『壹』 鋼材中的化學成分對鋼材性能主要有什麼影響
鋼中除鐵、碳兩種基本元素外,還含有其他的一些元素,它們對鋼的性能和質量有一定的影響。
(1)碳。碳是決定鋼材性能的主要元素。隨著含碳量的增加,鋼的強度、硬度提高,塑性、韌性降低。但當含碳量大於1.o%時,由於鋼材變脆,抗拉強度反而下降。
(2)硅、錳。硅和錳是鋼材中的有益元素。硅和錳是在煉鋼時為了脫氧加入硅鐵和錳鐵而留在鋼中的合金元素。
硅的含量在1%以內,可提高鋼材的強度,對塑性和韌性沒有明顯影響。但含硅量超過1%時,鋼材冷脆性增加,可焊性變差。
錳的含量為0.8%~1%時,可顯著提高鋼的強度和硬度,幾乎不降低塑性及韌性。當其含量大於1%時,在提高強度的同時,塑性及韌性有所下降,可焊性變差。
(3)硫、磷。硫和磷是鋼材中主要的有害元素,煉鋼時由原料帶入。
硫能夠引起熱脆性,熱脆性嚴重降低了鋼的熱加工性和可焊性。硫的存在還使鋼的沖擊韌性、疲勞強度、可焊性及耐蝕性降低。
磷能使鋼材的強度、硬度、耐蝕性提高,但顯著降低鋼材的塑性和韌性,特別是低溫狀態的沖擊韌性下降更為明顯,使鋼材容易脆裂,這種現象稱為冷脆性。冷脆性使鋼材的沖擊韌性以及焊接等性能都下降。
(4)氧、氮。氧和氮是鋼材中的有害元素,它們是在煉鋼過程中進入鋼液的。這些元素的存在降低了鋼材的強度、冷彎性能和焊接性能。氧還使鋼材的熱脆性增加,氮還使鋼材的冷脆性及時效敏感性增加。
(5)鋁、鈦、釩、鈮。鋁、鈦、釩、鈮等元素是鋼材中的有益元素,它們均是煉鋼時的強脫氧劑,也是合金鋼中常用的合金元素。適量地加入這些元素,可以改善鋼材的組織,細化晶粒,顯著提高鋼材的強度和改善鋼材的韌性。
『貳』 引起鋼材脆性破壞的主要因素有哪些應如何防止脆性破壞的發生呢
鋼材的破壞分塑性破壞和脆性破壞兩種。
脆性破壞:載入後,無明顯變形,因此破壞前無預兆,斷裂時斷口平齊,呈有光澤的晶粒狀。脆性破壞危險性大。
影響脆性破壞的因素
1.化學成分
2.冶金缺陷(偏析、非金屬夾雜、裂紋、起層)
3.溫度(熱脆、低溫冷脆)
4.冷作硬化
5.時效硬化
6.應力集中
7.同號三向主應力狀態
1 ) 鋼材質量差、厚度大:鋼材的碳、硫、磷、氧、氮等元素含量過高,晶粒較粗,夾雜物等冶金缺陷嚴重,韌性差等;較厚的鋼材輥軋次數較少,材質差、韌性低,可能存在較多的冶金缺陷。
(2) 結構或構件構造不合理:孔洞、缺口或截面改變急劇或布置不當等使應力集中嚴重。
(3) 製造安裝質量差:焊接、安裝工藝不合理,焊縫交錯,焊接缺陷大,殘余應力嚴重;冷加工引起的應變硬化和隨後出現的應變時效使鋼材變脆。
(4) 結構受有較大動力荷載或反復荷載作用:但荷載在結構上作用速度很快時(如吊車行進時由於軌縫處高差而造成對吊車梁的沖擊作用和地震作用等),材料的應力- 應變特性就要發生很大的改變。隨著加荷速度增大,屈服點將提高而韌性降低。特別是和缺陷、應力集中、低溫等因素同時作用時,材料的脆性將顯著增加。
(5)在較低環境溫度下工作:當溫度從常溫開始下降肘,材料的缺口韌性將隨之降低,材料逐漸變脆。這種性質稱為低溫冷脆。不同的鋼種,向脆性轉化的溫度並不相同。同一種材料,也會由於缺口形狀的尖銳程度不同,而在不同溫度下發生脆性斷裂。
為了防止鋼材的脆性斷裂,可以從以下幾個方面著手:
1、裂紋
當焊接結構的板厚較大時(大於25mm),如果含碳量高,連接內部有約束作用,焊肉外形不適當,或冷卻過快,都有可能在焊後出現裂紋,從而產生斷裂破壞。針對這個問題,把碳控制在0.22%左右,同時在焊接工藝上增加預熱措施使焊縫冷卻緩慢,解決了斷裂問題。
焊縫冷卻時收縮作用受到約束,有可能促使它出現裂紋。措施是:在兩板之間墊上軟鋼絲留出縫隙,焊縫有收縮餘地,裂紋就不會出現。
