导航:首页 > 焊接工艺 > 焊接中氢是如何产生的

焊接中氢是如何产生的

发布时间:2022-06-11 11:31:29

❶ 氢元素对焊缝的危害有哪些

在焊缝中形成气孔。2产生内应力,导致显微裂纹。3氢脆性。4冷裂纹。5氢白点版。
具体权是:氢脆性。氢脆(或称氢损伤)是指它的器壁受到氢的侵蚀,造成材料塑性和强度降低,并因此而导致的开裂或延迟性的脆性坏。焊接过程中的湿气在高温下被还原而生成氢,并溶解在液体金属中。高温高压的氢对钢的损伤主要是因为氢以原子状渗入金属内,并在金属内部再结合成分子,产生很高的压力,严重时会导致表面鼓包或皱折;氢与钢中的碳结合

❷ 焊前消氢原理

氢,容易导致冷裂纹。氢一般是来自焊接区域的水分油污等杂质,所以在焊前要清洗、打磨、预热,把这些杂质清除。

焊接后消氢处理的原理是什么?
焊后消氢处理,是指在焊接完成以后,焊缝尚未冷却至100℃以下时,进行的低温热处理。一般规范为加热到200~350℃,保温2-6小时。
焊后消氢处理的主要作用是加快焊缝及热影响区中氢的逸出,对于防止低合金钢焊接时产生焊接裂纹的效果极为显著。这个温度是通过大量实验确定的,马氏体组织下转变温度都一样,也不是所有钢种都能产生马氏体组织,珠光体钢如低碳钢、低合金钢是等难以淬火钢是不能产生马氏体组织的。
(1)焊前预热
①对于不同的钢材、板厚、节点形式、拘束度、扩散氢含量、焊接热输入条件下焊前预热温度的要求,应符合技术规范的规定。对于屈服强度等级超过345MPa的钢材,其预热、层间温度应按钢厂提供的指导参数,或由施工企业通过焊接性试验和焊接工艺评定加以确定。
②对焊前预热及层问温度的检测和控制,工厂焊接时宜用电加热板、大号气焊、割枪或专用喷枪加热;工地安装焊接宜用火焰加热器加热。测温器具宜采用表面测温仪。
③预热时的加热区域应在焊接坡口两侧,宽度各为焊件施焊处厚度的2倍以上,且不小于100mm。测温时间应在火焰加热器移开以后,测温点应在离电弧经过前的焊接点处各方向至少75mm处,必要时应在焊件反面测温。
(2)焊后消氢处理
①焊后消氢处理应在焊缝完成后立即进行。
②消氢热处理加热温度应达到200—250。C,在此温度下保温时间依据构件板厚而定,应为每25ram板厚0.5h,且不小于1h,然后使之缓慢冷却至常温。
③消氢热处理的加热方法及测温方法与预热相同。
④调质钢的预热温度、层间温度控制范围应按钢厂提供的指导性参数进行,并应优先采用控制扩散氢含量的方法来防止延迟裂纹产生。
⑤对于屈服强度等级高于345MPa的钢材,应通过焊接性试验确定焊后消氢处理的要求和相应的加热条件。

❸ 焊接过程中氢气起到了哪些作用

纯氢气原则上不适合用作焊接的保护气,氢元素对于焊缝来说完全是一种有害气体,氢气孔、氢致裂纹,以及产生白口、脆性断裂、降低冲击韧性等;
不过在部分等离子焊接时,为了改变气体的特性,有时需要在氩气中混合入氢气,但是一般不会超过10%;
另外在等离子切割时,特别是厚板切割时,也会在氮气或氩气中混入不超过50%的氢气。
市场上能买到的一般都是99.9的吧,其他的就不清楚了。

❹ 焊接中氢气孔,冷裂纹

氢气孔是指在焊缝冷却的过程中,由于氢原子的扩散、积聚形成的孔。
冷裂纹是在焊缝金属低于相变温度时出现的裂纹。

❺ 氢气为什么会在焊缝里聚集

氢气 (H₂) 最早与16世纪初被人工合成,当时使用的方法是将金属置于强酸中。1766–81年,亨利·卡文迪许发现氢气是一种与以往所发现气体不同的另一种气体[2] ,在燃烧时产生水,这一性质也决定了拉丁语 “hydrogenium” 这个名字(“生成水的物质”之意)。常温常压下,氢气是一种极易燃烧,无色透明、无臭无味的气体。

