① 二氧化碳气体和二氧化碳混合气焊接效果有什么区别
一、焊接方式不同
1、二氧化碳气体焊接:使用二氧化碳作为保护气体的焊接方式。
2、二氧化碳混合气焊接:使用二氧化碳跟氩气混合在一起的焊接方式。
二、效果不同
1、二氧化碳气体焊接:由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。
2、二氧化碳混合气焊接:利用氩气对金属焊材的保护,通过高电流使焊材在被焊基材上融化成液态形成熔池,使被焊金属和焊材达到冶金结合的一种焊接技术,由于在高温熔融焊接中不断送上氩气,使焊材不能和空气中的氧气接触,从而防止了焊材的氧化。
三、用途不同
1、二氧化碳气体焊接:焊接方法已成为黑色金属材料最重要焊接方法之一。
2、二氧化碳混合气焊接:适用于焊接易氧化的有色金属和合金钢(主要用Al、Mg、Ti及其合金和不锈钢的焊接);适用于单面焊双面成形,如打底焊和管子焊接;钨极氩弧焊还适用于薄板焊接。
② MIG焊,TIG焊,MAG焊各是什么与氩弧焊,气保焊有什么区别
MAG(Metal Active Gas Arc Welding)焊是熔化极活性气体保护电弧焊的英文简称。它是在氩气中加入少量的氧化性气体(氧气,二氧化碳或其混合气体)混合而成的一种混合气体保护焊。我国常用的是80%Ar+20%二氧化碳的混合气体,由于混合气体中氩气占的比例较大,故常称为富氩混合气体保护焊。
MIG焊(熔化极惰性气体保护焊)英文:melt inert-gas welding使用熔化电极,以外加气体作为电弧介质,并保护金属熔滴、焊接熔池和焊接区高温金属的电弧焊方法,称为熔化极气体保护电弧焊。用实芯焊丝的惰性气体(Ar或He)保护电弧焊法称为熔化极惰性气体保护焊,简称MIG焊。
TIG焊(Tungsten Inert Gas Welding),又称为非熔化极惰性气体保护电弧焊。无论是在人工焊接还是自动焊接0.5~4.0mm厚的不锈钢时,TIG焊都是最常用到的焊接方式。用TIG焊加填丝的方式常用于压力容器的打底焊接,原因是TIG焊接的气密性较好能降低压力容器焊焊接时焊缝的气孔。TIG焊的热源为直流电弧,工作电压为10~95伏,但电流可达600安。焊机的正确连结方式是工件连结电源的正极,焊炬中的钨极作为负极。惰性气体一般为氩气。
望采纳,谢谢!
③ 混合气体焊接用途
1、混合气体保护焊:由两种或两种以上气体,按一定比例组成的混合气体作为保护气体的气体保护焊。2、一、混合气体在熔化极气体保护焊中的应用熔化极气体保护焊熔敷速度快、生产效率高、易实现自动化,因而在焊接生产中得到日益广泛的应用。早期进行熔化极气体保护焊通常采用单一气体(如Ar、CO2等)作保护,目前单一气体保护焊仍占相当比例。随着实践的不断深入,人们发现由不同气体组成的混合气体适应不同的金属材料和焊接工艺的需要,并能获得最佳的保护效果、优良的电弧特性及十分稳定的熔滴过渡特性,比用单一气体更易得到好的焊接结果。现在,采用混合气体的趋向愈来愈强,混合气体的种类也越来越多。研究混合气体的应用现状,探索其在GMAW中的影响规律有着较大的现实意义。3、混合气体种类及特性目前可供焊接使用的混合气体主要有二元混合气、三元混合气和四元混合气,不同混合气体有其独特作用。混合气体主要以Ar为基本组元,分别加入惰性气体、还原性气体及氧化性气体中的一种或几种。