⑴ 模具滲氮性能下降
模具進行氮化處理可顯著提高模具表面的硬度、耐磨性、抗咬合性、抗腐蝕性能和疲勞性能。由於滲氮溫度較低,一般在500-650~范圍內進行,滲氮時模具芯部沒有發生相變,因此模具滲氮後變形較小。一般熱作模具鋼(凡回火溫度在550-650~的合金工具鋼)都可以在淬火、回火後在低於回火溫度的溫度區內進行滲氮;一般碳鋼和低合金鋼在製作塑料模時也可在調質後的回火溫度下滲氮;一些特殊要求的冷作模具鋼也可在氮化後再進行淬火、回火熱處理。
⑵ 材料滲氮後怎麼焊接
又稱為擴散滲氮。氣體滲氮在1923年左右,由德國人Fry首度研究發展並加以工業化。由於經本法處理的製品具有優異的耐磨性、耐疲勞性、耐蝕性及耐高溫,其應用范圍逐漸擴大。例如鑽頭、螺絲攻、擠壓模、壓鑄模、鍜壓機用鍜造模、螺桿、連桿、曲軸、吸氣及排氣活門及齒輪凸輪等均有使用。 一、氮化用鋼簡介 傳統的合金鋼料中之鋁、鉻、釩及鉬元素對滲氮甚有幫助。這些元素在滲氮溫度中,與初生態的氮原子接觸時,就生成安定的氮化物。尤其是鉬元素,不僅作為生成氮化物元素,亦作為降低在滲氮溫度時所發生的脆性。其他合金鋼中的元素,如鎳、銅、硅、錳等,對滲氮特性並無多大的幫助。一般而言,如果鋼料中含有一種或多種的氮化物生成元素,氮化後的效果比較良好。其中鋁是最強的氮化物元素,含有0.85~1.5%鋁的滲氮結果最佳。在含鉻的鉻鋼而言,如果有足夠的含量,亦可得到很好的效果。但沒有含合金的碳鋼,因其生成的滲氮層很脆,容易剝落,不適合作為滲氮鋼。 一般常用的滲氮鋼有六種如下: (1)含鋁元素的低合金鋼(標准滲氮鋼) (2)含鉻元素的中碳低合金鋼 SAE 4100,4300,5100,6100,8600,8700,9800系。 (3)熱作模具鋼(含約5%之鉻) SAE H11 (SKD – 61)H12,H13 (4)肥粒鐵及麻田散鐵系不銹鋼 SAE 400系 (5)奧斯田鐵系不銹鋼 SAE 300系 (6)析出硬化型不銹鋼 17 - 4PH,17 – 7PH,A – 286等 含鋁的標准滲氮鋼,在氮化後雖可得到很高的硬度及高耐磨的表層,但其硬化層亦很脆。相反的,含鉻的低合金鋼硬度較低,但硬化層即比較有韌性,其表面亦有相當的耐磨性及耐束心性。因此選用材料時,宜注意材料之特徵,充分利用其優點,俾符合零件之功能。至於工具鋼如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部強度。 二、氮化處理技術: 調質後的零件,在滲氮處理前須徹底清洗干凈,茲將包括清洗的滲氮工作程序分述如下: (1)滲氮前的零件表面清洗 大部分零件,可以使用氣體去油法去油後立刻滲氮。但在滲氮前之最後加工方法若採用拋光、研磨、磨光等,即可能產生阻礙滲氮的表面層,致使滲氮後,氮化層不均勻或發生彎曲等缺陷。此時宜採用下列二種方法之一去除表面層。第一種方法在滲氮前首先以氣體去油。然後使用氧化鋁粉將表面作abrassive cleaning 。第二種方法即將表面加以磷酸皮膜處理(phosphate coating)。 (2)滲氮爐的排除空氣 將被處理零件置於滲氮爐中,並將爐蓋密封後即可加熱,但加熱至150℃以前須作爐內排除空氣工作。 排除爐內的主要功用是防止氨氣分解時與空氣接觸而發生爆炸性氣體,及防止被處理物及支架的表面氧化。其所使用的氣體即有氨氣及氮氣二種。 排除爐內空氣的要領如下: (1)被處理零件裝妥後將爐蓋封好,開始通無水氨氣,其流量盡量可能多。 (2)將加熱爐之自動溫度控制設定在150℃並開始加熱(注意爐溫不能高於150℃)。 (3)爐中之空氣排除至10%以下,或排出之氣體含90%以上之NH3時,再將爐溫升高至滲氮溫度。