1766年由卡文迪许(H.Cavendish)在英国发现。
在化学史上,人们把氢元素的发现与“发现和证明了水是氢和氧的化合物而非元素”这两项重大成就,主要归功于英国化学家和物理学家卡文迪许(Cavendish,H.1731-1810)。
在化学史上,有一个与这些论文稿有关的有趣的故事。卡文迪许1785年做过一个实验,他将电火花通过寻常空气和氧气的混合体,想把其中的氮全部氧化掉,产生的二氧化氮用苛性钾吸收。实验做了三个星期,最后残留下一小气泡不能被氧化。他的实验记录保存在留下的文稿中,后面写道:“空气中的浊气不是单一的物质(氮气),还有一种不与脱燃素空气(氧)化合的浊气,总量不超过全部空气的1/12.一百多年后,1892年,英国剑桥大学的物理学家瑞利(Ragleigh,L.1842-1919)测定氮的密度时,发现从空气得来的氮比从氨氧化分解产生的氮每升重0.0064克,百思不得其解。化学家莱姆塞(Ramsay,W.1852-1916)认为来自空气的氮气里面能含有一种较重的未知气体。这时,化学教授杜瓦(Duvel,J.1842-1923)向他们提到剑桥大学的老前辈卡文迪许的上述实验和小气泡之谜。他们立即把卡文迪许的科学资料借来阅读,瑞利重复了卡文迪许当年的实验,很快得到了小气泡。莱姆塞设计了一个新的实验,除去空气中的水蒸气、二氧化碳、氧气和氮气后,也得到了这种气体,密度比氮气大,用分光镜检查后,肯定这是一种新的元素,取名氩。这样,卡文迪许当年的工作在1894年元素氩的发现中起了重要作用。从这个故事可看出卡文迪许严谨的科研作风和他对化学的重大贡献。1871年,剑桥大学建立了一座物理实验室,以卡文迪许的名字命名,这就是著名的卡文迪许实验室,它在几十年内,一直是世界现代物理学的一个重要研究中心。
在18世纪末以前,曾经有不少人做过制取氢气的实验,所以实际上很难说是谁发现了氢,即使公认对氢的发现和研究有过很大贡献的卡文迪许本人也认为氢的发现不只是他的功劳。早在16世纪,瑞士著名医生帕拉塞斯就描述过铁屑与酸接触时有一种气体产生;17世纪时,比利时著名的医疗化学派学者海尔蒙特(van Helmont,J.B.1579-1644)曾偶然接触过这种气体,但没有把它离析、收集起来;波义耳虽偶然收集过这种气体,但并未进行研究。他们只知道它可燃,此外就很少了解;1700年,法国药剂师勒梅里(Lemery,N.1645-1715)在巴黎科学院的《报告》上也提到过它。
但是,最早把氢气收集起来,并对它的性质仔细加以研究的是卡文迪许。
1766年卡文迪许向英国皇家学会提交了一篇研究报告《人造空气实验》,讲了他用铁、锌等与稀硫酸、稀盐酸作用制得“易燃空气”(即氢气),并用普利斯特里发明的排水集气法把它收集起来,进行研究。他发现一定量的某种金属分别与足量的各种酸作用,所产生的这种气体的量是固定的,与酸的种类、浓度都无关。他还发现氢气与空气混合后点燃会发生爆炸;又发现氢气与氧气化合生成水,从而认识到这种气体和其它已知的各种气体都不同。但是,由于他是燃素说的虔诚信徒,按照他的理解:这种气体燃烧起来这么猛烈,一定富含燃素;硫磺燃烧后成为硫酸,那么硫酸中是没有燃素的;而按照燃素说金属也是含燃素的。