混合气体组分不同,特性就有很大同,加入惰性气体或氧化性组分的混合气体电弧稳定性和金属过渡特性都较好,应用也较广泛。在以Ar为基本组元加入氧化性较强的O2或CO2的混合气体中,一个突出特点是电弧燃烧更表1常用混合气体一览表元数混合气体特点用途二元Ar+He电弧稳定,金属过渡特性好,适用TIG焊、MIG焊的喷射过渡。可于各种非铁金属焊接,主要用于铝及其合金,钛及其合金。Ar+N2N2价格便宜,奥氏化,提高接头抗点蚀和抗应力腐蚀能力,但焊接飞溅较大。主要用于铜及其合金。主要用于不锈钢,镍基合金。主要用于碳钢、低合金钢、不锈钢。主要用于碳钢低合金钢。主要用于碳钢,采用特殊成分的焊丝时也可用于低合金钢焊,Ar+H适用于TIG焊。氢导热系数大,对电弧有较强的冷却作用,电弧稳定性好,对焊件热输入比纯Ar高,熔深较大。Ar+O2改善熔滴细化率,电弧稳定性和金属过渡好,熔深较大,呈蘑菇形。Ar+CO2电弧稳定性和金属过渡特性好,适用于短路过及喷射过渡,熔深较大,呈扁平形。CO2+O2具有较强的氧化性,电弧稳定性较差但仍具有较好的金属过渡特性。Ar+O2+CO2具有短路、粗滴、脉冲、喷射和高密度等过渡形式,各种形式都具有多方面适应性。用于各种厚度的碳钢、低合金钢、不锈钢。Ar+CO2+H2少量氢可改善不锈钢脉冲MIG焊时焊缝的润湿性,和电弧稳定性。用于不锈钢脉冲MIG焊。主要用于碳钢、低合金钢、高强钢、不锈钢。Ar+He+CO2增加焊缝热输入,电弧稳定性和金属过渡特性好。四元:Ar+He+CO2+O2适用于高密度金属过渡,具有良好的力学性能和操作性。要用于低合金高强度钢。稳定。原因是加入了O2或CO2后,加剧了电弧区域的氧化反应,有助于低逸出功的氧化膜形成,克服了单独用Ar气焊接时产生的电弧飘移现象,此外,电弧气氛中的氧化反应放出大量热量,使母材熔深增加,焊丝熔化系数提高,有利于提高生产率。大量实践还证明,在富Ar气体中加入氧化性气体,能减少液态金属的表面张力,有利于金属熔滴的细化,降低射流过渡的临界电流。这说明氧化性混合气体能使熔滴过渡特性变好。加入He的混合气体,主要是用He导热性好、电弧电压高的物理特性,提高了混合气体电弧弧柱温度,故常用于焊接中厚板或导热性好的金属,如铝及其合金。2混4、合气体的配比及其应用1)、二元混合气体(1)Ar+He用不同Ar、He组合能控制阴极斑点的位置,提高电弧电压和热量,保持Ar的有利特性。但He的体积分数小于10%时会影响电弧和焊缝的力学性能,与Ar混合的He的体积分数至少应在20%以上才能产生和维持稳定喷射电弧的效果。He的加入量视板厚而定,板越厚加入量越大。Ar+25%He这种配比很少,仅用于铝焊接时需要增加熔深和对焊缝成型要求很高的场合。Ar+75%He广泛用于厚度25mm以上铝的平位置自动焊,还可增加6~12mm厚铜焊件的热输入,并减少焊缝的气孔。Ar+90%He用于焊接厚度12mm以上的铜和76mm以上的铝,可提高热输入,改善焊缝成型。这种组合也用于高Ni填充金属的短路过渡焊接。铝及其合金的焊接一般优先选用TIG焊。文献在焊接1460型铝锂合金时,为获得无气孔、无氧化膜夹杂的优质焊接接头,采用特种喷嘴,并向其熔池补吹含35%~45%He的Ar、He混合气,以保护焊缝和近缝区,该混合气体基本上避免了焊缝成型时的氧化膜夹杂物及热裂纹。二元混合气体2)、Ar+N2N:是促进奥氏体化的元素,在Ar中加1%N2可使347不锈钢焊缝得到全奥氏体组织,加1.5%~3%N2的混合气也开始采用。