(3)氨的分解率 滲氮是鋪及其他合金元素與初生態的氮接觸而進行,但初生態氮的產生,即因氨氣與加熱中的鋼料接觸時鋼料本身成為觸媒而促進氨之分解。 雖然在各種分解率的氨氣下,皆可滲氮,但一般皆採用15~30%的分解率,並按滲氮所需厚度至少保持4~10小時,處理溫度即保持在520℃左右。 (4)冷卻 大部份的工業用滲氮爐皆具有熱交換幾,以期在滲氮工作完成後加以急速冷卻加熱爐及被處理零件。即滲氮完成後,將加熱電源關閉,使爐溫降低約50℃,然後將氨的流量增加一倍後開始啟開熱交換機。此時須注意觀察接在排氣管上玻璃瓶中,是否有氣泡溢出,以確認爐內之正壓。等候導入爐中的氨氣安定後,即可減少氨的流量至保持爐中正壓為止。當爐溫下降至150℃以下時,即使用前面所述之排除爐內氣體法,導入空氣或氮氣後方可啟開爐蓋。 三、氣體氮化技術: 氣體氮化系於1923年由德國AF ry 所發表,將工件置於爐內,利NH3氣直接輸進500~550℃的氮化爐內,保持20~100小時,使NH3氣分解為原子狀態的(N)氣與(H)氣而進行滲氮處理,在使鋼的表面產生耐磨、耐腐蝕之化合物層為主要目的,其厚度約為0.02~0.02m/m,其性質極硬Hv 1000~1200,又極脆,NH3之分解率視流量的大小與溫度的高低而有所改變,流量愈大則分解度愈低,流量愈小則分解率愈高,溫度愈高分解率愈高,溫度愈低分解率亦愈低,NH3氣在570℃時經熱分解如下: NH3 →〔N〕Fe + 2/3 H2 經分解出來的N,隨而擴散進入鋼的表面形成。相的Fe2 - 3N氣體滲氮,一般缺點為硬化層薄而氮化處理時間長。 氣體氮化因分解NH3進行滲氮效率低,故一般均固定選用適用於氮化之鋼種,如含有Al,Cr,Mo等氮化元素,否則氮化幾無法進行,一般使用有JIS、SACM1新JIS、SACM645及SKD61以強韌化處理又稱調質因Al,Cr,Mo等皆為提高變態點溫度之元素,故淬火溫度高,回火溫度亦較普通之構造用合金鋼高,此乃在氮化溫度長時間加熱之間,發生回火脆性,故預先施以調質強韌化處理。NH3氣體氮化,因為時間長表面粗糙,硬而較脆不易研磨,而且時間長不經濟,用於塑膠射出形機的送料管及螺旋桿的氮化。 四、液體氮化技術: 液體軟氮化主要不同是在氮化層里之有Fe3Nε相,Fe4Nr相存在而不含Fe2Nξ相氮化物,ξ相化合物硬脆在氮化處理上是不良於韌性的氮化物,液體軟氮化的方法是將被處理工件,先除銹,脫脂,預熱後再置於氮化坩堝內,坩堝內是以TF – 1為主鹽劑,被加溫到560~600℃處理數分至數小時,依工件所受外力負荷大小,而決定氮化層深度,在處理中,必須在坩堝底部通入一支空氣管以一定量之空氣氮化鹽劑分解為CN或CNO,滲透擴散至工作表面,使工件表面最外層化合物8~9%wt的N及少量的C及擴散層,氮原子擴散入α – Fe基地中使鋼件更具耐疲勞性,氮化期間由於CNO之分解消耗,所以不斷要在6~8小時處理中化驗鹽劑成份,以便調整空氣量或加入新的鹽劑。 液體軟氮化處理用的材料為鐵金屬,氮化後的表面硬度以含有 Al,Cr,Mo,Ti元素者硬度較高,而其含金量愈多而氮化深度愈淺,如炭素鋼Hv 350~650,不銹鋼Hv 1000~1200,氮化鋼Hv 800~1100。 液體軟氮化適用於耐磨及耐疲勞等汽車零件,縫衣機、照相機等如氣缸套處理,氣門閥處理、活塞筒處理及不易變形的模具處。採用液體軟氮化的國家,西歐各國、美國、蘇俄、日本、台灣。 