所以他认为这种气体是从金属中分解出来的,而不是来自酸中。他设想金属在酸中溶解时,“它们所含的燃素便释放出来,形成了这种可燃空气”。他甚至曾一度设想氢气就是燃素,这种推测很快就得以当时的一些杰出化学家舍勒、基尔万(Kirwan,R.1735-1812)等的赞同。由于把氢气充到气球中,气球便会徐徐上升,这种现象当时曾被一些燃素学说的信奉者们用来作为他们“论证”燃素具有负重量的根据。但卡文迪许究竟是一位非凡的科学家,后来他弄清楚了气球在空气中所受浮力问题,通过精确研究,证明氢气是有重量的,只是比空气轻很多。他是这样做实验的:先把金属和装有酸的烧瓶称重,然后将金属投入酸中,用排水集气法收集氢气并测体积,再称量反应后烧瓶及内装物的总量。这样他确定了氢气的比重只是空气的9%.但这些化学家仍不肯轻易放弃旧说,鉴于氢气燃烧后会产生水,于是他们改说氢气是燃素和水的化合物。
水的合成否定了水是元素的错误观念,在古希腊:恩培多克勒提出,宇宙间只存在火、气、水、土四种元素,它们组成万物。从那时起直到18世纪70年代,人们一直认为水是一种元素。1781年,普利斯特里将氢气和空气放在闭口玻璃瓶中,用电火花引爆,发现瓶的内壁有露珠出现。同年卡文迪许也用不同比例的氢气与空气的混合物反复进行这项实验,确认这种露滴是纯净的水,表明氢是水的一种成分。这时氧气也已发现,卡文迪许又用纯氧代替空气进行试验,不仅证明氢和氧化合成水,而且确认大约2份体积的氢与1份体积的氧恰好化合成水(发表于1784年)。这些实验结果本已毫无异议地证明了水是氢和氧的化合物,而不是一种元素,但卡文迪许却和普利斯特里一样,仍坚持认为水是一种元素,氧是失去燃素的水,氢则是含有过多燃素的水。他用下式表示“易燃空气”(氢)的燃烧:
(水+燃素)+ (水-燃素)→水
易燃空气(氢) 失燃素空气(氧)
1782年,拉瓦锡重复了他们的实验,并用红热的枪筒分解了水蒸气,明确提出正确的结论:水不是元素而是氢和氧的化合物,纠正了两千多年来把水当做元素的错误概念。1787年,他把过去称作“易燃空气”的这种气体命名为“Hydrogen”(氢),意思是“产生水的”,并确认它是一种元素。
物理性质折叠
M51内的氢气
氢气是无色并且密度比空气小的气体(在各种气体中,氢气的密度最小。标准状况下,1升氢气的质量是0.0899克,相同体积比空气轻得多)。因为氢气难溶于水,所以可以用排水集气法收集氢气。另外,在101千帕压强下,温度-252.87 ℃时,氢气可转变成无色的液体;-259.1 ℃时,变成雪状固体。常温下,氢气的性质很稳定,不容易跟其它物质发生化学反应。但当条件改变时(如点燃、加热、使用催化剂等),情况就不同了。如氢气被钯或铂等金属吸附后具有较强的活性(特别是被钯吸附)。金属钯对氢气的吸附作用最强。当空气中的体积分数为4%-75%时,遇到火源,可引起爆炸。
氢气是无色无味的气体,标准状况下密度是0.09克/升(最轻的气体),难溶于水。在-252 ℃,变成无色液体,-259 ℃时变为雪花状固体。

