㈠ 五金模具表面加硬,耐磨怎么处理
QPQ处理工艺是热处理工艺中的一种,能使被处理的机械工件增加硬度提高耐磨防腐蚀、抗咬死。QPQ处理是一种复合处理技术,是基于在渗氮盐浴和氧化盐浴中进行处理的工艺,可同时实现渗氮和氧化的复合处理,QPQ处理能大幅度提高金属表面的耐磨性和抗腐蚀性,比常规硬化处理高出60倍。
㈡ 模具表面硬化和强化的目的和方法是什么
模具表面硬化和强化的目的是为了增加模具的使用寿命,一般采用的方法是渗氮,渗氮的优点是对已做成的模具加热温度低,模具不容易变形。尤其是一些在进行热处理前已经试过模的模具特别重要。如果按照常规进行淬火的话,试过的模具就会组装不上了。这种方法一般在压铸模具里经常采用。
㈢ 铁模具表面化学处理,使其耐高温,硬度变大
模具的表面处理技术
模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果,这也正是表面处理技术得到迅速发展的原因。
模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。虽然旨在提高模具表面性能新的处理技术不断涌现,但在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。『::好就好::中国权威模具网』
渗氮工艺有气体渗氮、离子渗氮、液体渗氮等方式,每一种渗氮方式中,都有若干种渗氮技术,可以适应不同钢种不同工件的要求。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与模具钢的淬火工艺有良好的协调性,同时渗氮温度低,渗氮后不需激烈冷却,模具的变形极小,因此模具的表面强化是采用渗氮技术较早,也是应用最广泛的。
模具渗碳的目的,主要是为了提高模具的整体强韧性,即模具的工作表面具有高的强度和耐磨性,由此引入的技术思路是,用较低级的材料,即通过渗碳淬火来代替较高级别的材料,从而降低制造成本。
硬化膜沉积技术目前较成熟的是CVD、PVD。为了增加膜层工件表面的结合强度,现在发展了多种增强型CVD、PVD技术。硬化膜沉积技术最早在工具(刀具、刃具、量具等)上应用,效果极佳,多种刀具已将涂覆硬化膜作为标准工艺。模具自上个世纪80年代开始采用涂覆硬化膜技术。目前的技术条件下,硬化膜沉积技术(主要是设备)的成本较高,仍然只在一些精密、长寿命模具上应用,如果采用建立热处理中心的方式,则涂覆硬化膜的成本会大大降低,更多的模具如果采用这一技术,可以整体提高我国的模具制造水平
㈣ 如何让模具钢表面硬度比钨钢还硬
氮化可以使模具的表面硬度达到HV1000~1200,相对于硬质合金硬度HRA86.5~88左右。接近硬质合金YG15的硬度值。比YG6的硬度HRA89还稍低一些。
㈤ 增加模具钢表面耐磨性的方法有哪些请详细说明,先谢谢了。
1、渗碳:是机械制造中最古老、最常用的一种化学热处理工艺。它是渗碳介质在工件表面产生的活性碳原子,经过表面吸收和扩散将碳渗入低碳合金钢工件的表层,是其达到共析或略高于共析成分的含碳量,以便将工件经淬火和低温回火后,使表面的硬度、强度,特别是疲劳强度和耐磨性较心部有显著的提高,而心部仍然有良好的韧性。根据渗碳剂的状态不同,渗碳方法可分三类,即固体渗碳,气体渗碳和液体渗碳,但液体渗碳常含有盐,有剧毒。对于形状复杂的工件,渗碳和淬火后清洗困难,基本不被采用。