五、離子氮化技術: 此一方法為將一工件放置於氮化爐內,預先將爐內抽成真空達10-2~10-3 Torr(㎜Hg)後導入N2氣體或N2 + H2之混合氣體,調整爐內達1~10 Torr,將爐體接上陽極,工件接上陰極,兩極間通以數百伏之直流電壓,此時爐內之N2氣體則發生光輝放電成正離子,向工作表面移動,在瞬間陰極電壓急劇下降,使正離子以高速沖向陰極表面,將動能轉變為氣能,使得工件去面溫度得以上升,因氮離子的沖擊後將工件表面打出Fe.C.O.等元素飛濺出來與氮離子結合成FeN,由此氮化鐵逐漸被吸附在工件上而產生氮化作用,離子氮化在基本上是採用氮氣,但若添加碳化氫系氣體則可作離子軟氮化處理,但一般統稱離子氮化處理,工件表面氮氣濃度可改變爐內充填的混合氣體(N2 + H2)的分壓比調節得之,純離子氮化時,在工作表面得單相的r′(Fe4N)組織含N量在5.7~6.1%wt,厚層在10μn以內,此化合物層強韌而非多孔質層,不易脫落,由於氮化鐵不斷的被工件吸附並擴散至內部,由表面至內部的組織即為FeN → Fe2N → Fe3N→ Fe4N順序變化,單相ε(Fe3N)含N量在5.7~11.0%wt,單相ξ(Fe2N)含N量在11.0~11.35%wt,離子氮化首先生成r相再添加碳化氫氣系時使其變成ε相之化合物層與擴散層,由於擴散層的增加對疲勞強度的增加有很多助。而蝕性以ε相最佳。 離子氮化處理的度可從350℃開始,由於考慮到材質及其相關機械性質的選用處理時間可由數分鍾以致於長時間的處理,本法與過去利用熱分解方化學反應而氮化的處理法不同,本法系利用高離子能之故,過去認為難處理的不銹鋼、鈦、鈷等材料也能簡單的施以優秀的表面硬化處
⑶ H13材料模具氮碳共滲後表面外殼脫落怎麼解決
模具表面進行氰化,其表面硬度得到提高。但是表面呈塊狀脫落,硬度層沒有了,如果外形沒有了加工餘量,模具零件只能報廢重做。如果還有加工餘量的話,還可以重新進行氰化。
⑷ 模具滲氮過後表面有一層黑的用什麼可以洗白 ,好拋光
直接把模具氮化成灰白色的,就好拋光了,重慶鼎星滲氮表面處理有限公司為你解答
⑸ 請問H13鋼熱作模具氮化出來掉皮是什麼原因
第一倉壓高不穩定,第二模具張有油等不定,保溫溫過度高,在就是原材料的問題,回火沒回好,
⑹ 模具氮化和不氮化在性能上有多大差異
模具進行氮化處理可顯著提高模具表面的硬度、耐磨性、抗咬合性、抗腐蝕性能和疲勞性能。由於滲氮溫度較低,一般在500-650~范圍內進行,滲氮時模具芯部沒有發生相變,因此模具滲氮後變形較小。一般熱作模具鋼(凡回火溫度在550-650~的合金工具鋼)都可以在淬火、回火後在低於回火溫度的溫度區內進行滲氮;一般碳鋼和低合金鋼在製作塑料模時也可在調質後的回火溫度下滲氮;一些特殊要求的冷作模具鋼也可在氮化後再進行淬火、回火熱處理。
實踐證明,經氮化處理後的模具使用壽命顯著提高,因此模具氮化處理已經在生產中得到廣泛應用。但是,由於工藝不正確或操作不當,往往造成模具滲氮硬度低、深度淺、硬度不均勻、表面有氧化色、滲氮層不緻密、表面出現網狀和針狀氮化物等缺陷,嚴重影響了模具使用壽命。因此研究模具滲氮層缺陷、分析其產生的原因、探討減少和防止滲氮缺陷產生的工藝措施,對提高模具的產品質量,延長使用壽命具有十分重要的意義。
一、 模具滲氮層硬度偏低
模具滲氮表層硬度偏低將會降低模具的耐磨性能,大大減少滲氮模具的使用壽命。
(1)滲氮模具表層含氮量低。
這是由於滲氮時爐溫偏高或者在滲氮第一階段的氨分解率過高,即爐內氮氣氛過低。
(2)模具預先熱處理後基體硬度太低。
(3)滲氮爐密封不良、漏氣或初用新的滲氮罐。
預防措施
(1)適當降低滲氮溫度,對控溫儀表要經常校正,保持適當的滲氮溫度。
(2)模具裝爐後應緩慢加熱,在滲氮第一階段應適當降低氨分解率。
