使它在澆注系統部位,也必須打光。另外要求所使用的模具材料的強度高、塑性好、沖擊韌性和斷裂韌性均好。③熔融失效 前面已講過,常用的壓鑄合金有鋅合金、鋁合金、鎂合金和銅合金,也有純鋁壓鑄的,Zn、Al、Mg是較活潑的金屬元素,它們與模具材料有較好的親和力,特別是Al易咬模。當模具硬度較高時,則抗蝕性較好,而成型表面若有軟點,則對抗蝕性不利。但在實際生產中,溶蝕僅是模具的局部地方,例內澆口直接沖刷的部位(型芯、型腔)易出現溶蝕現象,以及硬度偏軟處易出現鋁合金的粘模。 壓鑄生產中常遇模具存在的問題注意點: 1、 澆注系統、排溢系統 例(1)對於冷室卧式壓鑄機上模具直澆道的要求: ① 壓室內徑尺寸應根據所需的比壓與壓室充滿度來選定,同時,澆口套的內徑偏差應比壓室內徑的偏差適當放大幾絲,從而可避免因澆口套與壓室內徑不同軸而造成沖頭卡死或磨損嚴重的問題,且澆口套的壁厚不能太薄。澆口套的長度一般應小於壓射沖頭的送出引程,以便塗料從壓室中脫出。 ② 壓室與澆口套的內孔,在熱處理後應精磨,再沿軸線方向進行研磨,其表面粗糙≤Ra0.2μm。 ③ 分流器與形成塗料的凹腔,其凹入深度等於橫澆道深度,其直徑配澆口套內徑,沿脫模方向有5°斜度。當採用塗導入式直澆道時,因縮短了壓室有效長度的容積,可提高壓室的充滿度。 (2)對於模具橫澆道的要求 ① 冷卧式模具橫澆道的入口處一般應位於壓室上部內徑2/3以上部位,以免壓室中金屬液在重力作用下過早進入橫澆道,提前開始凝固。 ② 橫澆道的截面積從直澆道起至內澆口應逐漸減小,為出現截面擴大,則金屬液流經時會出現負壓,易吸入分型面上的氣體,增加金屬液流動中的渦流裹氣。一般出口處截面比進口處小10-30%。 ③ 橫澆道應有一定的長度和深度。保持一定長度的目的是起穩流和導向的作用。若深度不夠,則金屬液降溫快,深度過深,則因冷凝過慢,既影響生產率又增加回爐料用量。 ④ 橫澆道的截面積應大於內澆口的截面積,以保證金屬液入型的速度。主橫澆道的截面積應大於各分支橫澆道的截面積。 ⑤ 橫澆道的底部兩側應做成圓角,以免出現早期裂紋,二側面可做出5°左右的斜度。橫澆道部位的表面粗糙度≤Ra0.4μm。 (3)內澆口 ① 金屬液入型後不應立即封閉分型面,溢流槽和排氣槽不宜正面沖擊型芯。金屬液入型後的流向盡可能沿鑄入的肋筋和散熱片,由厚壁處想薄壁處填充等。 ② 選擇內澆口位置時,盡可能使金屬液流程最短。採用多股內澆口時,要防止入型後幾股金屬液匯合、相互沖擊,從而產生渦流包氣和氧化夾雜等缺陷。 ③ 薄壁件的內澆口厚件要適當小些,以保證必要的填充速度,內澆口的設置應便於切除,且不使鑄件本體有缺損(吃肉)。 (4)溢流槽 ① 溢流槽要便於從鑄件上去除,並盡量不損傷鑄件本體。 ② 溢流槽上開設排氣槽時,需注意溢流口的位置,避免過早阻塞排氣槽,使排氣槽不起作用。 ③ 不應在同一個溢流槽上開設幾個溢流口或開設一個很寬很厚的溢流口,以免金屬液中的冷液、渣、氣、塗料等從溢流槽中返回型腔,造成鑄件缺陷。 2、 鑄造圓角(包括轉角) 鑄件圖上往往註明未注圓角R2等要求,我們在開制模具時切忌忽視這些未註明圓角的作用,決不可做成清角或過小的圓角。鑄造圓角可使金屬液填充順暢,使腔內氣體順序排出,並可減少應力集中,延長模具使用壽命。(鑄件也不易在該處出現裂紋或因填充不順而出現各種缺陷)。例標准油盤模上清角處較多,相對來說,目前兄弟油盤模開的最好,重機油盤的也較多。 3、 脫模斜度 在脫模方向嚴禁有人為造成的側凹(往往是試模時鑄件粘在模內,用不正確的方法處理時,例鑽、硬鑿等使局部凹入)。 4、 表面粗糙度 成型部位、澆注系統均應按要求認真打光,應順著脫模方向打光。由於金屬液由壓室進入澆注系統並填滿型腔的整個過程僅0.01-0.2秒的時間。為了減少金屬液流動的阻力,盡可能使壓力損失少,都需要流過表面的光潔度高。