A. 怎麼克服注塑件表面縮痕
解決注塑件表面縮痕可以從下面三種方法來實現。
一、模具設計上的解決措施
1.1 水路設計
合理的水路設計使得型腔表面的模溫盡可能一致。必要時,在局部壁厚較大或者散熱不好的區域加強冷卻。在筋對應的模面加強冷卻,使得表面固化層較快形成,當表面固化層較厚時,剛性較大,不容易產生縮痕。
當形成筋的動定模對應面都是鋼材時,容易產生縮痕,若在筋的下面改成陶瓷或者塑料鑲件,使得上面的固化層形成較快,剛性較大,最後固化的塑料向內吸入,上面不至於塌陷,也可以防止縮痕產生。
1.2 澆口設計
製件的澆口應設計在壁厚大的區域,或者靠近縮痕和縮孔出現的位置,以利於保壓補縮。澆口的尺寸應足夠大,減緩澆口的冷卻,使得更多的熔體能在保壓階段進去型腔中補縮。一般情況下,澆口厚度不應小於壁厚的50%,最好能達到壁厚的80%。
1.3 流道設計
優先選用圓形流道,因為圓形流道的有效截面積最大,其次是梯形流道,最好不要選用半圓形流道。流道的有效截面越大,保壓補縮的能力越強,製件越不容易出現縮痕或縮孔。此外,流道的尺寸應足夠大,減少充模阻力,給型腔提供足夠大的保壓壓力。
1.4 拉料桿設計
在三板模中常使用到拉料桿,拉料桿的設計應避免伸到流道中,造成流道的有效截面變小,充模阻力增加,不利於製件的保壓補縮。對於聚碳酸酯(PC)等流動性較差的材料,尤其需要注意拉料桿的設計,避免流道壓力損失過大引起實際保壓不足,導致製件產生縮痕或縮孔。
1.5 排氣設計
模具的排氣順暢,注塑時可以採用較高的壓力和速度,保壓補縮的效果更好,降低縮痕或縮孔產生的可能性。典型的排氣槽設計,根據材料的不同,排氣槽的深度也會有所不同,但相同的是排氣槽的長度不能過長,最好在2mm左右。
二、成型工藝上的解決措施
2.1 模具溫度
模溫對縮痕或縮孔的影響是相對的。模溫太低時,製件表層容易凝同變厚,芯層的厚度相對減小,保壓補縮的通道變窄,製件遠端得不到足夠的補縮,形成縮痕或縮孔;此外,模溫較低使得澆注系統特別是澆口容易凍結,製件得不到足夠的保壓補縮,也容易形成縮孔或縮痕。模溫太高時,模具的冷卻效率較低,冷卻緩慢,由於冷卻時間過長,導致收縮也變大,如果得不到足夠的保壓補縮也容易導致縮痕或縮孔。但相對來說,模溫較低時容易產生縮孔,模溫較高時容易產生縮痕。某項目的玩具燈零件,材料為透明PC,主體部分是1/4球形,壁厚不均,在厚度大的部分形成縮孔,將模溫從100℃提供至130℃,並採用高壓低速注塑,這樣一來縮孔就消失了。
2.2 有效保壓
有效保壓偏低,導致樹脂填補小於製件的收縮量,在模具溫度偏高時就容易形成凹痕,而在模具溫度偏低時容易形成空洞。保壓過低的主要原因如下:保壓設定值偏低、保壓時間偏短、澆口尺寸偏小、分流道偏細。
2.3 其他影響較大的工藝參數
其他對縮痕和縮孔影響較大的工藝參數還包括熔體溫度、注塑速度、V/P轉換位置、背壓和殘膠量等。熔體溫度越高,材料黏度越低,更有利於充模和保壓補縮,對防止縮痕和縮孔有利,但熔體溫度越高,相應的冷卻時間也越高;合理的注塑速度,可以在澆口凍結前有效地進行保壓補縮;V/P轉換位置一般選擇在製件填充到95%~98%左右,切換過早容易引起縮痕或縮孔;適當的背壓可以增加熔體的密實性,有利於防止縮痕或縮孔;殘膠量一般控制在5~10mm,適當的殘膠量才能保證保壓的效果。
2.4 後冷卻處理
對於一些外觀要求沒有縮痕但允許內部有縮孔的製件,可以在出模後迅速浸泡到凍水中,使得製件短時間內固化冷卻,防止縮痕的產生。這種方法對壁厚較大的產品比較有效。某項目的玩具恐龍,材料為熱塑性聚氨酯(TPU),在設計上很難避免壁厚不均和較大的壁厚,製件在模具內也很難充分冷卻,出模後製件表面容易形成縮痕。解決的辦法是製件出模後立刻裝在夾具上放入凍水中定型,使得製件表面迅速冷卻,當然這會導致製件中間產生縮孔,但不會影響到製件的外觀。
