1. 金属焊接工艺~
焊接工艺
金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类。
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
焊接时形成的连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时会受到焊接热作用,而发生组织和性能变化,这一区域被称为热影响区。焊接时因工件材料焊接材料、焊接电流等不同,焊后在焊缝和热影响区可能产生过热、脆化、淬硬或软化现象,也使焊件性能下降,恶化焊接性。这就需要调整焊接条件,焊前对焊件接口处预热、焊时保温和焊后热处理可以改善焊件的焊接质量。
另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。
现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。
对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。
厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。
搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。
采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。
角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。
焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。
在近代的金属加工中,焊接比铸造、锻压工艺发展较晚,但发展速度很快。焊接结构的重量约占钢材产量的45%,铝和铝合金焊接结构的比重也不断增加。
未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。
另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。
(塑料)焊接 采用加热和加压或其他方法使热塑性塑料制品的两个或多个表面熔合成为一个整体的方法。
2. 怎样进行焊前预热
焊前预热:
焊接开始前,对焊件的全部(或局部)进行加热的工艺,叫预热。预热的主要目的是降低焊接接头的冷却速度,使焊后能缓慢冷却,防止产生焊接裂纹,特别是冷裂纹。强度级别较高,具有淬硬倾向的低合金结构钢,导热性特别良好的有色金属,厚度较大的焊件焊前往往需要采取预热措施。
正确选择适当的预热温度,是保证预热效果的关键。对于低合金结构钢,过高的预热温度会导致焊缝及热影响区晶粒粗大、力学性能不稳定,热影响区冲击韧度急剧下降。
有时还会在焊缝中出现大量气孔。过高的预热温度还要增加设备投资及恶化焊工的操作条件。所以,应该在防止焊接裂纹的条件下,选择较低的预热温度。
焊前预热就是焊前将焊件局部和整体进行适当加热的工艺措施。其目的是减小焊接接头的冷却速度,避免产生淬硬组织和减小焊接应力与变形,它是防止产生焊接裂纹的有效方法。
焊前预热的方法主要包括火焰加热、加热炉加热和远红外加热。预热时,应采用表面接触式温度计在待焊区域两侧30~50mm范围内测量温度。
3. 管道焊接前为什么进行消磁和加热
1。钢管加工完成后都有一定的剩磁,如果不去磁,磁场会使焊接电弧偏移,形成专磁偏吹,影响焊属接质量;
2。目前国内使用的管道钢多为X70以上强度等级的高强钢,如不预热就焊接,在焊缝冷却后会形成裂纹,将造成不焊口合格,过不了检验(石油天然气长输管道焊口要做100%无损探伤的)。
4. 焊接时什么是加热减应区法
1加热减应区法的原理
加热减应区法,是在焊件上选定除焊补处以外的 一处或几处部位进行焊前、焊中或焊后的适当加热,使 该部位与焊补区焊接时同时作同样的伸长,冷却时作 同样的收缩,以减小接头焊接应力的一种工艺方法。 所选定的加热部位称为加热减应区。加热减应法,常 配合氧一乙炔气焊或电弧焊进行。