同時,澆注系統部位的受熱和受沖蝕的條件較惡劣,光潔度越差則模具該處越易損傷。 5、 模具成型部位的硬度 鋁合金:HRC46°左右 銅:HRC38°左右 加工時,模具應盡量留有修復的餘量,做尺寸的上限,避免焊接。 壓鑄模具組裝的技術要求: 1、 模具分型面與模板平面平行度的要求。 2、 導柱、導套與模板垂直度的要求。 3、 分型面上動、定模鑲塊平面與動定模套板高出0.1-0.05mm。 4、推板、復位桿與分型面平齊,一般推桿凹入0.1mm或根據用戶要求。 5、模具上所有活動部位活動可靠,無呆滯現象pin無串動。 6、滑塊定位可靠,型芯抽出時與鑄件保持距離,滑塊與塊合模後配合部位2/3以上。 7、澆道粗糙度光滑,無縫。 8、合模時鑲塊分型面局部間隙<0.05mm。 9、冷卻水道暢通,進出口標志。 10、成型表面粗糙度Rs=0.04,無微傷。
F. 鎂合金壓鑄模溫機的壓力值是什麼
鎂合金壓鑄模溫機需要達到較高的使用溫度,需要採用加壓加熱的方式。所以在不同的控制溫度下,模溫機進出水壓也是不同的,一般情況下,我們可以按照下面的經驗值來參考:運水式模溫機在 100℃時系統壓力大概是0.4Mpa運水式模溫機在 120℃是系統壓力大概是0.6Mpa運水式模溫機在 180℃是系統壓力大概是1.2Mpa與運水式控溫系統不同,運油式模溫機不需要加壓運行,所以管路系統要求沒有高溫水溫機要求嚴格,模溫機出口壓力主要取決於泵浦的功率和揚程,標准油溫機的出口壓力一般是在0.2~0.5Mpa之間,當然如果系統有特殊要求的除外。
G. 壓鑄工藝的壓力
壓力的存在是壓鑄工藝區別其他鑄造方法的主要特點. 壓射力是壓鑄機壓射機構中推動壓射活塞運動的力.它是反映壓鑄機功能的
一個主要參數.
壓射力的大小,由壓射缸的截面積和工作液的壓力所決定.壓射力的計算公式如下:
P壓射力=P壓射油缸×π×D2/4
式中:P壓射力-壓射力(N-牛)
P壓射油缸-壓射油缸內工作液的壓力(Pa-帕)
D-壓射缸的直徑(m-米)
π=3.1416 壓室內熔融金屬在單位面積上所受的壓力稱為比壓.比壓也是壓射力與壓室
截面積的比值關系換算的結果.其計算公式如下:
P比壓=P壓射力/F壓室截面積
式中:P比壓-比壓(Pa-帕)
P壓射力-壓射力(N-牛)
F壓室截面積-壓室截面積(m2-米2)
即F壓室截面積=πD2/4 式中D(m-米)為壓室直徑
π=3.1416 (1)比壓對鑄件機械性能的影響
比壓增大,結晶細,細晶層增厚,由於填充特性改善,表面質量提高,氣孔
影響減輕,從而抗拉強度提高,但延伸率有所降低.
(2)對填充條件的影響
合金熔液在高比壓作用下填充型腔,合金溫度升高,流動性改善,有利於鑄
件質量的提高. (1)根據鑄件的強度要求考慮
將鑄件分為有強度要求的和一般要求的兩類,對於有強度要求的,應該具有
良好的緻密度.這是應該採用高的增壓比壓.
(2)根據鑄件壁厚考慮
在一般情況下,壓鑄薄壁鑄件時,型腔中的流動阻力較大,內澆口也採用較薄的厚度,因此具有大的阻力,故要有較大的填充比壓,才能保證達到需要的內澆口速度. 對於厚壁鑄件,一方面選定的內澆口速度較低,並且金屬的凝固時間較長,可以採用較小的填充比壓;另一方面,為了使鑄件具有一定的緻密度,還需要有
足夠的增壓比壓才能滿足要求. 對於形狀復雜的鑄件,填充比壓應選用高一些.此外,如合金的類別,內澆口速度的大小,壓鑄機合模能力的功率及模具的強度等,都應作適當考慮. 填充比壓的大小,主要根據選定的內澆口速度計算得到. 至於增壓比壓的大小,根據合金類別,可參考下表數值選用.當型腔中排氣條件良好,內澆口厚度與鑄件壁厚的比值適當的情況下,可選用低的增壓比壓.而排氣條件愈差,內澆口厚度與鑄件壁厚比值愈小時,則增壓比壓應愈高.