与Ar+He比较,N2价格便宜,但焊接时飞溅较大,焊缝表面粗糙,外观质量较差。文献在厚壁紫铜板的MIG焊中,在Ar中分别加入5%、10%、15%的N2进行射流过渡焊接。随着N2比例的增加,焊道的溢流情况得到改善,堆焊焊道的熔深有明显增加,而且适当地降低紫铜试板的预热温度,仍可得到熔合良好的焊缝。而在短路过渡时,却难以产生良好的熔合,母材几乎完全不熔化。3)、Ar+O2Ar:中添加少量O2可提高电弧的稳定性,降低熔滴与焊丝分离的表面张力,从而提高填充金属过渡的熔滴细化率,改善焊缝润湿性、流动性和焊缝成型,适当减轻咬边倾向,使焊道平坦。Ar+1%O2主要用于不锈钢的喷射过渡焊,1%O2一般足以使电弧稳定,改善熔滴细化率、与母材熔合及焊缝成型。有时,添加少量O2也用于焊接非铁金属。Ar+2%O2用于碳钢、低合金钢、不锈钢的喷射电弧焊,它比加1%O2更能增加焊缝润湿性,且力学性能和抗腐蚀性基本不变。文献研究了脉冲MAG焊在其它条件相同的情况下,采用含氧量分别为1%、2%、3%的Ar+O2作保护气体,得到的电弧静特性曲线以Ar+2%O2时位置最低。Ar+5%O2熔池流动性更好,是焊接一般碳素钢最通用的Ar-O2混合气,焊接速可更高。Ar+(8%~12%)O2主要应用于单道焊,但某些多道焊应用也有报导。这种混合气体因其熔池流动性较大,喷射过渡临界电流较低,因而在有些焊接应用中更能显示其优越性。Ar+(12%~25%)O2混合气体含氧量很高,添加约20%以上O2时,喷射过渡变得不稳定,并偶有短路和粗粒过渡发生,因而使用有限,但焊出的焊缝气孔很少。4)、Ar+CO2:与加O2相反,当用CO2时,熔深改善,气孔较少。适当增加CO2可改变焊缝组织、夹杂物分布状态和焊缝合金元素含量,大幅度降低焊缝金属的氢脆敏感性。Ar+(3%~10%)CO2用于各种厚度碳钢的喷射电弧及短路过渡焊。Ar+5%CO2普遍用于低合金钢厚板全位置脉冲GMAW焊,该混合气体使弧柱变挺,较强的电弧力更适应钢材表面氧化皮,且能更好地控制熔池。文献对锅炉压力容器焊接中采用Ar+10%CO2气体保护的MAG焊进行了焊接工艺评定。结果表明,采用MAG焊改善了热影响区的韧性,提高了焊缝的外观质量,焊缝表面过渡光滑,焊缝成型好。Ar+(11%~20%)CO2已用于多种窄间隙焊、薄板全位置焊和高速GMAW焊,大多用于碳钢和低合金钢焊接,对薄板可达到最大的生产效率。含20%CO2时习惯称为富氩CO2保护气,它克服了纯CO2焊中弧柱及电弧斑点强烈收缩的缺点,同时减少了飞溅。文献正是利用富氩CO2焊实现了纯CO2焊在液压挖掘机制造上所达不到的工艺。Ar+(21%~25%)CO2是最常用于低碳钢短路过渡焊的气体,现已成为大多数实芯焊丝和常用药芯焊丝焊接的标准混合气体。该混合气体在厚板大电流情况下也很好用,且电弧稳定,熔池易于控制,焊缝美观,生产效率高。Ar+50%CO2用于高热输入深熔焊,薄板焊时较易焊穿,这使该气体的适应性受到限制。当大电流焊接时,金属过渡比上述混合气体更像纯CO2焊,但由于加Ar而使飞溅略为减少。Ar+75%CO2用于厚壁管的焊接,与侧壁的熔合和深熔良好,加Ar组分提高了电弧的稳定性并减少了飞溅。5、三元混合气体1)、Ar+O2+CO2:这三种气体的混合气体因可用于短路过渡、粗滴过渡、脉冲、喷射和高密度过渡的工作特性而被定为“万能气”。