加热减应区法的实质是根据焊接内应力产生的规 律,利用金属热胀冷缩的性质,通过加热减应区使焊缝 及其附近因加热膨胀受阻而产生的压缩塑性变形减 少,从而达到降低焊接拉应力、防止裂纹的目的。
2加热减应区选择的原则
(1)加热减应区应选择能够阻碍焊补区膨胀及收 缩的部位。当该部位加热或冷却时,可使焊缝部位有 膨胀及收缩的可能,即焊前加热此区域,能使焊口扩 张,焊后加热此区域,能使之与焊缝一起收缩。
(2)加热减应区的主变形方向应与焊口开闭方向 一致,减应区的最佳位置是能使焊口获得合适的横向 张开位移。生产实际中,我们可以这样试着找一找,如 果在某一部位加热,裂纹能扩张开一定的缝隙,说明加 热这个区域能够使焊缝自由伸缩。
(3)加热减应区应选在拘束度小,强度高且与其他部位联系不多的部位。一般构件边缘部位(如边、 角、棱)拘束较小、易变形,加强肋、凸台等部位强度较 高,不容易拉裂,减应区应尽量选定这些部位。
(4)加热减应区的变形应对其他部位的影响较 小,不会因减应区膨胀与收缩将其他部位拉裂。
(5)加热减应区一般顺裂纹方向或平行于裂纹方 向去选择阻碍焊缝收缩的部位。
3加热减应区法的工艺
3.1加热温度
减应区的加热温度是能否减应的关键。加热温度 与母材材质(如塑性、强度等)、构件刚性及缺陷位置等 因素有关。铸铁焊补时加热温度一般控制在600~ 700℃。
3.2加热时间
(1)焊前加热。焊前先对减应区加热,使热量渐 渐传到待焊部位,相当对焊补区起预热作用。铸铁焊 补时,当减应区加热到600~700℃,焊补区受热影响 温度达到400℃左右时,对焊补区进行焊补。
(2)焊后加热。焊前不对减应区加热,焊后才对 减应区加热。如铸铁焊补时可加热到650~700℃,目 的是通过焊后对减应区的加热,将焊缝中的应力引向 减应区,利用减应区的塑性变形来减少焊补区的收缩。 (3)联合加热。焊前加热加上焊后加热。铸铁焊 补时,焊前将减应区加热到400~500℃时开始焊补。 焊后再对减应区加热,使减应区保持在600~700℃之 间,直到焊缝冷却到300~400℃为止。
3.3加热方式
(1)线状加热。火焰沿直线方向移动或同时作横 向摆动,形成一个加热带状的减应区。此法多用于构 件刚性较大的情况。
(2)三角形加热。减应加热区呈三角形状的加 热。由于加热面积较大,因而收缩量也较大,减应效果 好,是目前最常用的方法,常作为工件边缘上的减应区 加热,须注意的是,要注意三角形加热区方向,其底边 应位于工件的边缘。
(3)带状加热。对工件焊补所在表面进行的带状 加热,可使带状加热区两边的部分在没有约束的情况 下能自由伸缩。这种带状减应区加热适合于缺陷位于 焊件中部等状况,如柱体的焊补等。
5. 怎样进行焊前预热
焊前预热:
焊接开始前,对焊件的全部(或局部)进行加热的工艺,叫预热。预热的主要目的是降低焊接接头的冷却速度,使焊后能缓慢冷却,防止产生焊接裂纹,特别是冷裂纹。强度级别较高,具有淬硬倾向的低合金结构钢,导热性特别良好的有色金属,厚度较大的焊件焊前往往需要采取预热措施。
正确选择适当的预热温度,是保证预热效果的关键。对于低合金结构钢,过高的预热温度会导致焊缝及热影响区晶粒粗大、力学性能不稳定,热影响区冲击韧度急剧下降。
有时还会在焊缝中出现大量气孔。过高的预热温度还要增加设备投资及恶化焊工的操作条件。所以,应该在防止焊接裂纹的条件下,选择较低的预热温度。
焊前预热就是焊前将焊件局部和整体进行适当加热的工艺措施。其目的是减小焊接接头的冷却速度,避免产生淬硬组织和减小焊接应力与变形,它是防止产生焊接裂纹的有效方法。
焊前预热的方法主要包括火焰加热、加热炉加热和远红外加热。预热时,应采用表面接触式温度计在待焊区域两侧30~50mm范围内测量温度。
6. 焊接金属有哪几种方式
金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类.