推薦選用增壓比壓范圍表
零件類型 鋁合金 鋅合金 黃銅
承受輕負荷的零件 30~40MPa 13~20MPa 30~40MPa
承受較大負荷的零件 40~80MPa 20~30MPa 40~60MPa
氣密性面大壁薄零件 80~120MPa25~40MPa 80~100MPa
H. 壓鑄鋁件要多少壓力 鋁合金壓鑄壓力標準是多少
1、壓鑄機主要可以分為熱室壓鑄機與冷室壓鑄機兩種不同的類型,區別在於它們能承受多大的力量,典型的壓力范圍在400到4000噸之間。
2、熱室壓鑄:熱室壓鑄,有時也被稱作鵝頸壓鑄,它的金屬池內是熔融狀態的液態、半液態金屬,這些金屬在壓力作用下填充模具。在循環開始時,機器的活塞處於收縮狀態,這時熔融態的金屬就可以填充鵝頸部位。氣壓或是液壓活塞擠壓金屬,將它填入模具之內。這個系統的優點包括循環速度快(大約每分鍾可以完成15個循環),容易實現自動化運作,同時將金屬熔化的過程也很方便。缺點則包括無法壓鑄熔點較高的金屬,同樣也不能壓鑄鋁,因為鋁會將熔化池內的鐵帶出。因而,通常來說熱室壓鑄機用於鋅、錫以及鉛的合金。而且,熱室壓鑄很難用於壓鑄大型鑄件,通常這種工藝都是壓鑄小型鑄件。
3、冷室壓鑄:當壓鑄無法用於熱室壓鑄工藝的金屬時可以採用冷室壓鑄,包括鋁、鎂、銅以及含鋁量較高的鋅合金。在這種工藝中,需要在一個獨立的坩堝中先把金屬熔化掉 。然後一定數量的熔融金屬被轉移到一個未被加熱的注射室或注射嘴中。通過液壓或者機械壓力,這些金屬被注入模具之中。由於需要把熔融金屬轉移進冷室,這種工藝最大的缺點是循環時間很長。冷室壓鑄機還有立式與卧式之分,立式壓鑄機通常為小型機器,而卧式壓鑄機則具有各種型號。
I. 壓鑄模具知識
壓室
1熱壓室 2冷壓室 材料是1500一上的碳鋼 合金啊都可以
加料口 因為你可能製作銅合金它的熔點為1080℃
壓注流到
澆口
沖頭
鵝頸道
模具
J. 壓力鑄造的工藝參數有哪些
壓鑄工藝參數
1、壓力參數:①壓射力 用壓射壓力和壓射比壓來表示,是獲得組織緻密、輪廓清晰的壓 鑄件的主要因素,在壓鑄機上其大小可以調節。 ②壓射壓力 壓射時壓射油缸內的油壓,可以從壓力表上直接讀出,是一個 變數,當壓鑄機進入壓射動作時產生壓射壓力,按照壓射動作分段對應的 稱為一級壓射壓力(慢壓射壓力) 、二級壓射壓力(快壓射壓力)等;增壓 階段後轉變為增壓壓力,此時的壓射壓力達到極大值。 ③壓射比壓 壓射時壓室內金屬液在單位面積上所受的壓力,簡稱比壓。 可通過改變壓射力或更換不同直徑的壓室及沖頭來進行調整。 計算公式為: 比壓=壓射力÷(沖頭直徑)?×4/π
2、速度參數: ①壓射速度 壓射時沖頭移動的速度。按照壓射過程的不同階段,壓射速
度分為慢壓射速度(低速壓射速度)和快壓射速度(高速壓射速度) 。一般 慢壓射速度的選擇根據「壓室充滿度」 (即壓室內金屬液的多少,用百分比 表示)來決定,取值范圍如下:壓室沖滿度(%) ≤30 30~60 >60 慢壓射速度(m/s) 0.3~0.4 0.2~0.30.1~0.2 快壓射速度,是在一定填充時間條件下確定的。根據鑄件的結構特徵確定 其填充時間後,可用以下公式進行計算:快壓射速度=坯件重量/合金比重/壓室內截面積/填充時間×[1+(N-1)+0.1] 式中「坯件重量」含澆冒系統; 「N」為型腔穴數; 「填充時間」可查表得到。 按此公式計算出來的快壓射速度,是獲得優質鑄件的理論速度,實際生產 中選其 1.2 倍;對有較大鑲嵌件的鑄件時可選 1.5~2 倍。 ②內澆口速度 金屬液在壓力作用下通過內澆道導入型腔時的線速度,稱
為內澆口速度。內澆口速度對鑄件質量有著重要影響,主要是表面光潔度、 強度和塑性等方面。內澆口速度的大小可通過查表得到,調節的方法有: 調整壓射速度、改變壓室直徑、調整比壓、改變內澆口截面積。鑄件平均壁厚、填充時間、內澆口速度對照表 鑄件平均壁厚(㎜) 1 1.5 2 2.5 3 3.5 4 5 6 7 8 9 10 填充時間(S) 0.010~0.014 0.014~0.020 0.018~0.026 0.022~0.0320.028~0.040 0.034~0.050 0.040~0.060 0.048~0.072 0.056~0.084