三、材料上的解決措施
3.1 結晶和無定型材料
結晶材料的收縮要大於無定型材料。因為結晶材料從熔融狀態冷卻至室溫的過程中,分子鏈有序排布形成晶體,所以結晶材料的體積收縮要大於無定型材料。因此,相對而言,結晶材料更容易產生縮痕或縮孔。某項目的碎紙機外殼,採用增強PP取代ABS,雖然材料的收縮率近似,製件在尺寸方面沒有問題,但在筋位處縮痕比ABS明顯,需要調整筋位厚度或基面厚度,或者調整流道和澆口的尺寸,加強保壓補縮。
3.2 黏度
材料的黏度越高,充模阻力越大,填充越困難,保壓補縮效果越差,因此越容易產生縮痕或縮孔。因此,要改善製件的縮痕和縮孔,提高材料的流動性是一個可行的方案。
3.3 填充物
填充物的加入有利於增加製件表層的強度,抵抗芯層的收縮應力,製件不容易產生縮痕,而傾向於產生縮孔。需要注意的是,纖維增強的材料,在平行和垂直流動方向上的收縮有較大的差別。由於玻纖取向平行於流動方向上,起到支撐作用,因此在該方向上收縮較小,而在垂直於流動方向上收縮較大。
B. 注塑製品的常見問題
1.產生凹痕 2.塑膠製品缺料 3.產生銀條痕 4.出現變形 5.出現裂紋 6.產生應力龜裂 7.出現網狀龜裂 8.白化 9.熔結痕 10.產生糊斑 等等。
提高射出壓力,延長射出保壓時間,降低料筒溫度和模具溫度,在產生凹痕的地方強製冷卻。在產生凹痕的地方補上流邊。在產生凹痕的地方的材料通邊有狹小的場所時,把這部分邊厚。應徹底避免設計製品厚度的差異。容易產生凹痕的加強筋,狹長的形狀應盡量短。提高模具溫度,加料筒溫度,提高射出壓力,在分型面加上氣體逸出槽(深度0.02~0.04mm)寬5~10mm。加大澆口,加大流邊,在每模出數多的場合,那個型腔缺料就擴大那個型腔的澆口,還有改變流邊的配置,加上氣體逸出銷,提高模具的光潔度。避免設計製品厚度的不同,在製品厚度厚的地方附加澆口,了解使用製品的場合,合適的話盡量使用流動性好的材料。對材料完全乾燥。(用高溫短時間乾燥來做效果不好,普遍是以85。C溫度乾燥4個小時)提高模具溫度,降低加熱料筒溫度,對料筒注射嘴進行保溫。使流邊變粗。避免設計製品厚度的差異,在製品厚度厚的地方附加上澆口。在模具內充分冷卻固化(延長冷卻時間記時器),提高料筒溫度,降低射出壓力。使模具冷卻均勻化。避免製品厚度的差異,在製品厚度大的地方設置澆口(1-1),因直線容易引起翹曲,做成大的R曲線,製品可逆彎曲的模具,增加頂出桿個數,增加脫模斜度。 是指注塑製品的形狀偏離了模具型腔的形狀,它是塑料製品常見的缺陷之一。隨著塑料工業的發展,人們對塑料製品的外觀和使用性能要求越來越高,翹曲變形程度作為評定產品質量的重要指標之一也越來越多地受到模具設計者的關注與重視。模具設計者希望在設計階段預測出塑料件可能產生翹曲的原因,以便加以優化設計,從而提高注塑生產的效率和質量,縮短模具設計周期,降低成本。
一、模具的結構對注塑製品翹曲變形的影響
在模具設計方面,影響塑件變形的因素主要有澆注系統、冷卻系統與頂出系統等。
1.澆注系統的設計
注塑模具澆口的位置、形式和澆口的數量將影響塑料在模具型腔內的填充狀態,從而導致塑件產生變形。
流動距離越長,由凍結層與中心流動層之間流動和補縮引起的內應力越大;反之,流動距離越短,從澆口到製件流動末端的流動時間越短,充模時凍結層厚度減薄,內應力降低,翹曲變形也會因此大為減少。圖1為大型平板形塑件,如果只使用一個中心澆口或一個側澆口,因直徑方向上的收縮率大於圓周方向上的收縮率,成型後的塑件會產生扭曲變形;若改用多個點澆口或薄膜型澆口,則可有效地防止翹曲變形。
當採用點澆進行成型時,同樣由於塑料收縮的異向性,澆口的位置、數量都對塑件的變形程度有很大的影響。