固体渗碳:是把低碳工件埋在固体渗碳剂中,装箱密封,加热到930℃左右,保温一定时间,使工件表层增碳的方法,这种方法除有渗剂来源广泛、操作简便、无需专用设备等优点外,由于渗碳后的空冷是在原渗剂保护下进行的,这样避免了高温出箱后与空气接触而造成渗层表面氧化脱碳,这些是气体渗碳等方法不具备的特点。对于单件、小批量生产的模具零件,固体渗碳法是一种简便易行的方法但与气体渗碳相比,有工件透烧时间长、渗碳速度慢、劳动强度大、不易控制渗碳质量等缺点,因此在有条件的工厂,固体渗碳已逐渐被气体渗碳所取代。
气体渗碳:气体渗碳所用的渗碳剂有两大类:一类是碳氢化合物有机液体,如煤油、苯、醇等,它们在渗炉内的高温下发生分解,析出活性碳原子;另一类是气态介质,如天然气、城市煤气等。后者成分稳定,便于控制。当用煤油、苯、醇等做气体碳剂时,是把这种液体直接滴入渗碳炉中,并用滴入速度来控制气氛碳势。为了加速渗碳剂的流通和搅动,避免死角,是渗碳均匀,在渗碳炉上装在耐热钢制的风扇,在渗碳过程中对气氛进行搅动。
2、渗氮:渗氮也叫氮化,是把氮渗入模具表面层以增加基表面硬度、耐磨性、疲劳强度、抗咬卡性、抗蚀性以及高温软化性等。由于渗层一般较薄,很硬,渗氮后除进行微量的磨削加工外,不允许作其他热处理和切削加工。为了得到好的机械性能,模具在渗氮前一般进行调质处理。同时,为了不影响模具的性能,渗氮温度不得高于调质处理中回火的温度,一般采用500-700℃。在这个温度范围内,氮原子在钢中的扩散速度较缓慢,所以渗氮要很长时间,渗层也较薄,一般为0.4-0.8mm。因为渗氮时工件既不发生相变,也没有激冷、即热过程,所以变形极小。由于氮原子渗入,工件略有涨大现象。
气体渗氮:一般都采用专用的渗氮炉,根据渗氮工件的大小和形状及操作的需要,有井式、罩式、箱式等基本类型,它们的共同特点是都有一个密封式的马弗箱或罐。
渗氮气体一般采用脱水氨气。氮化过程和渗碳一样,也可以分为分解、吸收、扩散三个阶段。
离子渗氮:开发最早且应用最广的离子化学热处理技术是离子渗氮。在离子氮化炉内形成一定的真空度,在阴极(工件)和阳极(炉壁)之间加入直流高压形成等离子体,N+、H+、NH3+等离子在阴极位降区加速轰击工件表面产生系列反应,离子轰击工件产生热量并且在工件表面C、N、O、Fe等原子被轰击出来,而Fe与阴极附近的活性氮离子(N+及电子)结合形成FeN。这些化合物因背散射效应又沉积在阴极表面,在离子轰击和热激活性作用下,依次分解出Fe、Fe2N、Fe3N、Fe4N,并同时产生活性氮原子[N],该活性氮原子大部分渗入工件内部,一部分返回等离子区。离子渗氮速度快,可以通过改变处理参数而达到最好的渗氮层组织及所需的性能,表面质量好,易于局部防渗氮处理,无公害,因此离子渗氮被广泛应用于模具渗氮工艺。
3、碳氮共渗:就是在模具工件表层同时渗碳、氮的热处理过程,亦称氰化。碳氮共渗根据所使用介质的物理状态不同,可分为固体、液体和气体碳氮共渗三种,同时根据共渗温度的不同,又可分为低温(500-600℃)、中温(700-800℃)和高温(900-950℃)碳氮共渗三种。其中低温碳氮共渗即目前广泛应用的软氮化处理,工件表层主要以渗氮为主,用以提高碳素钢、合金钢制造工模具的表面耐磨性和抗咬合性;中温碳氮共渗,其目的与渗碳相似,主要是提高结构钢零件的表面硬度,它与渗碳相比,将使工件具有更好的耐磨性和抗疲劳性能。高温碳氮共渗,以渗碳为主。我国则以中温气体碳氮共渗软氮化应用较广。