把角焊縫的表面作成凹形,有利於緩和應力集中。凹形表面的焊縫,焊後比凸形的容易開裂,原因是凹形縫的表面有較大的收縮拉應力,並且在45°截面上焊縫厚度最小。凸形縫表面拉力不大,而45°截面又有所增強,情況要好的多。在凹形焊縫開裂的條件下,改用凸形焊縫,就不再開裂。
2、應力
考察斷裂問題時,應力是構件的實際應力,它不僅和荷載的大小有關,也和構造形狀及施焊條件有關。幾何形狀和尺寸的突然變化造成應力集中,使局部應力增高,對脆性破壞最為危險。施焊過程造成構件內的殘余拉應力,也是不利的。因此,避免焊縫過於集中和避免截面突然變化,都有助於防止脆性斷裂。
3、材料選用
為了防止脆性斷裂,結構的材料應該具有一定的韌性。材料斷裂時吸收的能量和溫度有密切關系。吸收的能量可以劃分為三個區域,即變形是塑性的、彈塑性的和彈性的。要求材料的韌性不低於彈性,以避免出現完全脆性的斷裂,也沒有必要高於彈塑性,對鋼材要求太高,必然會提高造價。鋼材的厚度對它的韌性也有影響。厚鋼板的韌性低於薄鋼板。
4、構造細部
發生脆性斷裂的原因是存在和焊縫相交的構造縫隙,或相當於構造縫隙的未透焊縫。構造焊縫相當於狹長的裂紋,造成高度的應力集中,焊縫則造成高額殘余拉應力並使近旁金屬因熱塑變形而時效硬化,提高脆性。低溫地區結構的構造細部應該保證焊縫能夠焊透。因此,設計時必須注意焊縫的施工條件,以保證施焊方便,能夠焊透。
『叄』 哪些因素可使鋼材變脆
從理論角來度來講影響鋼材脆性的主自要因素是鋼材中硫和磷的含量問題;
如果工藝路線不經過熱處理那麼這個因素影響就小一些;
如果工藝路線走熱處理這一步(含鍛打,鑄造)那麼這個影響就相當的明顯;
就必須採取必要的措施;
1;
設計選材上盡量避開對熱影響區和淬火區敏感的材料;
2不得已而用之那麼就要在工藝上採取預防措施;
建議再仔細查閱一下金屬材料學;
3設計過程中採取防脆斷措施如工藝圓角;
加強筋;
拔模等;
有很多;
建議查閱機械設計手冊中的工藝預防措施和手段;
『肆』 鋼中的什麼元素能使鋼材在高溫下變脆
鋼中的雜質是硫、磷。高溫變脆是硫,稱為熱脆;低溫變脆是磷,叫做冷脆。
『伍』 含量高鋼形成熱脆性的元素是磷 對嗎
不對。
含量高鋼形成熱脆性的元素是硫。對鋼進行熱加工(鍛造,軋制)時,加熱溫度常在1000℃以上,這時晶界上的FeS+Fe共晶熔化,導致熱加工時鋼的開裂。硫在固態鐵中溶解度極小,它能與鐵形成低熔點(1190℃)的FeS。FeS+Fe共晶體的熔點更低(989℃)。這種低熔點的共晶體一般以離異共晶形式分布在晶界上。
含量高鋼形成冷脆性的元素是磷。隨著溫度的降低,大多數鋼材的強度有所增加,而韌性下降,金屬材料在低溫下呈現的脆性稱為冷脆性,鋼材中磷含量的增加會顯著增加鋼材的冷脆性。
冷脆性金屬材料在低溫下呈現的沖擊值明顯降低的現象,大多是含磷元素高引起。熱脆性指某些鋼材400-500℃溫度區間長期停留後室溫下的沖擊值有明顯下降的現象。在高溫時並不表現出脆性,只有用常溫沖擊試驗才能表現出脆性上升,可比正常值下降50%-60%以上。低合金鉻鎳鋼、錳鋼、含銅鋼易有熱脆性,當含硫量達到一定程度時就會出現熱脆性的性質。
『陸』 哪些因素可使鋼材變脆,從設計角度防止構件脆斷的措施有哪些
導致鋼結構構件脆性斷裂的因素很多,主要因素有化學成份 、溫度、構件厚度、冶金缺陷、構造缺陷等。鋼中碳元素含量增高會使鋼的脆性轉變溫度升高 ,隨含碳量的增加 , 鋼的最大恰貝沖擊值顯著降低。恰貝沖擊值與試驗溫度曲線梯度趨於緩慢 ,而脆性轉變溫度顯著升高。
預防措施:
(1)、 設計構件的斷面應盡量選用最薄斷面 ,增加構件厚度將增大脆斷的危險 .