由於採用的是30%玻璃纖維增強PA6,而得到的是重量為4.95kg的大型注塑件,因此沿四周壁流動方向上設有許多加強肋,這樣,對各個澆口都能獲得充分的平衡。實驗結果表明,按圖f設置澆口具有較好的效果。但並非澆口數目越多越好。
另外,多澆口的使用還能使塑料的流動比(L/t)縮短,從而使模腔內物料密度更趨均勻,收縮更均勻。同時,整個塑件能在較小的注塑壓力下充滿。而較小的注射壓力可減少塑料的分子取向傾向,降低其內應力,因而可減少塑件的變形。
2.冷卻系統的設計
在注射過程中,塑件冷卻速度的不均勻也將形成塑件收縮的不均勻,這種收縮差別導致彎曲力矩的產生而使塑件發生翹曲。
如果在注射成型平板形塑件時所用的模具型腔、型芯的溫度相差過大,如圖3所示,由於貼近冷模腔面的熔體很快冷卻下來,而貼近熱模腔面的料層則會繼續收縮,收縮的不均勻將使塑件翹曲。
除了考慮塑件內外表面的溫度趨於平衡外,還應考慮塑件各側的溫度一致,即模具冷卻時要盡量保持型腔、型芯各處溫度均勻一致,使塑件各處的冷卻速度均衡,從而使各處的收縮更趨均勻,有效地防止變形的產生。因此,模具上冷卻水孔的布置至關重要。在管壁至型腔表面距離確定後,應盡可能使冷卻水孔之間的距離小,才能保證型腔壁的溫度均勻一致。同時,由於冷卻介質的溫度隨冷卻水道長度的增加而上升,使模具的型腔、型芯沿水道產生溫差。因此,要求每個冷卻迴路的水道長度小於2m。在大型模具中應設置數條冷卻迴路,一條迴路的進口位於另一條迴路的出口附近。對於長條形塑件,應採用如圖4所示的冷卻迴路,減少冷卻迴路的長度,即減少模具的溫差,從而保證塑件均勻冷卻。
3.頂出系統的設計
頂出系統的設計也直接影響塑件的變形。如果頂出系統布置不平衡,將造成頂出力的不平衡而使塑件變形。因此,在設計頂出系統時應力求與脫模阻力相平衡。另外,頂出桿的截面積不能太小,以防塑件單位面積受力過大(尤其在脫模溫度太高時)而使塑件產生變形。頂桿的布置應盡量靠近脫模阻力大的部位。在不影響塑件質量(包括使用要求、尺寸精度與外觀等)的前提下,應盡可能多設頂桿以減少塑件的總體變形。
用軟質塑料來生產大型深腔薄壁的塑件時,由於脫模阻力較大,而材料又較軟,如果完全採用單一的機械式頂出方式,將使塑件產生變形,甚至頂穿或產生折疊而造成塑件報廢,如改用多元件聯合或氣(液)壓與機械式頂出相結合的方式效果會更好。
二、塑化階段對製品翹曲變形的影響
塑化階段即玻璃態的料粒轉化為粘流態,提供充模所需的熔體。在這個過程中,聚合物的溫度在軸向、徑向(相對螺桿而言)的溫差會使塑料產生應力;另外,注射機的注射壓力、速率等參數會極大地影響充填時分子的取向程度,進而引起翹曲變形。
三、充模及冷卻階段對製品翹曲變形的影響
熔融態的塑料在注射壓力的作用下,充入模具型腔並在型腔內冷卻、凝固的過程是注射成型的關鍵環節。在這個過程中,溫度、壓力、速度三者相互耦合作用,對塑件的質量和生產效率均有極大的影響。較高的壓力和流速會產生高剪切速率,從而引起平行於流動方向和垂直於流動方向的分子取向的差異,同時產生「凍結效應」。「凍結效應」將產生凍結應力,形成塑件的內應力。溫度對翹曲變形的影響體現在以下幾個方面。
(1)塑件上、下表面溫差會引起熱應力和熱變形;
(2)塑件不同區域之間的溫度差將引起不同區域間的不均勻收縮;
(3)不同的溫度狀態會影響塑料件的收縮率。
四、脫模階段對製品翹曲變形的影響
塑件在脫離型腔並冷卻至室溫的過程中多為玻璃態聚合物。脫模力不平衡、推出機構運動不平穩或脫模頂出面積不當很容易使製品變形。同時,在充模和冷卻階段凍結在塑件內的應力由於失去外界的約束,將會以變形的形式釋放出來,從而導致翹曲變形。
五、注塑製品的收縮對翹曲變形的影響
注塑製品翹曲變形的直接原因在於塑件的不均勻收縮。如果在模具設計階段不考慮填充過程中收縮的影響,則製品的幾何形狀會與設計要求相差很大,嚴重的變形會致使製品報廢。除填充階段會引起變形外,模具上下壁面的溫度差也將引起塑件上下表面收縮的差異,從而產生翹曲變形。
