① 如何提升高端精密汽车模具制造效率和精度
随着我国汽车工业的迅速发展,汽车制造业对于汽车模具制造的需要更好的质量、更低的投入,更重要的是制造效率。现代工业模具主要通过数控铣削工艺进行制造,通过数控铣床进行复杂回转,用高速旋转的铣刀在在固定毛坯上走刀,切出需要的模具形状和特征的工艺。
提升高端汽车精密模具制造效率,保证汽车制造的零件质量:
一、汽车模具设计标准化
在众多的汽车精密模具当中,在设计汽车精密模具过程时全面地考虑到该模具的使用寿命、场合、工艺方法及过程中可能会出现的一系列问题,从源头开始设计模具图样就向标准化、流程规范化发展。
二、制造工艺优化与制定
当汽车模具图样设计工作任务完成后,接下来就是如何编制模具制造工艺。一般模具制造工艺流程为:下料→粗工→热处理→平磨→精工→钳工等。在过程中会出现一些技术难题,因为模具与一般零件制造有很大差异,因此编制工艺时不仅要综合考虑到机床刚性、精度、工艺行程等,还要考虑到前后工序的连贯、留量是否合理。同时我们在编制工艺时抓工艺重点细节,做到设计基准、切削基准、编程基准、测量基准、模具装配基准统一,以减少累积误差。
三、切削机床选型与匹配
在切削高端精密模具时机床的匹配工艺显得尤为重要,使用简易的经济型数控机床切削精密汽车模具曲面与外圆时,总有非常明显的接刀痕迹出现,通常机床精度根本达不到图样所要求的精度尺寸要求。因此在切削精密模具时,须特别关注机床重要参数、性能、功能、精度等,这样更有利于提高模具工艺效率。
四、机床刀具选型与匹配
在切削精密汽车模具时刀具选型显得十分重要,我们应考虑到切削该模具零件的刀具材料是什么,同时结合刀具制造企业提供的刀柄及相配合刀片资料,选用合理的切削参数。常用的碳钢、钛合金、铝、复合材料等非金属材料,在粗工模具时应以提高效率为主,合适背吃刀量、高进给速度、中转速;精工切削汽车模具时,高转速、高进给、低吃刀量为原则,这些具体的重要参数可参考刀具企业提供的推荐参数。
五、编程设备使用与匹配
随着数控机床迅速发展,编程智能化水平的提高,复杂零件或高端精密模具对数控机床、编程工具提出了更高的要求,由手工编程沿着自动编程转变,软件编程可准确的将复杂零件或模具绘制出来,同时也避免了出错率,现在有很多汽车制造企业正广泛使用适合自己的专用编程工具。在切削如何复杂零件或模具,只要选择你熟练的合适编程工具,更有利于切削效率的提高。
六、切削油品性能与选用
切削油是金属切削工艺中必须使用的润滑介质,高精度模具切削工艺对切削油的冷却、润滑、渗透及清洗性能有更高的要求。采用废机油、植物油等代替专用切削油使用时,很容易出现毛刺、划痕、破损、变形等不良情况,同时刀具寿命也会有很大的降低。高端切削油由于采用无腐蚀性的硫化极压抗磨添加剂为主剂,油膜附着力强,强韧的油膜能够有效的保护刀具提高模具表面质量,同时能避免工件发生生锈变黑和工人皮肤过敏等问题。
② 具有韧性耐磨性的模具配件材料
具有韧性耐磨性的模具配件材料是8566模具钢。
8566模具钢,让你冲头料不崩裂。8566的韧性,是高速钢SKH-9的4倍,D2的2倍。8566使用硬度HRC58-60,高硬度保证高强度和耐磨性。
在有硬度或厚板材料冲压模具冲头料方面,如2.0以上的201,304不锈钢,65Mn厚板冲压模具。8533 模具钢在保证冲头料强度,具备耐磨性的前提下,可以解决冲头料崩裂问题。8566的抗崩裂性能比DC53,D2,LD,SKH-9,CALDIE更好。
③ 好的模具钢属于哪几种
模具钢材主要分为:冷作模具钢、热作模具钢、塑料模具钢、碳素结构钢,还有一些进口模具钢:譬如说日本大同,日立,瑞典,抚顺,一胜百等等,
按材料分最好的主要有:DC53 ,SKD11 ,SLD , 2379. .8407 ,NAK80 , D2 . SKH-9. DAC , DAC55 , H13 , S136 , S136H 718 ,718H 等等材料!