Ar+(5%~10%)CO2+(1%~3%)O2混合气体主要优点在于焊接各种厚度的碳钢、低合金钢、不锈钢,不论哪种过渡形式都有很广的适应性。Ar+(10%~20%)CO2+5%O2混合气体可产生热短路过渡且熔池流动性好。当采用三重脱氧焊丝时,可使熔池呈惰性,且喷射电弧过渡良好。2)、Ar+CO2+H2:不锈钢脉冲MIG焊时加少量H2(1%~2%),焊缝润湿性改善且电弧稳定。CO2量要少(1%~3%),使渗碳最少,并保持良好的电弧稳定性。此气体使焊缝金属含氢量过高,焊缝力学性能不好且会出现裂缝,因此不适用于低合金钢。3)、Ar+He+CO2:Ar中加He及CO2可增加焊接热输入并改善电弧稳定性,焊道润湿性和成型更好。Ar+(10%~30%)He+(5%~15%)CO2主要用于碳钢和低合金钢脉冲喷射电弧焊。CO2含量较低时能改善电弧稳定性,低电流脉冲喷射电弧焊也可以用。(60%~70%)He+(20%~35%)Ar+(4%~5%)CO2用于高强钢,尤其适用全位置短路过渡焊,CO2含量要低,以保持良好的焊缝金属韧性。He可提供熔池流动性所需的热量,He含量不需要太高,因为熔池变得稀些容易控制。90%He+7.5%Ar+2.5%CO2用于不锈钢全位置短路电弧焊,CO2含量要低,使渗碳最少,以保证良好的耐腐蚀性,尤其是多道焊。添加CO2+Ar可使电弧稳定性和熔透性好。6、、四元混合气体四元混合气体目前四元混合气体主要是Ar+He+CO2+O2,最具有代表性的高熔敷率焊接工艺是TIME()工艺,是一种高性能MAG焊接方法。它采用大干伸长7、常用的混合气体有以下几种:1)、Ar+He:氩气的优点是电弧燃烧非常稳定、飞溅极小。氦气的优点是电弧温度高、母材金属热输入大、焊接速度快。以氩气为基体,加入一定数量的氦气即可获得两者所具有的优点。焊接大厚度铝及铝合金时,采用Ar+He混合气体可改善焊缝熔深、减少气孔和提高生产率。板厚10~20mm时入体积分数为50%的He;板厚大20mm后,则加入体积分数为75%~90%的He。He占的比例一般为50%~75%(体积分数)。2)、Ar+H2:在氩气中加入H2可以提高电弧温度,增加母材金属的热输入。如用TIG电弧或等离子弧焊接不锈钢时,为了提高焊接速度常在氩气中加入体积分数为4%~8%H2。利用Ar+H2混合气体的还原性,可用来焊接镍及其合金,以抑制和消除镍焊缝中的CO气孔。但加入的H2含量(体积分数)必须低于6%,否则会导致产生氢气孔。3)、Ar+N2:在Ar中加入N2后,电弧的温度比纯氩高,主要用于焊接铜及铜合金,这种混合气体与Ar+He混合气体相比较,优点是N2来源多,价格便宜。缺点是焊接时有飞溅,并且焊缝表面较粗糙,焊接过程中还伴有一定的烟雾。4)、Ar+O2混合气体有两种类型:一种含O2量(体积分数)较低,为1%~5%,用于焊接不锈钢;另一种含O2量(体积分数)较高,可达20%以上,用于焊接低碳钢及低合金结构钢。在纯氩中加入体积分数为1%的O2用来焊接不锈钢时,可以克服纯氩焊接不锈钢时电弧阴极斑点不稳定的现象(阴极飘移)。6)Ar+CO2:广泛应用于焊接碳钢及低合金结构钢,可以提高焊缝金属的冲击韧度和减小飞溅。7、Ar+CO2+O2:三者混合可用来焊接低碳钢、低合金结构钢,对焊缝成形、接头质量、熔滴过渡和电弧稳定性都有良好效果。8、这样你能看明白了吗。
④ 混合气焊接与二氧化碳焊接的焊道区别
你好,混合气体焊接,焊缝表面无飞溅.成形好。二保焊实芯焊丝焊接,飞溅较多,焊缝充凸形。