(3)滲氮爐要密封,對漏氣的馬弗罐應及時更換。新滲氮罐要進行預滲氮,使爐內氨分解率達到平穩。
(4)對因滲氮層含氮量較低的模具可進行一次補充滲氮,其滲氨工藝為:滲氮溫度520℃ ,滲氮時間8~10h,氨分解率控制在20%-30%。
(5)在模具預先熱處理時要適當降低淬火後的火溫度,提高模具的基體硬度。
二、 模具滲氮層淺
模具滲氮層淺將會縮短模具硬化層耐磨壽命。
滲氮模具表面硬度偏低的原因
(1)模具滲氮時間太短、滲氮溫度偏低、滲氮爐有效加熱區的溫度分布不均勻、滲氮過程第一階段氮濃度控制不當(氨分解率過高或過低)等。
(2)模具裝爐前未清除掉油污及裝爐量過多、模具間距太近。
預防措施
(1)要嚴格控制裝爐前模具表面質量、裝爐量、爐內溫差和氮氣氛、滲氮時間和溫度。
(2)加強滲氮爐密封,保證爐內氮氣氛循環正常。並按工藝要求控制氨分解率。
(3)對已經出現滲氮層不足的模具可進行二次滲氮,嚴格按照滲氮第二階段工藝補充滲氮。
硬度不均勻或有軟點的原因
模具滲氮層硬度不均勻或有軟點模具滲氮層不均勻或有軟點將會使模具在使用時性能不穩定,薄弱區域首先磨損較多,造成整個模具的早期損壞失效,嚴重影響模具的使用壽命。
(1)由於滲氮爐上、下不均衡加熱或氣流不通暢,爐內溫度不均勻。
(2)氨氣通入管道局部堵塞,影響爐內氮氣氛;爐內氮氣循環不良。
(3)模具裝前未很好清理表面油污。
(4)滲氮爐內模具裝載太多或爐內模具間距太小、部分有接觸。
預防措施
(1)嚴格控制滲氮爐內上、下區爐溫,使其始終保持在同一溫度區內。
(2)定期清理氨氣進氣管道,保持管道的通暢。
(3)模具裝爐前需用汽油或酒精等脫脂,經過清洗後的模具表面不能有油污或其它臟物。
(4)模具裝筐時,模具間要保持一定距離,嚴防模具工作面接觸和重疊。
(5)爐內氣氛循環要充分,滲氮爐要密封好,對漏氣的馬弗罐應及時更換。
模具滲氮後表面有氧化色
模具滲氮後發生表面氧化不僅影響模具外觀質量,而且影響模具表面的硬度和耐磨性,嚴重影響模具使用壽命。
模具滲氮後表面氧化的原因
(1)氣體滲氮罐漏氣或爐蓋密封不良。
(2)提供氨氣的乾燥裝置中的乾燥劑失效,通入爐中的氨氣含有水分。
(3)滲氮結束後隨爐冷卻時供氧不足造成罐內負壓,吸入空氣造成氧化色。
(4)模具氮化後出爐溫度過高在空氣中氧化。
預防措施
(1)要經常檢查設備,對漏氣的馬弗罐應及時更換,要保持爐蓋密封良好。
(2)氨氣乾燥裝置中的乾燥劑要定期更換。
(3)滲氮後的模具最好採用油冷。對要求嚴格控制變形的模具在滲氮結束冷卻時要繼續提供少量氨氣,避免爐內產生負壓。出爐溫度控制在200't2以下,避免滲氮模具在空氣中氧化。
(4)對已經產生氧化的滲氮模具可在低壓下噴細砂清除,並重新加熱到510'(2左右再進行4h滲氮,滲氮後爐冷至200't2以下出爐。
模具滲氮後變形
要求嚴格控制變形的模具,在滲氮後如產生超差變形將會影響模具的裝配使用,嚴重的會造成模具報廢。
模具滲氮後變形的原因
(1)模具結構設計不合理、形狀復雜等。模具在機械加工後的殘余應力未能很好消除。
(2)氣體滲氮爐內溫度不均勻,模具裝爐後加熱升溫過快或出爐時冷卻速度太快。
(3)因滲氮層比容大而產生的組織應力帶來形狀變化,滲層愈厚影響愈大。因此若工藝參數不當,滲氮溫度過高、時間過長、氮勢過高、產生過厚滲氮層等就會使變形增大。
(4)模具裝爐方法不合理,爐內溫度不均勻、氨氣流不穩不暢等。
預防措施
(1)設計製造模具時應該盡量使模具結構對稱合理,避免厚薄懸殊。
(2)對淬火後的模具應充分進行回火,對機械加工後的模具應進行退火消除應力。