中温气体碳氮共渗:
气体软氮化:软氮化实质是在较低温度下进行的以渗氮为主的碳氮共渗。它具有处理温度低、共渗时间短、工件变形小、适用钢铁材料很为广泛等特点,经软氮化处理后,可显著提高工件表面的疲劳强度及耐磨损、抗咬合、抗摩擦和腐蚀等性能。而且软氮化所用设备部复杂,操作简单。因此该工艺在许多冷作和热作模具零件下采用,均收到良好的使用效果。
4、渗硼:渗硼处理是模具制造业中一项有效的化学处理。渗硼层有很高的硬度(1300-2000HV)和耐磨性。无论是碳素钢或合金钢,经渗硼后,均有较好的耐蚀性能,也显著提高在800℃一下温度的耐热的性能。因此,近些年来,渗硼工艺发展很快,在工模具制造中应用日渐增多。渗硼处理对模具表面的粗糙度影响很少,因此在渗硼处理工件必须经过完善的精加工,渗硼后工件尺寸稍有增加,一般为渗层的10%-20%;对于形状复杂的工件,渗硼前必须采用退火等热处理工序,以便消除在工件内部的加工应力,否则渗硼处理后将引起工件的变形。
5、其他化学热处理:
渗铬:渗铬工艺是在高温下,将活性铬原子通过工件表面吸收,以中和碳相互扩散,在模具表面生成一层牢固的铁-铬-碳合金层,这合金层组织既具高温抗氧化、耐腐蚀性能,又有高的硬度、强度、耐磨性和耐疲劳性能等。所以它兼有渗碳、渗氮和渗铝的优点。
渗硫和硫氮共渗
6、气相沉淀技术:
碳化钛涂层:
7、激光强化技术:
激光相变硬化(激光淬火):
激光非晶化:
激光表面合金化:
8、热喷涂
沈阳中金模具钢
㈥ 模具经过怎样处理能提高硬度 耐磨 而且不变形 请高人指点
你所说的应该是注塑模具吧,为了提高注塑模具的硬度、耐磨性,而且不变形,应根据不同的模具结构、类型,采用不同的热处理方法。一般来说,对于不怕变形,能淬火的模具,尽量采用淬火的热处理方法,这样可以提高模具的硬度与耐磨性。由于氮化处理的温度比较低,对于一些怕变形的模具,可以采用表面渗氮的方法来提高模具表面的硬度与耐磨性。
㈦ 一般模具常用的表面强化有哪些
你的问题不太明确,其实模具内有很多种分类。你所要的是那一类模具表面强化。不同种类模具有不同的要求和方法。如罗列所有的方法,对你也不一定都有用,很多人也只有在某类模具中是专家,但一定不是通材,知道所有的方法。
㈧ 模具的表面强化热处理有哪些
模具表面强化处理工艺主要有气体氮化法、离子氮化法、电火 花表面强化法、渗硼、TD法、CVD法、PVD法、激光表面强化 法、离子注入法、等离子喷涂法等。
(1)气体软氮化:使氮在氮化温度分解后产生活性氮原子,被 金属表面吸收渗入钢中并且不断自表面向内扩散,形成氮化层。模 具经氮化处理后,表面硬度可达950〜1200HV,使模具具有很高 的红硬度和高的疲劳强度,并提高模具表面的光洁度和抗咬合
能力
。
(2)离子氮化:将待处理的模具放在真空容器中,充以一定压 力的含氮气体(如氮或氮氢混合气),然后以被处理模具作阴极, 以真空容器的罩壁作阳极,在阴阳极之间加400〜600V的直流电 压,阴阳极间便产生辉光放电,容器里的气体被电离,在空间产生 大量的电子与离子。在电场的作用下,正离子冲向阴极,以很高的 速度轰击模具表面,将模具加热。正离子冲入模具表面,获得电子,变成氮原子被模具表面吸收,并向内扩散形成氮化层。应用离 子氮化法可提高模具的耐磨性和疲劳强度。