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
7. 金属焊接是指利用局部的加热,使用材料
金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。
工艺焊接性:是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。
使用焊接性:是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。
金属材料焊接性能的影响因素
1、材料因素
材料包括母材和焊接材料。在相同的焊接条件下,决定母材焊接性的主要因素是它本身的物理性能和化学组成。
物理性能方面:如金属的熔点、热导率、线膨胀系数、密度、热容量等因素,都对热循环、熔化、结晶、相变等过程产生影响,从而影响焊接性。不锈钢等热导率低的材料,焊接时温度梯度大,残余应力高,变形大,。而且由于高温停留时间长,热影响区晶粒长大,对接头性能不利。奥氏体不锈钢线膨胀系数大、接头的变形和应力较为严重。
化学组成方面,其中影响最大的是碳元素,也就是说金属含碳量的多少决定了它的可焊性。钢中的其他合金元素大部分也不利于焊接,但其影响程度一般都比碳小得多。钢中含碳量增加,淬硬倾向就增大,塑性则下降,容易产生焊接裂纹。通常,把金属材料在焊接时产生裂纹的敏感性及焊接接头区力学性能的变化作为评价材料可焊性的主要指标。所以含碳量越高,可焊性越差。含碳量小于0.25%的低碳钢和低合金钢,塑性和冲击韧性优良,焊后的焊接接头塑性和冲击韧性也很好。焊接时不需要预热和焊后热处理,焊接过程容易控制,因此具有良好的焊接性。
此外,钢材的冶炼轧制状态、热处理状态、组织状态等,在不同程度上都对焊接性发生影响。通过精炼提纯或细化晶粒和控轧工艺等手段,来改善钢材的焊接性。
焊接材料直接参与焊接过程一系列化学冶金反应,决定着焊缝金属的成分、组织、性能及缺陷的形成。如果选择焊接材料不当,与母材不匹配,不仅不能获得满足使用要求的接头,还会引进裂纹等缺陷的产生和组织性能的变化。因此,正确选用焊接材料是保证获得优质焊接接头的重要因素。
2、工艺因素
工艺因素包括焊接方法、焊接工艺参数、焊接顺序、预热、后热及焊后热处理等。焊接方法对焊接性影响很大,主要表现在热源特性和保护条件两个方面。
不同的焊接方法其热源在功率、能量密度、最高加热温度等方面有很大差别。金属在不同热源下焊接,将显示出不同的焊接性能。如电渣焊功率很大,但能量密度很低,最高加热温度也不高,焊接时加热缓慢,高温停留时间长,使得热影响区晶粒粗大,冲击韧性显著降低,必须经正火处理才能改善。与此相反,电子束焊、激光焊等方法,功率不大,但能量密度很高,加热迅速。高温停留时间短,热影响区很窄,没有晶粒长大的危险。
调整焊接工艺参数,采取预热、后热、多层焊和控制层间温度等其它工艺措施,可以调节和控制焊接热循环,从而可改变金属的焊接性。如采取焊前预热或焊后热处理等措施,则完全可能获得没有裂纹缺陷,满足使用性能要求的焊接接头。
3、结构因素
主要是指焊接结构和焊接接头的设计形式,如结构形状、尺寸、厚度、接头坡口形式、焊缝布置及其截面形状等因素对焊接性的影响。其影响主要表现在热的传递和力的状态方面。不同板厚、不同接头形式或坡口形状其传热速度方向和传热速度不一样,从而对熔池结晶方向和晶粒成长发生影响。结构的开关、板厚和焊缝的布置等,决定接头的刚度和拘束度,对接头的应力状态产生影响。不良的结晶形态,严重的应力集中和过大的焊接应力等是形成焊接裂纹的基本条件。设计中减少接头的刚度、减少交叉焊缝,减少造成应力集中的各种因素,都是改善焊接性的重要措施。
8. 金属焊接的操作方法
金属焊接方法有40种以上,主要分为熔焊、压焊和钎焊三大类: 熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧不被氧化,避免形成缺欠;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。 压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。 由光学震荡器及放在震荡器空穴两端镜间的介质所组成。介质受到激发至高能量状态时,开始产生同相位光波且在两端镜间来回反射,形成光电的串结效应,将光波放大,并获得足够能量而开始发射出激光。
激光亦可解释成将电能、化学能、热能、光能或核能等原始能源转换成某些特定光频(紫外光、可见光或红外光)的电磁辐射束的一种设备。转换形态在某些固态、液态或气态介质中很容易进行。当这些介质以原子或分子形态被激发,便产生相位几乎相同且近乎单一波长的光束-激光。由于具同相位及单一波长,差异角均非常小,在被高度集中以提供焊接、切割及热处理等功能前可传送的距离相当长。
9. 焊接时的加热与加压各有什么作用
在连接过程中加热能使被连接材料的原子达到很高的活性,使母材熔化或发生原子扩散,温度越高原子扩散越充分,越容易形成连接界面。但过高的压力容易造成晶粒粗大,降低焊接接头力学性能。压力主要是使被连接材料之间在连接过程中达到良好的物理接触,为原子扩散提供通道。焊接工艺参数中温度是主要因素,压力是辅助参数。
10. 不锈钢焊条,焊接前需要加热吗
只要焊条没受潮的情况下一般不需要加热,因为不锈钢要热处理都是
固溶
处理,是要将
奥氏体不锈钢
加热到1100℃左右,使
碳化物
相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。