冷作模具钢材包括冷冲模、拉丝模、拉延模、压印模、搓丝模、滚丝板、冷镦模和冷挤压模等。冷作模具有钢,按其所制造具的工作条件,应具有高的硬度、强度、耐磨性、足够的韧性,以及高的淬透性、淬硬性和其他工艺性能。用于这类用途的合金工具用钢一般属于高碳合金钢,碳质量分数在0.80%以上,铬是这类钢的重要合金元素,其质量分数通常不大于5%。但对于一些耐磨性要求很高,淬火后变形很小模具用钢,最高铬质量分数可达13%,并且为了形成大量碳化物,钢中碳质量分数也很高,最高可达2.0%~2.3%。冷作模具钢的碳含量较高,其组织大部分属于过共析钢或莱氏体钢。常用的钢类有高碳低合金钢、高碳高铬钢、铬钼钢、中碳铬钨钏钢等。
热作模具钢材分为锤锻、模锻、挤压和压铸几种主要类型,包括热锻模、压力机锻模、冲压模、热挤压模和金属压铸模等。热变形模具在工作中除要承受巨大的机械应力外,还要承受反复受热和冷却的做用,而引起很大的热应力。热作模具钢除应具有高的硬度、强度、红硬性、耐磨性和韧性外,还应具有良好的高温强度、热疲劳稳定性、导热性和耐蚀性,此外还要求具有较高的淬透性,以保证整个截面具有一致的力学性能。对于压铸模用钢,还应具有表面层经反复受热和冷却不产生裂纹,以及经受液态金属流的冲击和侵蚀的性能。这类钢一般属于中碳合金钢,碳质量分数在0.30%~0.60%,属于亚共析钢,也有一部分钢由于加入较多的合金元素(如钨、钼、钒等)而成为共析或过共析钢。常用的钢类有铬锰钢、铬镍钢、铬钨钢等。
塑料模具包括热塑性塑料模具和热固性塑料模具。塑料模具用钢要求具有一定的强度、硬度、耐磨性、热稳定性和耐蚀性等性能。此外,还要求具有良好的工艺性,如热处理变小、加工性能好、耐蚀性好、研磨和抛光性能好、补焊性能好、粗糙度高、导热性好和工作条件尺寸和形状稳定等。一般情况下,注射成形或挤压成形模具可选用热作模具钢;热固性成形和要求高耐磨、高强度的模具可选用冷作模具钢。
塑胶模具钢
模具钢材可加工性
——热加工性能,指热塑性、加工温度范围等;
热作模具用钢
——冷加工性能,指切削、磨削、抛光、冷拔等加工性能。
冷作模具钢大多属于过共析钢和莱氏体钢,热加工和冷加工性能都不太好,因此必须严格控制热加工和冷加工的工艺参数,以避免产生缺陷和废品。另一方面,通过提高钢的纯净度,减少有害杂质的含量,改善钢的组织状态,以改善钢的热加工和冷加工性能,从而降低模具的生产成本。
为改善模具钢的冷加工性能,自20世纪30年代开始,研究向模具钢中加入S、Pb、Ca、Te等易切削加工元素或导致模具钢中碳的石墨化的元素,发展了各种易切削模具钢,以进一步改善其切削性能和磨削性能,减少刀具磨料消耗、降低成本。
模具钢材淬透性和淬硬性
淬透性主要取决于钢的化学成分和淬火前的原始组织状态;淬硬性则主要取决于钢中的含碳量。对于大部分的冷作模具钢,淬硬性往往是主要的考虑因素之一。对于热作模具钢和塑料模具钢,一般模具尺寸较大,尤其是制造大型模具,其淬透性更为重要。另外,对于形状复杂容易产生热处理变形的各种模具,为了减少淬火变形,往往尽可能采用冷却能力较弱的淬火介质,如空冷、油冷或盐浴冷却,为了得到要求的硬度和淬硬层深度,就需要采用淬透性较好的模具钢。
模具钢材淬火温度和热处理变形
为了便于生产,要求模具钢淬火温度范围尽可能放宽一些,特别是当模具采用火焰加热局部淬火时,由于难于准确地测量和控制温度,就要求模具钢有更宽的淬火温度范围。
模具在热处理时,尤其是在淬火过程中,要产生体积变化、形状翘曲、畸变等,为保证模具质量,要求模具钢的热处理变形小,特别是对于形状复杂的精密模具,淬火后难以修整,对于热处理变形程度的要求更为苛刻,应该选用微变形模具钢制造。