❻ 焊缝金属中氢的主要来源有哪些

氢的主要来源:
1、焊接材料未烘干,在施焊过程水蒸气分解产生的氢;
2、母材内施焊前没有经过火焰烘烤,或者容焊缝里面的浮锈没有去除,会携带结晶水.水分子分解,就会产生氢;
3、进行CO2气体保护焊时,假如CO2纯度不高,携带的水分含量超标,也会导致焊缝中产生氢;

❼ 焊缝金属中氢的主要来源有哪些

焊缝中的氢对焊缝质量的不利影响主要有:
(1)形成氢气孔:当焊接熔池吸收版了大量的权氢时,则在焊缝凝固时由于氢在钢中的溶解度突然下降,使得焊缝中的氢处于过饱和状态,这时氢原子会结合形成氢分子,而氢分子不溶解于钢,会在液态熔池金属中形成气泡,焊缝凝固时若气泡的逸出速度小于焊缝的凝固速度,就会在焊缝中形成气孔。
(2)产生氢脆:所谓氢脆是指在室温条件下钢中的氢会使钢的塑性严重下降的现象。焊缝中的扩散氢含量越高,则氢脆现象越明显。
(3)产生白点:碳钢和低合金钢焊接时,如含氢量较高,则常常在焊缝的拉伸和弯曲试样的断面上出现银白色的局部脆断点,称之为白点,其直径一般在0.5-3mm
之间。在许多情况下,白点的中心有小的夹杂物或气孔。
(4)产生冷裂纹:焊接冷裂纹常产生于高强钢的焊接过程中,其产生机理是:在钢产生淬硬组织之后,受氢的侵袭和诱发,使焊缝组织脆化,在拘束应力的作用下产生裂纹。因此,氢是引起高强焊接冷裂纹的三大因素之一,并且有延时的特征,常称为延迟裂纹。

❽ 碱性,酸性焊条如何分别控制氢气的产生

:①限制焊接材料中氢的来源②清楚焊件和焊丝表面上的杂质③冶金处理(在药皮中加入适量的活性氧化剂)④控制焊接参数⑤焊后脱氢处...

❾ 简述焊接区氧,氢,氮对焊缝金属的影响

氢的来源:主要来源于焊条药皮,焊剂中水分,药皮中的有机物,焊件和焊丝表面上的污物(铁锈,油污)空气中的水分。 氢使焊缝金属的塑性性严重下降,促使在焊接接头中产生气孔和延时裂纹,并且还会在拉伸试样的断面上形成白点。氧的来源:主要来源于电弧中的氧化性气体,药皮中的氧化物以及焊接材料表面的氧化物。焊缝中含氧量的增加,其强度、硬度和塑性会明显下降,还能引起金属的热脆、冷脆和时效硬化,并且也是焊缝中形成气孔(CO气孔)的主要原因之一。 氮的来源:焊接区域周围的空气是氮的主要来源,氮是提高焊缝金属强度、降低塑性和韧性的元素,也是在焊缝中产生气孔的主要原因之一。焊缝金属中的氮、氢、氧都是属于有害的元素,焊接过程中应尽量减少这几种元素的渗入。

❿ 焊接中的佛化氢的来源是什么

氟化氢是主要由焊条药皮中的萤石(CaF2又称氟石)电离分解后和氢化合而成的。萤石能提高钢铁熔液的流动性,除去有害杂质硫和磷。这是正常的焊接冶炼反应。你用的焊条应该是低氢型焊条吧。

阅读全文

与焊接中氢是如何产生的相关的资料

热点内容
钢板吊装工需要考什么证上岗 浏览:530
不锈钢菜板哪个品牌质量好 浏览:798
船舶拉钢材需要注意什么 浏览:889
超大焊接件如何拼焊 浏览:272
双立人不锈钢锅如何用 浏览:229
哪里生产的铝合金下脚料多 浏览:979
广联达钢筋构件如何存盘 浏览:514
n95口罩的耳带如何手工焊接 浏览:65
4米长不锈钢管多少钱一根 浏览:640
8mm钢筋弯曲多少倍d 浏览:386
莱斯焊接机器人用什么编程系统 浏览:867
管棚的钢管内注什么料 浏览:90
厚壁方矩管定做 浏览:159
风力发电机机做钢筋多少一吨 浏览:494
二保焊如何防止焊接变形 浏览:301
焊接废气怎么办 浏览:554
变送器差压传感器如何焊接方法 浏览:777
铝合金和钛金哪个牌子好 浏览:374
瑞士刀铝合金和不锈钢哪个好 浏览:518
卧室门冷轧钢和不锈钢合页哪个好 浏览:453