(2)、保證焊接質量,盡量減少因焊接造成的缺陷,設計上應選擇適當的焊縫金屬缺口韌性,較厚板材或型鋼焊前必須預熱,施焊過程中盡量不在負溫條件下進行 ,焊接後必須保溫緩冷,盡量保證焊接質量,減少缺陷產生。
(3)、設計焊接結構應盡量避免焊縫集中和重疊交叉。要採用較好的焊接工藝(合適的輸入熱量和操
作方法)。
(4)、在結構設計中應盡量將因缺陷引起的應力集中減小到最低限度 , 如避免尖銳角 ,盡量用較大半
徑的圓弧 。
(5)、設計人員選用鋼材時 ,除應核算強度外,還應保證材料有足夠韌性 ,應從斷裂力學理論出發選擇具有較高斷裂韌性的材料。
(6)鋼材含什麼元素高變脆擴展閱讀:
鋼材用途分類:
1、結構鋼
(1)、建築及工程用結構鋼簡稱建造用鋼,它是指用於建築、橋梁、船舶、鍋爐或其他工程上製作金屬結構件的鋼。如碳素結構鋼、低合金鋼、鋼筋鋼等。
(2)、機械製造用結構鋼是指用於製造機械設備上結構零件的鋼。這類鋼基本上都是優質鋼或高級優質鋼,主要有優質碳素結構鋼、合金結構鋼、易切結構鋼、彈簧鋼、滾動軸承鋼等
2、工具鋼
一般用於製造各種工具,如碳素工具鋼、合金工具鋼、高速工具鋼等。按用途又可分為刃具鋼、模具鋼、量 具鋼。
3、特殊鋼
具有特殊性能的鋼,如不銹耐酸鋼、耐熱不起皮鋼、高電阻合金、耐磨鋼、磁鋼等。
4、專業用鋼
這是指各個工業部門專業用途的鋼,如汽車用鋼、農機用鋼、航空用鋼、化工機械用鋼、鍋爐用鋼、電工用鋼、焊條用鋼等。
5、按鋼的品質分
優質碳素結構鋼、合金結構鋼、碳素工具鋼和合金工具鋼、彈簧鋼、軸承鋼等
鋼號後面,通常加符號「A」或漢字「高」以便識別。
『柒』 鋼中常存雜質中什麼元素使鋼易出現熱脆
一、
硅:在鋼中是有益元素
硅是由煉鋼時加入的脫氧劑帶入鋼中的。由於硅的脫氧能力較強,硅與鋼液中的
FeO能結成密度較小的硅酸鹽以爐渣的形式被除去。脫氧後鋼不可避免地殘留著少量硅,這些殘留下來的硅能溶於鐵素體,使得鐵素體強化,從而提高鋼的強度、硬度和彈性。因此,硅在鋼中是有益元素,但作為雜質元素存在時其質量分數應不超過0.4%。
二、
錳:在鋼中是有益元素
錳是由煉鋼時加入的脫氧劑帶入鋼中的。錳從
FeO中奪取氧形成MnO進入爐渣。錳不能與硫化合成MnS,以減少硫對鋼的有害影響,改善鋼的熱加工性能。在室溫下,錳大部分溶於鐵素體,對鋼有一定的強化作用。因此,錳在鋼中是有益元素,但作為雜質元素存在時其質量分數應不超過0.8%。
三、
硫:在鋼中是有害元素
硫是由生鐵和燃料帶入的雜質,煉鋼時難以除盡。在固態下硫不深於鐵,而以
FeS的形式存在,FeS與Fe能形成低熔點的共晶體(Fe+FeS),熔點僅為985℃,且分布在奧氏體晶界上。當鋼在1000~1200℃壓力加工時,由於低熔點共晶體熔化,顯著減弱晶粒之間的聯系,使鋼材在壓力加工時沿晶界開裂,這種現象為熱脆。因此,鋼中硫的質量分數必須嚴格控制。