(3)电火花表面强化:这是一种直接利用电能的高能量密度对 模具表面进行强化处理的工艺。它是通过火花放电的作用,把作为 电极的导电材料渗进金属工件表层,从而形成合金化的表面强化 层,使工件表面的物理、化学性能和力学性能得到改善。例如采用 WC、TiC等硬质合金电极材料强化高速钢或合金工具钢表面,可 形成显微硬度1100HV以上的耐磨、耐蚀和具有红硬性的强化层, 使模具的使用寿命明显提高。电火花表面强化的优点是设备简单、 操作方便,处理后的模具耐磨性提高显著;缺点是强化表面较粗 糙,强化层厚度较薄,强化处理的效率低。
(4)渗硼:由于渗硼层具有良好的红硬性、耐磨性,通过渗硼 能显著提高模具表面硬度(达到1300〜2000HV)和耐磨性,可广 泛用于模具表面强化,尤其适用于处理在磨粒磨损条件下的模具。 但渗硼层往往存着较大的脆性,这也限制了它的应用。
(5)TD热处理:在空气炉或盐槽中放入一个耐热钢制的坩埚, 将硼砂放入坩埚加热熔化至800〜1200℃,然后加入相应的碳化物 形成粉末(如钦、钡、铌、铬),再将钢或硬质合金工件放入坩埚 中浸渍保温1〜2h,加入元素将扩散至工件表面并与钢中的碳发生 反应形成碳化物层,所得到的碳化物层具有很高的硬度和耐磨性。
(6)CVD法(化学气相沉积):将模具放在氢气(或其它保护 气体)中加热至900〜1200℃后,以其为载气,把低温汽化挥发的 金属化合物气体如四氯化钛和甲烷(或其它碳氢化合物)蒸气带入 炉中,使TiCl4中的钛和碳氢化合物中的碳(以及钢表面的碳分) 在模具表面进行化学反应,从而生成一层所需金属化合物涂层(如 碳化钦)。
(7)PVD法:在真空室中使强化用的金属原子蒸发,或通过荷 能粒子的轰击,在一个电流偏压的作用下,将其吸引并沉积到工件 表面形成强化层。利用PVD法可在工件表面沉积碳化钛、氮化 钛、氧化铝等多种化合物。
(8)激光表面强化:当具有一定功率的激光束以一定的扫描速 度照射到经过黑化处理的模具工作表面时,将使模具工作表面在很 短时间内由于吸收激光的能量而急剧升温。当激光束移开时,模具 工作表面由基材自身传导而迅速冷却,从而形成具有一定性能的表 面强化层,其硬度可提高15%〜20%,此外还具有耐磨性高、节 能效果显著以及可改善工作条件等优点。
(9)离子注入:利用小型低能离子加速器,将需要注入元素的 原子,在加热器的离子源中电离成离子,然后通过离子加热器的高 电压电场将其加热,成为高速离子流,再经过磁分析器提炼后,将 离子束强行打入置于靶室中的模具工作表面,从而改变模具表面的 显微硬度和表面粗糙度,降低表面摩擦系数,最终提高工件的使用 寿命。
㈨ 如何让模具纹面喷砂亮度变高
模具表面喷砂亮度变高,话题比较模糊。
若是表面可以喷成亚光,用最普通的玻璃珠就可以,价格便宜,也很好找。若要是再亮些,需要用氧化锆喷砂料,不过这个材料价格很高,是普通玻璃珠价格10倍还多,可能会超出预算成本。
若是表面不可以喷成亚光,那么操作起来就很难了。天狼星胶皮状喷砂料能解决,但这个成本更高,是氧化锆价格的40倍之多,一般若不是使用在价格特高的模具上是不使用的。下图是天狼星加工前和加工后的对比。那个加工后的很亮,把照相的相机和人手都映在里面。
㈩ 模具表面硬化和强化的目的和方法是什么
模具表面硬化和强化的目的是为了增加模具的使用寿命,一般采用的方法是渗氮,渗氮的优点是对已做成的模具加热温度低,模具不容易变形。尤其是一些在进行热处理前已经试过模的模具特别重要。如果按照常规进行淬火的话,试过的模具就会组装不上了。这种方法一般在压铸模具里经常采用。