⑤ 焊接2209为什么要混合气
2209是双相不锈钢焊丝,熔化极气保焊一般实芯焊丝用98%Ar+2%O2这样的混合气,这样焊接电弧可以稳定。
单纯的用纯氩气电弧会不稳定,一般都会用混合气焊接不锈钢。
⑥ 二氧化碳气和混合气哪个焊接强度好
你好,二氧化碳气和混合气焊接,在同等情况下,焊接强度是一样的。(使用二氧化碳气体焊缝表面成形不好,用混合气体飞溅少,焊缝表面成形好)
⑦ mag焊接是什么意思
mag焊接是熔化极活性气体保护电弧焊的英文简称。
mag焊接是在氩气中加入少量的氧化性气体(氧气,二氧化碳或其混合气体)混合而成的一种混合气体保护焊。我国常用的是80%Ar+20%二氧化碳的混合气体,由于混合气体中氩气占的比例较大,故常称为富氩混合气体保护焊。
采用活性混合气体作为保护气体具有下列作用:
(1)提高熔滴过渡的稳定性。
(2)稳定阴极斑点,提高电弧燃烧的稳定性。
(3)改善焊缝熔深形状及外观成形。
(4)增大电弧的热功率。
(5)控制焊缝的冶金质量,减少焊接缺陷。
(6)降低焊接成本。
MAG焊可采用短路过渡、喷射过渡和脉冲喷射过渡进行焊接,能获得稳定的焊接工艺性能和良好的焊接接头,可用于各种位置的焊接,尤其适用于碳钢、合金钢和不锈钢等黑色金属材料的焊接。
以上内容参考网络—MAG焊
⑧ 混合气焊接与二氧化碳焊接的焊道区别
在送丝和电流不变的情况下焊道在外观上看混合气焊的比较平整,飞溅少。焊接时感觉电流偏大,焊丝融化快。焊后在硬度上没有二氧化碳的硬度高,拉伸度有所提高。总之混合气焊接出来的质量总体高于二氧化碳!但是成本偏高。
⑨ 二保焊用什么气体焊接,效果更好
用%80的二氧化碳气体+%20的氩气,称为混合气体,用来焊接效果更好些,颜色光亮,飞溅小,焊缝美观。
CO2气保焊操作
1 起弧
(1)保持干伸长不变。
(2)倒退引弧法,在焊道前端10—20mm处引弧。
(3)接头处磨薄,防止接头未熔和。
2 收弧
(1)保持干伸长不变。
(2)在熔池边缘处收弧。
起弧与收弧工艺,虽然说CO2的起弧与收弧工艺简单,但若达到一定的质量要求,掌握规范的操作工艺是很必要的。
起弧工艺:起弧之前在焊丝端头与母材之间保持一定距离的情况下,按下焊枪开关。在起弧时,保持干伸长度稳定。起弧处由于工件温度较低,又无法象手工焊那样拉长电弧预热,所以应采用倒退引弧法,使焊道充分熔和。
收弧工艺:CO2焊收弧时,应保持干伸长度不变,并把燃烧点拉到熔池边缘处停弧,焊机自完成回烧、消球、延时气保护的收弧过程。
3 操作方法
(1)左焊法(右左):余高小,宽度大,飞溅小,便于观察焊缝,焊接过程稳定,气保效果好(有色金属必须用左焊法),但溶深较浅。
(2)右焊法(左右):余高大,宽度小,飞溅大,便于观察熔池,熔深深。
(3)运枪方法:锯齿形摆抢。
(4)平角焊不摆或小幅摆动。
(5)立角向上焊,采用三角形运枪。
(6)焊枪过渡:熔池两边停留,在熔池前1/3处过渡。
(7)枪角度:垂直于焊道,沿运枪方向成80—90°角。
(8)试板:间隙2.0—2.5mm,起弧点略小于收弧点。无钝边,反变形1°。
(9)予防缺陷:
防夹角不熔—烧透夹角。 防层间不熔—注意枪角度。
焊接参数
1 电流、电压
U2=14+0.05I2
焊接电流应根据母材厚度、接头形式以及焊丝直径等,正确选择焊接电流。短路过渡时,在保证焊透的前提下,尽量选择小电流,因为当电流太大时,易造成溶池翻滚,不仅飞溅大,成型也非常差。