0.066~0.100 0.076~0.116 0.088~0.138 0.100~0.160 內澆口速度(m/s) 46~55 44~53 42~5040~48 38~46 36~44 34~42 32~40 30~37 28~34 26~32 24~29 22~27
3、時間參數: ①填充時間 金屬液自開始進入型腔到充滿鑄型的過程所需要的時間。影
響填充時間的因素有:金屬液的過熱度、澆注溫度、模具溫度、塗料性能 與用量、排氣效果等。一般來說,填充時間越短,鑄件表面越光滑,內部 空隙率越高;反之,則表面粗糙而內部緊密。 ②持壓時間 金屬液充滿型腔之後,在壓力作用下使鑄件完全凝固這段時間,稱為持壓時間。持壓時間應根據鑄件壁厚和金屬液的結晶溫度范圍來 確定,通常按下表中的數據來選取: 生產中常用持壓時間(單位:秒) 壓鑄合金 鋅合金 鋁合金 鎂合金銅合金 鑄件壁厚<2.5 ㎜ 1~2 1~2 1~2 2~3 2.5 ㎜<鑄件壁厚>6 ㎜ 3~7 3~8 3~8 5~8 ③留模時間 從持壓作用結束到開模頂出鑄件的這段時間叫留模時間。留模時間不宜過長或過短,過長會使鑄件頂出困難,甚至破壞;過短則會造 成頂出變形或熱裂。留模時間是根據合金的性質、鑄件的壁厚及結構特徵 來取值的:常用留模時間(單位:秒)壓鑄合金 鋅合金 鋁合金 鎂合金 銅合金 壁厚<3 ㎜ 5~10 7~12 7~12 8~15 3 ㎜≤壁厚≥4 ㎜ 7~12 10~15 10~15 15~20 壁厚>5 ㎜ 20~25 25~30 15~25 20~30
4、溫度參數: ①澆注溫度 指金屬液澆入壓室至填充型腔時的平均溫度。過低的澆注溫
度使合金的流動性降低,成型困難;但若澆注溫度過高,則會造成產品組織晶體粗大,機械性能明顯下降,同時還會加大金屬液的吸氣傾向,使鑄 件產生氣孔缺陷。通常取值范圍如下:各種合金的澆注溫度鑄件結構特徵合金種類鋅合金鋁硅合金鋁合金鎂銅合金 鋁銅合金 鋁鎂合金普通黃銅 硅 黃 銅 鑄件壁厚小於 3mm 結構簡單 420~440 610~650 620~650 640~680 640~680 870~920 900~940 結構復雜 430~450 640~700 640~720 660~700 660~700 900~950 930~970 8 鑄件壁厚大於 3mm 結構簡單 410~430 590~630 600~640 620~660 620~660 850~900 880~920 結構復雜
420~440 610~650 620~650 640~680 640~680 870~920 900~940 ②模具溫度
在生產前對模具進行加熱,使之達到工藝要求的范圍內的最 低溫度水平,這個溫度叫模具預熱溫度;在生產過程中,模具應保持一定 的溫度,這個溫度工藝上稱為模具工作溫度,也就是常說的模具溫度。模 具溫度的取值一般為澆注溫度的三分之一,控制公差一般為±25℃。
5、其他參數: ①慢、 快壓射行程 壓鑄生產時的壓射過程由慢壓射和快壓射兩部分組成, 與之對應的工藝參數叫慢壓射行程和快壓射行程;其中對產品質量起主要 作用的是慢壓射行程和快壓射行程轉換點的位置, 以及快壓射行程的大小, 我們除了控制其速度的大小外,還需要對其行程大小進行控制和調節轉換 點的位置。 ②壓室充滿度 合金澆入量占壓室有效容積的百分比。是控制產品氣孔缺 陷的一個重要參數,合理的壓室充滿度為 40%~60%,特殊條件下放寬到 30%~70%。 ③余料厚度 也就是合金液澆入量的多少;余料厚度過小,料餅過早凝固, 壓射時的最終壓力無法傳遞到型腔內部,鑄件不能被壓實;余料厚度過大, 往往會使增壓動作無法實現(受限位開關控制) ,同樣壓不好鑄件。另外,若余料厚度變化無常,導致壓室充滿度失控,產品質量得不到保證。