對翹曲分析而言,收縮本身並不重要,重要的是收縮上的差異。在注塑成型過程中,熔融塑料在注射充模階段由於聚合物分子沿流動方向的排列使塑料在流動方向上的收縮率比垂直方向的收縮率大,而使注塑件產生翹曲變形。一般均勻收縮只引起塑料件體積上的變化,只有不均勻收縮才會引起翹曲變形。結晶型塑料在流動方向與垂直方向上的收縮率之差較非結晶型塑料大,而且其收縮率也較非結晶型塑料大,結晶型塑料大的收縮率與其收縮的異向性疊加後導致結晶型塑料件翹曲變形的傾向較非結晶型塑料大得多。
六、殘余熱應力對製品翹曲變形的影響
在注射成型過程中,殘余熱應力是引起翹曲變形的一個重要因素,而且對注塑製品的質量有較大的影響。由於殘余熱應力對製品翹曲變形的影響非常復雜,模具設計者可以藉助於注塑CAE軟體進行分析和預測。
影響注塑製品翹曲變形的因素有很多,模具的結構、塑料材料的熱物理性能以及注射成型過程的條件和參數均對製品的翹曲變形有不同程度的影響。因此,對注塑製品翹曲變形機理的研究必須綜合考慮整個成型過程和材料性能等多方面的因素。 熔融塑料在型腔中由於遇到嵌件孔洞、流速不連貫的區域、充模料流中斷的區域而以多股形式匯合時,因不能完全熔合而產生線性的熔接縫。此外在發生澆口噴射充模也會生成熔接縫,熔接縫處的強度等性能很差。主要原因分析如下:
1.加工方面:
(1)注射壓力、速度過低,料筒溫度、模溫過低,造成進入模具的融料過早冷卻而出現熔接縫。
(2)注射壓力、速度過高時,會出現噴射而出現熔接縫。
(3)應增加轉速,增加背壓壓力使塑料粘度下降,密度增加。
(4)塑料要乾燥好,再生料應少用,脫模劑用量太多或質量不好也會出現熔接縫。
(5)降低鎖模力,方便排氣。
2.模具方面:
(1)同一型腔澆口過多,應減少澆口或對稱設置,或盡量靠近熔接縫設置。
(2)熔接縫處排氣不良,應開設排氣系統。
(3)澆道過大、澆注系統尺寸不當,澆口開設盡量避免熔體在嵌件孔洞周圍流動,或盡量少用嵌件。
(4)壁厚變化過大,或壁厚過薄,應使製件的壁厚均勻。
(5)必要時應在熔接縫處開設熔合井使熔接縫脫離製件。
3.塑料方面:
(1)對流動性差或熱敏性的塑料應適當添加潤滑劑及穩定劑。
(2)塑料含的雜質多,必要時要換質量好的塑料。
C. 能給我介紹一下注塑成型原理及注塑過程么
注塑成型原理及注塑過程介紹 :注(射模)塑(或稱注射成型)是塑料先在注塑機的加熱料筒中受熱熔融,而後由柱塞或往復式螺桿將熔體推擠到閉合模具的模腔中成型的一種方法。它不僅可在高生產率下製得高精度,高質量的製品,而且可加工的塑料品種多和用途廣,因此注塑是塑料加工中重要成型方法之一。 A注塑機的基本功能:注塑是通過注塑機來實現的。注塑機的基本功能是:1。加熱塑料,使其達到熔融狀態;2。對熔體施加高壓,使其射出而充滿模腔。 B注塑過程/設備:熱塑性塑料的注塑操作一般是由塑煉。充模。壓實和冷卻等所組成的。所用設備是由注塑機。注塑模具及輔助設備(如物料乾燥等)組成的。 C注射裝置:注射裝置在注塑機過程中主要實現塑煉。計量。注射和保壓補縮等功能。螺桿式注射裝置用得最多,它是將螺桿塑煉和注射用柱塞統一成為一根螺桿而成的。實質上,應稱為同軸往復復桿式注射裝置。它在工作時,料斗內的塑料靠自身的重量落入加熱料筒內,通過螺桿的轉動,塑料沿螺槽向前移動,這時物料受到加熱料筒外部加熱器加熱,同時內部還有剪切產生的熱,溫度上升在成為熔融狀態。隨著加熱料筒前端材料的貯存,這些材料產生的反作用力(背壓)將螺桿向後推,利用限位開關限制其後退量,當後退到一定位置時,使螺桿停止轉動,由此決定(計量)一次的注射量。 模內的材料冷卻後,製品一經取出,就再次合上模具,進入注射工序,這時注射裝置的液壓缸(注射油缸)向螺桿施力,在高壓下螺桿成為射料桿,將其前端的熔體從噴嘴注入模具內。 