為了消除硫所形成的熱脆,在煉鋼時必須增加錳。由於
Mn與S能形成高熔點(1620℃)的MnS,並呈粒狀分布在晶粒內,MnS在高溫時有一定的塑性,從而避免了鋼的熱脆。
硫雖然產生熱脆,但對改善鋼材的切削加工性能卻有利。如在硫的質量分數較高的鋼(
Ws=0.08%~0.45%)中適當提高錳的質量分數(WMn=0.70~1.55%),可形成較多的MnS,在切削加工中MnS能起斷屑作用,可改善鋼的切削加工性,這種鋼稱為易切削鋼,廣泛應用於標准件等的生產。
四、
磷:在鋼中是有害元素
磷是由生鐵和燃料帶入的雜質,煉鋼時難以除盡。磷能全部熔於鐵素體,提高了鐵素體的強度、硬度;但在室溫下鋼的塑性、韌性急劇下降,變脆,這種現象稱為冷脆。所以,磷是一種有害雜質元素,因此要嚴格控制磷在鋼中的含量。
磷的有害作用在一定條件下也可以轉化,例如易切削鋼,把磷的含量提高到
W
p
=0.05%~0.15%,使鐵素體脆化,從而改善鋼的切削加工性能。在炮彈鋼(W
c
=0.60%~0.90%、W
Mn
=0.60%~1.0%)中加入較多磷,可使鋼的脆性增大,炮彈爆炸時碎片增多,增加殺傷力。
『捌』 鋼材脆性破壞的原因有哪些
鋼結構發生脆性破壞的主要原因是:1、鋼材的質量差:鋼材的碳、硫、磷、氧、氮等元素含量過高,晶粒較粗,夾雜物等冶金缺陷嚴重,韌性差等。2、結構構件構造不當:孔洞、缺口或截面改變急劇或布置不當等使應力集中嚴重。3、製造安裝質量差:焊接、安裝工藝不合理,焊縫交錯,焊接缺陷大,殘余應力嚴重。4、結構承受較大動力荷載,或在較低環境溫度下工作等:該項對較厚鋼材影響更為嚴重。鋼結構是主要由鋼制材料組成的結構,是主要的建築結構類型之一。結構主要由型鋼和鋼板等製成的鋼梁、鋼柱、鋼桁架等構件組成,各構件或部件之間通常採用焊縫、螺栓或鉚釘連接。因其自重較輕,且施工簡便,廣泛應用於大型廠房、場館、超高層等領域。『玖』 影響鋼材發生冷脆的化學元素是哪些
影響鋼材發生冷脆的化學元素主要有氮和磷,而使鋼材發生熱脆的化學元素主要是氧和硫。
對於鋼材,脆性越高其硬度越大,抗彎曲強度越高,而對於塑性較強的鋼材來說正好與之相反,塑性強度大的鋼材其硬度低,易彎曲不易折斷,對於這兩種鋼材來說其性能有明顯的差別。
冷脆性只發生在具有體心立方晶格的金屬中。鍋爐與壓力容器中廣泛採用的低碳鋼及低合金鋼都是體心立方晶格型,所以會發生遇冷變脆的現象。而面心立方晶格的金屬,如鋁、銅、鎳都不會產生冷脆現象。
(9)鋼材含什麼元素高變脆擴展閱讀:
加工硬化降低了鋼材的韌性,同時使韌脆轉變溫度增加。這種影響隨鋼材類型不同及加工硬化量的大小而變化。對於沖壓封頭,試驗結果表明,冷壓封頭的韌脆轉變溫度高於熱壓封頭,且沖擊韌度值也有所減小。
對於冷脆性的材料會在溫度變低的情況下脆性急劇增加,因此,選用冷脆性材料時因注意使用的環境以及溫度等的影響因素,盡量避免不必要的意外發生,在選材時要把溫度對鋼材的影響因素考慮在內。