氧化、脱碳敏感性
模具在加热过程中,如果发生氧化、脱碳现象,就会使其硬度、耐磨性、使用性能和使用寿命降低;因此,要求模具钢的氧化、脱碳敏感性好。对于含钼量较高的模具钢,由于氧化、脱碳敏感性强,需采用特种热处理,如真空热处理、可控气氛热处理、盐浴热处理等。
模具钢材其他因素
在选择模具钢时,除了必须考虑使用性能和工艺性能之外,还必须考虑模具钢的通用性和钢材的价格。模具钢一般用量不大,为了便于备料,应尽可能地考虑钢的通用性,尽量利用大量生产的通用型模具钢,以便于采购、备料和材料管理。另外还必须从经济上进行综合分析,考虑模具的制造费用、工件的生产批量和分摊到每一个工件上的模具费用。从技术、经济方面全面分析,以最终选定合理的模具材料。
模具钢材性能要求
1. 强度性能
(1)硬度硬度是模具钢的主要技术指标,模具在高应力的作用下欲保持其形状尺寸不变,必须具有足够高的硬度。冷作模具钢在室温条件下一般硬度保持在HRC60左右,热作模具钢根据其工作条件,一般要求保持在HRC40~55范围。对于同一钢种而言,在一定的硬度值范围内,硬度与变形抗力成正比;但具有同一硬度值而成分及组织不同的钢种之间,其塑性变形抗力可能有明显的差别。
(2)红硬性 在高温状态下工作的热作模具,要求保持其组织和性能的稳定,从而保持足够高的硬度,这种性能称为红硬性。碳素工具钢、低合金工具钢通常能在180~250℃的温度范围内保持这种性能,铬钼热作模具钢一般在550~600℃的温度范围内保持这种性能。钢的红硬性主要取决于钢的化学成分和热处理工艺。
(3)抗压屈服强度和抗压弯曲强度 模具在使用过程中经常受到强度较高的压力和弯曲的作用,因此要求模具材料应具有一定的抗压强度和抗弯强度。在很多情况下,进行抗压试验和抗弯试验的条件接近于模具的实际工作条件(例如,所测得的模具钢的抗压屈服强度与冲头工作时所表现出来的变形抗力较为吻合)。抗弯试验的另一个优点是应变量的绝对值大,能较灵敏地反映出不同钢种之间以及在不同热处理和组织状态下变形抗力的差别。
2. 韧性
在工作过程中,模具承受着冲击载荷,为了减少在使用过程中的折断、崩刃等形式的损坏,要求模具钢具有一定的韧性。
模具钢的化学成分,晶粒度,纯净度,碳化物和夹杂物等的数量、形貌、尺寸大小及分布情况,以及模具钢的热处理制度和热处理后得到的金相组织等因素都对钢的韧性带来很大的影响。特别是钢的纯净度和热加工变形情况对于其横向韧性的影响更为明显。钢的韧性、强度和耐磨性往往是相互矛盾的。因此,要合理地选择钢的化学成分并且采用合理的精炼、热加工和热处理工艺,以使模具材料的耐磨性、强度和韧性达到最佳的配合。
冲击韧性系表特征材料在一次冲击过程中试样在整个断裂过程中吸收的总能量。但是很多工具是在不同工作条件下疲劳断裂的,因此,常规的冲击韧性不能全面地反映模具钢的断裂性能。小能量多次冲击断裂功或多次断裂寿命和疲劳寿命等试验技术正在被采用。
3. 耐磨性
决定模具使用寿命最重要的因素往往是模具材料的耐磨性。模具在工作中承受相当大的压应力和摩擦力,要求模具能够在强烈摩擦下仍保持其尺寸精度。模具的磨损主要是机械磨损、氧化磨损和熔融磨损三种类型。为了改善模具钢的耐磨性,就要既保持模具钢具有高的硬度,又要保证钢中碳化物或其他硬化相的组成、形貌和分布比较合理。对于重载、高速磨损条件下服役的模具,要求模具钢表面能形成薄而致密粘附性好的氧化膜,保持润滑作用,减少模具和工件之间产生粘咬、焊合等熔融磨损,又能减少模具表面进行氧化造成氧化磨损。所以模具的工作条件对钢的磨损有较大的影响。