螺桿式注射裝置是由螺桿,料筒,噴嘴和驅動裝置等部分構成的。注射用螺桿一般分加料,壓縮,和計量三段,壓縮比為2~3,長徑比為16~18。當熔體從噴嘴射出去時,由於加壓熔體上的注射力怕反作用力,一部分熔體會通過螺桿的螺槽逆流到後部。為防止這種現象,在螺桿的端部裝上止逆閥。對於硬聚氯乙烯,則採用錐形螺桿頭。 料筒是裝納螺桿的部分,它是由耐熱。耐高壓的鋼材制的。在料筒的外圍安裝數組電熱圈以加熱筒內的物料,用熱電偶控制溫度,使塑料具有適宜的溫度。 噴嘴是聯接料筒和模具的過渡部分,其上裝有獨立的加熱圈,因為它是直接影響塑料熔融狀的重要部分。一般注塑多採用敞開噴嘴對於低粘度聚酉先胺。則採用針閥式噴嘴。 驅動螺桿的轉動可用電動機或液壓馬達,螺桿的往復運動是藉助液壓力實現的。 通過注射裝置表徵注塑機的參數有:注射量是指注塑機每次注入模內的最大量,可用注射聚苯乙烯熔體的質量表示,或用注射熔體的容積表示;注射壓力是指在注射時施加於料筒截面上的壓力;注射速度則指注射時螺桿的移動速度。 D合模裝置:合模裝置除了完成模具的開合動作之外,其主要任務是以足夠的力抗沖注射到模具內的熔體的高壓力,使模具鎖緊。不讓它張開。 合模機構無論是機械還是液壓或液壓機械式,應保證模具開合靈活,准時,迅速而安全。從工藝上要求,開合模具確要有緩沖作用,模板的運行速度應在合模時先快後慢,而在開模時應先慢再慢。藉以防止損壞模具及製件。 在成型過程中為了保持模具閉合而施加到模具上的力稱為合模力,其值應大於模腔壓力與製件投影面積(包括分流道)之積。模腔內的平均壓力一般在20~45Mpa之間。 由於合模力慎線反映出注塑機成型製品面積的大小,所以常用注塑機的最大合模力來表示注塑機的規格,但合模力與注射量之間也存在一個大致的比例關系。可是,合模力表示法並不能直接反映注射製品體積的大小,使用起來還不方便。要國際上許多廠家採用合模力/當量注射容積表示注塑機的規格,對於注射容積,為了對於不同機器都有一個共同的比較標准,特規定注射壓力屢100Mpa時的理論注射容積,即當量注射容積=理論注射容積*額定注射壓力/100Mpa。 E控制系統:注塑機液壓控制系統主要分常規液壓控制系統,伺服控制系統和比例控制系統。由於液壓系統復雜,這里以比例閥油路系統為例說明梗概。這一系統的特點是:在油路系統中有控制流量的和壓力怕比例元(電磁比例流量閥或電磁比例流量換向閥,電磁比例壓力閥)。 通過外邊給定電的模擬信號和磁力的比例作用,來控制閥芯的開口量或閥芯的彈簧力對系統流量或壓力進行控制,從而達到注射速度,螺桿速度,啟閉速度與注射壓力。保壓壓力。螺桿轉矩。注射座推力。頂出力。模具保護壓力實行單級,多級控制或無級控制。
D. 注塑成型後為什麼縮水。
你用什麼料
注塑件成形後出現縮水
由於體積收縮,壁厚處的表面原料被拉入,因化時,在成品表面出現凹陷痕跡。縮水是成品表面所發生的不良現象中最多的,大多發生於壁厚處,一般如果壓力下降則收縮機率就會較大。
1. 模具設計時,就要考慮去除不必要的厚度,一般必須盡可能使成型品壁厚均勻;
2. 如果注塑件成型溫度過高,則壁厚處,筋骨處或凸起處反面容易出現縮水,這是因為容易冷卻的地方先固化,難以冷卻的部分的原料會朝那移動,盡量將縮水控制在不影響成品品質的地方。
3. 一般降低成型溫度,模具溫度來減少原料的收縮,但勢必增加壓力。
縮水原因
成型機 射出時間短(GATE未固化時,保壓就會結束)
保壓低
計量不足
保壓位置轉換太快
射出壓力低
射出速度慢
冷卻時間短
原料溫度高
逆止閥破損
灌嘴孔徑變形(壓力損失)或溢料
模具 模具溫度高
模具冷卻不均勻(模具部分高)
GATE小
模具結構設計
頂針不適當
原料 原料收縮率大
塑膠製件縮水產生的原因和對策!