焊接电压必须与电流形成良好的配合。焊接电压过高或过低都会造成飞溅,焊接电压应伴随焊接电流增大而提高,应伴随焊接电流减小而降低,最佳焊接电压一般在1-2V之间,所以
焊接电压应细心调试。
电流过大:弧长短、飞溅大,有顶手感觉,余高过大,两边熔合不好。
电压过高:弧长长、飞溅稍大,电流不稳,余高过小,焊逢宽,引弧易烧导电嘴。
2 干伸长度
焊丝伸出导电咀的长度为干伸长度,一般经验公式为10倍的焊丝直径I=10d。规范大时,略大。规范小时,略小。
干伸过长:焊丝伸出长度太长时,焊丝的电阻热越大,焊丝熔化速度加快,易造成焊丝成段熔断,飞溅大,熔深浅,电弧燃烧不稳。同时气保护效果不好。
干伸过短:易烧导电嘴。同时,导电嘴发热易夹丝。飞溅物易堵塞喷嘴。熔深
深。
电流 200A以下 200
~350A 350~500A
干伸长度 10~15mm 15~20mm 20~25mm
3 气体流量 L=(10—12)d L/min
过大:产生紊流,造成空气侵入,产生气孔。
过小:气保护不好。
风速≤2m/s 时不受影响。
风速≥2m/s 时应采取措施。
①加大气体流量。 ② 采取挡风措施。
注意:当发生漏气时,会使焊缝出现气孔,必须处理漏气点,不能用加大流量的方法补充。
4 电弧力
当不同板厚、不同位置、不同规范,不同焊丝,选择不同的电弧力。
过大:电弧硬、飞溅大。
过小:电弧软、飞溅小。
5 压紧力
过紧:焊丝变形,送丝不稳。
过松:焊丝打滑,送丝慢。
6 电源极性
直流反极性:熔深大,飞溅小,焊缝成型好电弧稳定,且焊缝含氢量低。 直流正极性:在相同条件下,焊丝熔化速度快。是反极性的1.6倍,熔深浅,余高大,飞溅很大。在堆焊、铸铁补焊、高速焊时采用。
7 焊接速度
焊接速度对焊缝内部与外观的质量都有重要影响,当电流电压一定时:
焊速过快:熔深、熔宽、余高减小,成凸型或驼峰焊道,焊趾部咬肉。焊速过快时,会使气体保护作用受到破坏,易产生气孔。同时焊逢的冷却速度也会相应加快,因而降低了焊逢金属的塑性和韧性。并会使焊逢中间出现一条棱,造成成型不良。
焊速过慢:熔池变大,焊道变宽,焊趾部满溢。焊速慢易排出熔池中的气体。因过热造成焊缝金属组织粗大或烧穿。
选择焊接参数应按以下条件:焊缝外型美观,没有烧穿、咬边、气孔、裂纹等缺陷。熔深控制在合适的范围内。焊接过程稳定,飞溅小。焊接时听到沙...沙的声音。同时应具备最高的生产率。
CO2焊的焊接规范主要包括:焊接电流、电弧电压、焊接速度和气体流量。这些参数对焊丝的加热和熔化及焊缝成型都有很大影响。
⑩ 气体保护焊,为什么要用氩气和二氧化碳的混合气体,CO2起什么作用
1、用两者的混合气体的原因是在焊接过程形成一种保护层,把氧气隔绝在外面,提高焊缝质量(减少金属流失、减少气孔等等)
2、二氧化碳保护金属在高温下不被氧化。在保证焊缝质量的前提下,CO2气体是比较廉价的。
(10)混合气体焊接什么意思扩展阅读:
气体保护焊按保护气体分,有氩弧焊、原子氢焊和二氧化碳气体保护焊等。
(1) 氩弧焊是以氩气作为保护介质,以可溶的焊丝或不融化的钨棒作电极进行焊接的一种工艺方法。
(2) 原子氢焊 是利用氢气的高温化学反应热和电弧的辐射热进行焊接的一种工艺方法。
(3) 二氧化碳气体保护焊是利用二氧化碳气体作为保护介质的电弧焊。该方法不仅适用于焊接碳钢和合金钢,而且还可适用于磨损零件的堆焊和铸钢件缺陷的补焊。