耐磨性可用模拟的试验方法,测出相对的耐磨指数,作为表征不同化学成分及组织状态下的耐磨性水平的参数。以呈现规定毛刺高度前的寿命,反映各种钢种的耐磨水平;试验是以Cr12MoV钢为基准进行对比。
4. 抗热疲劳能力
热作模具钢在服役条件下除了承受载荷的周期性变化之外,还受到高温及周期性的急冷急热的作用,因此,评价热作模具钢的断裂抗力应重视材料的热机械疲劳断裂性能。热机械疲劳是一种综合性能的指标,它包括热疲劳性能、机械疲劳裂纹扩展速率和断裂韧性三个方面。
热疲劳性能反映材料在热疲劳裂纹萌生之前的工作寿命,抗热疲劳性能高的材料,萌生热疲劳裂纹的热循环次数较多;机械疲劳裂纹扩展速率反映材料在热疲劳裂纹萌生之后,在锻压力的作用下裂纹向内部扩展时,每一应力循环的扩展量;断裂韧性反映材料对已存在的裂纹发生失稳扩展的抗力。断裂韧性高的材料,其中的裂纹如要发生失稳扩展,必须在裂纹尖端具有足够高的应力强度因子,也就是必须有较大的裂纹长度。在应力恒定的前提下,在一种模具中已经存在一条疲劳裂纹,如果模具材料的断裂韧性值较高,则裂纹必须扩展得更深,才能发生失稳扩展。
也就是说,抗热疲劳性能决定了疲劳裂纹萌生前的那部分寿命;而裂纹扩展速率和断裂韧性,可以决定当裂纹萌生后发生亚临界扩展的那部分寿命。因此,热作模具如要获得高的寿命,模具材料应具备高的抗热疲劳性能、低的裂纹扩展速率和高的断裂韧性值。
抗热疲劳性能的指标可以用萌生热疲劳裂纹的热循环数,也可以用经过一定的热循环后所出现的疲劳裂纹的条数及平均的深度或长度来衡量。
5. 咬合抗力
咬合抗力实际就是发生“冷焊”时的抵抗力。该性能对于模具材料较为重要。试验时通常在干摩擦条件下,把被试验的工具钢试样与具有咬合倾向的材料(如奥氏体钢)进行恒速对偶摩擦运动,以一定的速度逐渐增大载荷,此时,转矩也相应增大,该载荷称为“咬合临界载荷”,临界载荷愈高,标志着咬合抗力愈强。
④ 一般冲压和精密冲压的精度问题
这个在模具手册上是有的,另外要纠正下你的概念,零件的精度首先是由模具保证,其次才是机床,普通的机床有的精冲模具(需专门设计)也是能上的(可能要改造),普通冲压所能达到的零件精度等级在各个方面都有详细的说明,这个你可以查下《中国模具设计大典:第3卷 冲压模具设计》第11页开始从冲裁到拉深、翻边等都有,只能笼统大概的说冲裁件的尺寸精度要求应与冲压工艺相适应,其普通冲压合理经济精度为IT9~IT12,较高精度冲裁件可达到IT8~IT10。至于精冲对应由料厚(0.5-16mm)不同而不同,其范围能最高IT6最低IT9,这个也可以查表。
---------------------------
抱歉,我无法像一楼那样给出具体数值,这个与料厚及零件尺寸规格等因素相关,是给不出的,需要你自己查。
⑤ 模具为什么要精选淬火处理
模具淬火处理是为了提高模具成型零件的耐磨性一般都要进行淬火处理,并且要求达到H RC52 - 57 0 在结构用途的零件中,型芯垫板,顶杆垫板等垫板一类零件在成型或者顶出塑料制件时.要承受较大的单位挤压力,也要淬火处理。
模具(mú jù),工业生产上用以注塑、吹塑、挤出、压铸或锻压成型、冶炼、冲压等方法得到所需产品的各种模子和工具。 简而言之,模具是用来成型物品的工具,这种工具由各种零件构成,不同的模具由不同的零件构成。它主要通过所成型材料物理状态的改变来实现物品外形的加工。素有“工业之母”的称号。
⑥ 如何提高塑料模具的精密度
1.型腔布置。根据塑件的几何结构特点、尺寸精度要求、批量大小、模具制造难易、模具成本等确定型腔数量及其排列方式。