對策, 塑膠對策, 塑膠
「凹痕」是由於澆口封口後或者缺料注射引起的局部內收縮造成的。注塑製品表面產生的凹陷或者微陷是注塑成型過程中的一個老問題。
凹痕一般是由於塑料製品壁厚增加引起製品收縮率局部增加而產生的,它可能出現在外部尖角附近或者壁厚突變處,如凸起、加強筋或者支座的背後,有時也會出現在一些不常見的部位。產生凹痕的根本原因是材料的熱脹冷縮,因為熱塑性塑料的熱膨脹系數相當高。膨脹和收縮的程度取決於許多因素,其中塑料的性能,最大、最小溫度范圍以及模腔保壓壓力是最重要的因素。還有注塑件的尺寸和形狀,以及冷卻速度和均勻性等也是影響因素。8 P! p. S/ @) X
塑料材料模塑過程中膨脹和收縮量的大小與所加工塑料的熱膨脹系數有關,模塑過程的熱膨脹系數稱為「模塑收縮」。隨著模塑件冷卻收縮,模塑件與模腔冷卻表面失去緊密接觸,這時冷卻效率下降,模塑件繼續冷卻後,模塑件不斷收縮,收縮量取決於各種因素的綜合作用。
$ [, x/ u H& E1 T3 B% J 模塑件上的尖角冷卻最快,比其它部件更早硬化,接近模塑件中心處的厚的部分離型腔冷卻面最遠,成為模塑件上最後釋放熱量的部分,邊角處的材料固化後,隨著接近製件中心處的熔體冷卻,模塑件仍會繼續收縮,尖角之間的平面只能得到單側冷卻,其強度沒有尖角處材料的強度高。製件中心處塑料材料的冷卻收縮,將部分冷卻的與冷卻程度較大的尖角間相對較弱的表面向內拉。這樣,在注塑件表面上產生了凹痕。6 _3 ~! J. m* j) ]
凹痕的存在說明此處的模塑收縮率高於其周邊部位的收縮。如果模塑件在一處的收縮高於另一處,那麼模塑件產生翹曲的原因。模內殘余應力會降低模塑件的沖擊強度和耐溫性能。有些情況下,調整工藝條件可以避免凹痕的產生。例如,在模塑件的保壓過程中,向模腔額外注入塑料材料,以補償模塑收縮。大多數情況下,澆口比製件其它部分薄得多,在模塑件仍然很熱而且持續收縮時,小的澆口已經固化,固化後,保壓對型腔內的模塑件就不起作用。$ L9 u7 [0 B# ~4 _7 y
半結晶塑料材料的模塑件收縮率高,這使得凹痕問題更嚴重;非結晶性材料的模塑收縮較低,會最大程度地減小凹痕;填充和維持增強的材料,其收縮率更低,產生凹痕的可能性更小。
E. 有關注塑模具幾個基本概念
澆口:也稱為進料口。是分流道和模穴間的狹小通口,也是最為短小肉薄的部分。作用在於利用緊縮流動面而使塑料達到加速的效果,高剪切率可使塑料流動性良好(由於塑料的切變致稀特性);粘滯加熱的升溫效果也有提升料溫降低粘度的作用。在成型完畢後澆口最先固化封口,有防止塑料迴流以及避免模穴壓力下降過快使成型品產生收縮凹陷的功能。成型後則方便剪除以分離流道系統及塑件。
水口是指模架的類型(大水口 細水口和簡化細水口)或是指進料澆口(大水口和細水口)
主流道:也稱作主澆道、注道(Sprue)或豎澆道,是指自射出機射嘴與模具主流道襯套接觸的部分起算,至分流道為止的流道。此部分是熔融塑料進入模具後最先流經的部分。
分流道:也稱作分澆道或次澆道,隨模具設計可再區分為第一分流道(FirstRunner)以及第二分流道(SecondaryRunner)。分流道是主流道及澆口間的過渡區域,能使熔融塑料的流向獲得平緩轉換;對於多模穴模具同時具有均勻分配塑料到各模穴的功能。
內澆道是液態金屬進入鑄型型腔的最後一段通道,主要作用:控制金屬液充填鑄型的速度和方向,調節鑄型各部分的溫度和鑄件的凝固順序,並對鑄件有一定的補縮作用。可以有單個也可以設計多個內澆道。
冷料井:也稱作冷料穴。目的在於儲存補集充填初始階段較冷的塑料波前,防止冷料直接進入模穴影響充填品質或堵塞澆口,冷料井通常設置在主流道末端,當分流道長度較長時,在末端也應開設冷料井。