(3)制定合理的滲氮工藝。盡量採用合理的裝爐維普資訊 http://www.cqvip.com,《模具製造》2003.No.6總第23期 65量、較低的滲氮溫度、合適的氮化層深度和氮氣氛。對變形要求較小和形狀復雜的模具應嚴格控制加熱和冷卻速度,升溫速度應低於50aI=/l1,300~C以上每升溫
10oaI=保溫lh;冷卻時要隨爐降溫,出爐溫度應低於2oo℃,並應檢查爐溫,嚴格控制滲氮爐上下區的溫差。
模具滲氮後表層出現網狀及波紋狀、針狀或魚骨狀
氮化物及厚的白色脆性層模具滲氮後表層出現網狀及波紋狀、針狀或魚骨狀氮化物及厚的白色脆性層將會導致模具韌性降低、脆性增加、耐沖擊性能減弱、產生疲勞剝落、耐磨性能降低,大大降低模具的使用壽命。
模具氮化層出現網狀、波紋狀、針狀或魚骨狀缺陷的原因
(1)一些熱處理廠家片面強調提高勞動生產率,在制定工藝文件和實際操作時滲氮溫度過高、升溫加熱和降溫冷卻速度過快;控溫儀表失靈、爐內實際溫度比儀表指示溫度高。如溫度過高時擴散層中的氮化物便聚集長大、彌散度下降、在晶界上形成高氮相的網狀或波紋狀組織。
(2)模具預備熱處理時淬火加熱溫度過高、模具基體晶粒過大。
(3)液氨含水量高,通入氣體滲氮爐中的氨氣含水分。
(4)模具設計製造不合理,有尖角銳邊。
(5)氣體滲氮爐中氨分解率太低即氮勢過高。
(6)預備熱處理時,淬火加熱未在保護氣氛中進行,模具表層脫碳嚴重,在滲氮後極易出現針狀、魚骨狀氮化物。
預防措施
(1)正確制定模具氮化處理工藝,氮化溫度選擇在500~580~C,一般不要超過580~C,並定期對控溫儀表進行校正,升溫加熱速度不宜過快。
(2)模具預備熱處理的淬火加熱溫度不宜過高,以免模具材料內部組織中馬氏體晶粒過大;加熱應在保護氣氛中進行,避免模具氧化脫碳;調質件應在機械加工中把脫碳層切除掉。
(3)氨氣要經過乾燥裝置再通入滲氮爐中,乾燥劑要定期更換。
(4)模具設計製造時應盡量避免銳角尖邊。
(5)嚴格控制滲氮爐中的氨分解率,不應使爐中氮勢過高。
(6)對已經產生網狀及波紋狀氮化物的模具可在540%左右的爐中進行10~15h的擴散處理, 以便有消除模具氮化層中的網狀及波紋狀氮化物。
模具滲氮層不緻密、抗蝕性差
模具如在潮濕或鹼性工作環境中工作,還應具有一定的抗蝕性。有抗蝕要求的模具如因滲氮層不緻密而導致抗蝕性差將會使模具在使用時發生銹蝕,使模具早期失效,影響模具的使用壽命。
模具滲氮層不緻密原因
(1)模具氮化前表面粗糙度大。
(2)模具裝爐前表面有銹蝕,影響滲氮層質量。
(3)氣體滲氮爐內氨分解率過高,模具滲氮層表面氮濃度太低。
(4)在一定的溫度下,滲氮時間太短,模具滲氮層滲氮不足。
預防措施
(1)為了保證抗蝕滲氮層的質量,零件應預先進行正火或調質處理,模具表面的粗糙度要小,其抗蝕性能才會愈好。
(2)模具滲氮裝爐前應仔細清理其表面,不得有銹蝕存在。
(3)模具滲氮時應採用合適的氨分解率,合理的滲氮時間,滲氮後應快冷。
(4)對滲氮層不緻密的模具把其表面清理干凈後嚴格按照氣體滲氮工藝規則再進行一次滲氮。
⑺ 塑膠模具有鐵屑脫落怎麼處理 鐵屑都粘附在透明的產品上了,很難清理,請求幫助解決!
把內模拿去熱處理,加硬一下。
或表面淡化,可以防止這種現像,
貌似這種模個壽命不是很長.
⑻ 對模具進行氮化處理有什麼用處
對模具進行氮化處理定義:
是指一種在一定溫度下一定介質中使氮原子滲入工件表層的化學熱處理工藝。
對模具進行氮化處理作用:
使金屬快速上膜,發生鈍化反應後不容易生銹,提高鋼材有用的性能,如抗磨損,耐摩擦,抗腐蝕和抗疲勞等。
對模具進行氮化處理要求:
氮化熱處理一般溫度大概700度左右(看鋼材),提高型腔型芯及運動件的表面硬度及耐磨性,防腐蝕性,模具一般採用軟氮化工藝。