对于注射模来说,塑料制件精度为3级和3a级,重量为5克,采用硬化浇注系统,型腔数取4-6个;塑料制件为一般精度(4-5级),成型材料为局部结晶材料,型腔数可取16-20个;塑料制件重量为12-16克,型腔数取8-12个;而重量为50-100克的塑料制件,型腔数取4-8个。对于无定型的塑料制件建议型腔数为24-48个,16-32个和6-10个。当再继续增加塑料制件重量时,就很少采用多腔模具。7-9级精度的塑料制件,最多型腔数较之指出的4-5级精度的塑料增多至50%。
2.确定分型面。分型面的位置要有利于模具加工,排气、脱模及成型操作,塑料制件的表面质量等。
3.确定浇注系统(主浇道、分浇道及浇口的形状、位置、大小)和排气系统(排气的方法、排气槽位置、大小)。
4.选择顶出方式(顶杆、顶管、推板、组合式顶出),决定侧凹处理方法、抽芯方式。
5.决定冷却、加热方式及加热冷却沟槽的形状、位置、加热元件的安装部位。
6.根据模具材料、强度计算或者经验数据,确定模具零件厚度及外形尺寸,外形结构及所有连接、定位、导向件位置。
7.确定主要成型零件,结构件的结构形式。
8.考虑模具各部分的强度,计算成型零件工作尺寸。
以上这些问题如果解决了,模具的结构形式自然就解决了。这时,就应该着手绘制模具结构草图,为正式绘图作好准备。
⑦ 精密模具的间隙问题
1.滑块与滑轨 (5-6丝)百
2.顶针与模仁 (滑配)
3.模仁与模框 (2-3丝)
4.滑块与斜销度(斜导柱知) (滑配)
5.滑块与压块.(2-4丝)
还得根据具体的情况而定,我所说的这道些尺寸是一般在回加工后,模具装配好以后的一些尺寸在设答计时还要相应的放小些
⑧ 塑胶模具结构设计需要注意些什么问题
模具结构设计
1. 滑块导轨的高至少要为滑块高的1/3
2. 有滑动摩擦的位置注意开设润滑槽,为了防止润滑油外流,不宜把槽开成“开式”,而应
该为“封闭式”,一般可以用单片刀在铣床上直接铣出。
3. 固定模仁的型腔,对小模一般用线割,这样可以提高模具的精度;而较大模的模腔一般铣
削的形式加工出来,加工时注意其垂直度,并且为了防止装配时,模仁不到位,模框的四周应该用铣刀铣深0.2。
4. 入子与模仁,模仁与模仁,模仁与模框的相互穿插一般要加1°的斜度,以防装配时碰
伤。
5. 入子的靠位部分长度公差为-0.02,大小公差为-0.10,模仁相对应的靠位公差为+0.02。
6. 有C角的入子最底端到C角部位的公差为+0.01,以防跑毛边。
7. 本体模具的主体部分用NAK80的材料,入子、梢等用SKH9、SKH51(材料处理:室化处
理,也可以不要)的材料,必要时可以使用VIKING材料。
8. 画好部品之后,应先定滑块的位置、大小,防止发生干涉、及强度不够的现象,然后才定
模仁寸法。
9. 入子大小公差设为-0.01,模仁上入子孔对应的公差为+0.01。
10. 模仁上的线割方孔尖角部分用R0.20过度,对应的入子部分也为R0.20,以对应线切割时的
线径影响,同时可以防止尖角部分磨损,而产生益边。
11. 与定位珠相对应的小凹坑寸法一般为底径φ3夹角90°-120°的圆锥孔。
12. 固定侧的拔模角应该大于可动侧,以便离型留在可动侧;而且可以防止部品变形,尤其是
壁薄,件长容易变形的零件,固定侧对它的拉力不均容易使部品翘曲,或留在固定侧。
13. 对于侧面抽芯力大而部品精度要求又严的零件,最好采用二次抽芯结构。
14. 斜梢的斜度+2°=压紧块的斜度(一般为18°或20°或22°).