F. 注塑過程——注射充模、保壓過程具體是什麼概念
注射充模、保壓過程
注射充模是把計量室中塑化好的熔體注入模具型腔的過程,
注射充模分為兩個階段:注射階段和保壓階段。注射階段指從螺
桿推進熔體開始,到熔體充滿型腔為止;保壓階段指從熔體充滿
型腔開始到澆口封凍為止。保壓階段可分為保壓補縮流動階段和
保壓切換倒流階段。
充模過程是比較復雜而又非常重要的階段,是高溫熔體向相
對較低溫的模腔中流動的階段,是決定聚合物定向和結晶的階段,
直接影響產品質量。
保壓階段主要是壓力表現,在保壓壓力作用下,模腔中的熔
體得到冷卻補縮和進一步的壓縮增密。保壓補縮流動階段是當噴
嘴壓力(注射壓力)達到最大值時,模腔壓力並沒有達到最大值,
也就是說,模腔壓力極值要滯後於注射壓力一段時間,還須經過
緻密流動過程,在很短的時間內,熔體要充滿型腔各部縫隙,且
本身要受到壓縮。在保壓切換倒流階段,熔體仍有流動,稱保壓
流動,這時的壓力稱保壓壓力,又稱二次注射壓力,保壓流動和
充模時的壓實流動都是在高壓下的熔體緻密流動,這時的流動特
點是熔體流速很小,不起主導作用,而壓力卻是影響過程的主要
因素,在保壓階段,模內壓力和比容不斷地變化,產生保壓流動
的原因是因為模腔壁附近的熔體受冷後收縮,熔體比容發生變化,
這樣,在澆口封凍之前,熔體在注射壓力作用下繼續向模腔補允
熔體,產生補縮的保壓流動。
G. 注塑加工模具設計中應考慮哪些問題
注塑加工模具設計中應考慮的問題,歸納起來大致有以下幾個方面:
1、了解塑料熔體的流動行為,考慮塑料在流道和型腔各處流動的阻力、流動速度,校驗最大的流動長度。根據塑料在模具內流動方向(即充模順序),考慮塑料在模具內重新熔合和模腔內原有空氣導出的問題。
2、考慮冷卻過程中塑料收縮及補縮問題。
3、通過模具設計來控制塑料在模具內結晶、取向和改善塑料製品的內應力。
4、澆口和分型面的選擇問題。
5、製件的橫向分型抽芯及頂出的問題。
6、模具的冷卻或加熱問題。
7、華氏模具鋼表示,模具有關尺寸與所用注射機的關系,包括與注射機的最大注射量、鎖模力、裝模部分的尺寸等的關系。
8、模具總體結構和零件形狀要簡單合理,注塑加工模具應具有適當的精度、表面粗糙度、強度和剛度,易於製造和裝配的。
H. 塑料模具的工作原理
塑料首先在注射機底加熱料筒內受熱熔融,然後在注射機的螺桿或柱塞推動下,經注射機噴嘴和模具的澆注系統進入模具型腔,塑料冷卻硬化成型,脫模得到製品。其結構通常由成型部件、澆注系統、導向部件、推出機構、調溫系統、排氣系統、支撐部件等部分組成。製造材料通常採用塑料模具鋼模塊,常用的材質主要為碳素結構鋼、碳素工具鋼、合金工具鋼,高速鋼等。注射成型加工方式通常只適用於熱塑料品的製品生產,用注射成型工藝生產的塑料製品十分廣泛,從生活日用品到各類復雜的機械,電器、交通工具零件等都是用注射模具成型的,它是塑料製品生產中應用最廣的一種加工方法。
I. 注塑模具澆注系統由哪些部分組成
一、澆注系統的定義 澆注系統是為填充型腔和冒口而開設於鑄型中的一系列通道。通常由:澆口杯、直澆道、橫澆道和內澆道組成。 二、澆注系統的作用 1、保證熔融金屬平穩均勻、連續地充滿型腔。 2、阻止熔渣、氣體和沙粒隨熔融金屬進入型腔。 3、控制鑄件的凝固順序。 4、供給鑄件冷凝收縮是所需補充的金屬溶液(補縮)。 三、注射模澆注系統組成 主要由主流道、分流道、澆口及冷料穴組成。 注塑模具的設計是關系塑件質量優劣的重頭戲,注塑模具設計時應遵循以下原則:必須了解塑料的工藝物性。排氣良好。防止型芯和塑料變形。減少熔體流程及塑料耗量。修整方便,並保證塑件的外觀質量。要求熱量與壓力損失小。 注塑模具的澆注系統,就是指注塑模具中由注射機噴嘴到型腔之間的進料通道。它的作用是將熔體平穩的引入注塑模具型腔,並在填充過程中將壓力傳遞到型腔的各 個部分,以獲得組織緻密,外形清晰、表面光潔和尺寸穩定的塑件。可以說,注塑模具澆注系統設計的合理與否,直接關系著注射模型的效率和質量。
J. 注塑產品縮水怎麼處理
你好
1、 模具溫度太低不利於解決縮水難題
硬膠件縮水問題(表面縮凹和內部縮孔)都是因為熔膠冷卻收縮時,集中收縮留下的空間得不到來自入水口方向的熔膠充分補充而造成的缺陷。所以,不利於補縮的因素都會影響到我們去解決縮水的問題。
多數人都知道,模具溫度太高容易產生縮水問題,通常都喜歡降低模具溫度來解決問題。但是有時如果模具溫度太低,也不利於解決縮水的問題,這是很多人不太注意到的。
模具溫度太低,熔膠冷卻太快,離入水口處較遠的稍厚膠位,由於中間部份冷卻太快而被封死了補縮的通道,遠處便得不到熔膠的充分補充,致使縮水問題更難解決,厚大注塑件的縮水問題尤為突出。
再者, 模具溫度太低,也不利於增加註塑件的整體收縮,使集中收縮量增加,縮水問題更加嚴重明顯。
因此,在解決比較難的縮水問題時,要記得檢查一下模具溫度會有好處。有經驗的技術人員通常會用手去觸摸一下模具型腔表面,看是否太冰涼或是太煬手了。每種原料都有它合適的模具溫度。例如PC料的縮孔問題,如果邿嵊妥⑺埽s孔會得到較好的改善,但模溫若太高了,注塑件又會出現縮水的問題。
2、熔膠溫度過低也不利於解決縮水難題
同樣是大多數人都知道,熔膠溫度太高,注塑件容易產生縮水問題,適當降低溫度10~20℃,縮水問題就會得到改善。
但如果注塑件在某處比較厚大的部位出現縮水時,再把熔膠溫度調得過低,比如接近注塑熔膠溫度的下限時,反而不利於解決縮水問題 ,甚至還會更加嚴重 ,注塑件越厚情況就越明顯。
原因和模溫太低相似,熔膠冷凝太快,從縮水位置到水口之間無法形成較大的有利於補縮的溫度差,縮水位置的補縮通道會過早被封死,問題的解決就變得更加困難了。由此也可看出,熔膠冷凝速度越快越不利於解決縮水問題, PC料就是一個冷凝相當快的原料,因此它的縮孔問題可以說是個注塑的大難題。
此外,熔膠溫度太低也一樣不利於增加整體收縮的量,導致集中收縮的量增加,從而加劇了縮水的問題。
因此,在調機解決較難的縮水問題時,也應檢查一下熔膠溫度是否調得過低了極為重要,除了看溫度表,用空射的方法檢查一下熔膠的溫度和流動性比較直觀。
二、射膠速度過快不有利於解決縮水嚴重的問題
解決縮水問題,首先會想到的是升高射膠壓力和延長射膠時間。但如果射膠速度已調得很快,就不利於解決縮水問題了。因此有時縮水難以消除時,應配合降低射膠速度來解決。
降低射膠速度,可使走在前面的熔膠與入水口之間形成較大的溫度差,因而有利於熔膠由遠至近順序凝固和補縮,同時也有利於距水口較遠的縮水位置獲得較高壓力補充,對問題的解決會有很大的幫助。
由於降低射膠速度,走在前面的熔膠溫度較低,速度又已放慢,注塑件便不易產生批鋒,射膠壓力和時間就可以再升高和放長一些,這樣還更有利於解決縮水嚴重的問題。
此外,如果再採用速度更慢、壓力更高、時間更長的最後一級末端充型和逐級減慢並加壓的保壓方式,效果將會更加明顯。因此當無法一開始便採用較慢的速度射膠時,從射膠後期開始採用此法也是個很好的補救辦法。
不過要值得提醒的是,充型實在太慢了反而又會不利於解決縮水的問題。因為等到充滿型腔的時候,熔膠都已經完全冷凍,就像熔膠溫度太低一樣,根本就沒有能力再對遠處的縮水進行補縮了。
希望對你有幫助,望採納