15. 模具组立时,应该养成如下习惯:
a. 用空气枪清理模仁、模腔、入子、流道板、分模面的表面。
b. 装配前用油石打光模仁、模腔、入子、分模面的表面,以便装配时顺tang。
c. 注意清角,以防干涉、碰伤。
d. 装配前应该考虑后面的工作如何进行。
16. 大模具模仁的侧面压紧块应该设计成锁紧后底于分模面0.5-1.0mm,以防干涉。
17. PC+GF20收缩率3/1000
18. POM收缩率正常为20/1000,但有时局部会达30/1000。
19. 为防止潜伏式浇口在部品顶出时刮伤部品,在流道离潜伏式浇口2-4mm处增加一锲形块,
高约为流道一半,夹角为单边10°,供顶出时折断浇口。
20. 主流道拉料井,采用深8-10mm,夹角为单边10°,顶径为流道宽的倒圆锥;这样的好处是
可防止单边磨成锲形的拉料在顶出时勾住流道,造成离型不良。
21. 开闭器有两种:1.橡胶制成,靠中心的螺杆调节变形量,来调节拉力。2.用弹簧钢制成。
其作用都为:延迟可动侧与固定侧的开模时间,应用于小水口模。
22. 为了确保模具的顶针和斜销是否复位,有些模具安装了早回机构(母的装在108板上,公
的装在102板上,公的类似于顶针,底部用无头螺钉堵住,一般布置两个)或微动开关(在108和109板[装电器元件]之间)。
23. 考虑注塑机装夹模具时的螺杆长度,需要注意上下固定板的厚度,必要时四个角应该铣低
一些,同时,为了提高安全性,上下固定板上可以根据注塑机上孔的位置,钻四个螺栓孔。
24. 斜销的成型端有一段直面,一般长4-6mm,为了在顶出时斜销在107与108板间滑动顺烫
底部应该倒0.5mm-1mm的R角。
25. 需要咬花的外观品,拔模斜度的设计需要考虑咬花的程度,以免造成外观拉伤。有些突出
部位,考虑咬花后截面会变大,实际加工时应该单边小0.02-0.03。
26. 考虑固定侧与可动侧合模会形成断差,固定侧比可动侧单边小0.03-0.05。
27. 有滑块的模具中,有时需要在滑块上的滑块与压紧块相靠的斜面开设油沟;此外,如果不
影响成形的前提下,在模板上表面开设油沟比在滑块底部开设油沟加工效率更高。
28. 不应该把分型面选在表面有要求的位置。
29. 加纤的收缩率为流动方向小千分之1-2,垂直于流动方向大;不加纤的则正好相反。
30. 齿顶圆的收缩率比齿根圆的收缩率小千分之1-2。
31. 模具在使用一段时间后,需要进行型修,修模仁的过程中,尽量不要用油石,因为多次使
用油石会使模具变形;最好用削好的软木或软竹筷。
32. 有滑块的模具中,#102与#103板之间应该加四个支撑拄。
33. 成形里面夹有入子外面包有模仁的部品时,要考虑二次抽芯机构,以免脱 模困难,造成部
品损伤;如果入子在固定侧或滑块上,常常先抽入子;如果入子在可动侧,又与固定侧靠破,可以把入子的沉孔做深些,顶出时先把部品顶出,再脱出入子。如不靠破,则应先脱入子,则应该变更相应的模具结构。
34. 固定侧与可动侧之间的靠破面如果为非垂直开模方向的平面,则应该设计成斜面,以减少
因摩损而形成飞边的可能,同时也使靠破时形成预压,加强两个面的贴合,设计时长度方向应该设计成+0.02的正公差,但是应该注意的是当固定侧与可动侧有脱模斜度时,要小心考虑因固定侧与可动侧脱模斜度方向相反,在靠破的斜面处会形成与部品设计原图不符的接痕,考虑不周还会形成难以消除的毛边或断插。
35. 当固定侧需要咬花时,固定侧的外形尺寸应该根据咬花程度,设计时单边小0.03-0.05mm。
36. 电极的抛光一般用1000的砂纸精抛,但外观电极需要用1200以上的砂纸精抛;模仁的抛
光用1500,但要求有镜面的则要用3000的砂纸,最后用钻石膏和脱脂棉来精抛。配入子时,先用400的砂纸,再用800的砂纸,不过,日本模具中入子好象用了1000-1200的砂纸进行抛光过。
37. 塑胶齿轮成形后,对齿轮参数的测量主要齿顶圆和跨齿厚,如果两齿轮靠得太紧,或太松
都会影响到传动性;跨齿厚的测量有专门的测量仪器。
38. 模具设计中,如果部品的肉厚不均匀,而部品的浇口均匀分布,则容易产生浇注不均的现
象。比如,田晶东的0004模具。
39. 用PC+30GF制造的齿轮,虽然在成形的尺寸方面比较好,一般可以一模四件,但是其刚
性,耐磨性等不如PBT+GF30,因此,虽然PBT在成形方面尺寸不易控制,只能一模两件,但是象Olympus这样注重品质的厂家,在品质与成本面前,还是选择了品质。
40. 模具设计中,为了不影响部品的使用,常需在部品表面凹进一块,让浇口剪断残余低于部
品表面,内凹深度以满足浇口残余低于部品表面的前提下越浅越好,一般为0.3-0.5mm,太深则会影想成形时的尺寸,比如田晶东的0004模具和易湘成的0026模具。
41. 为了改善部品距离浇口较远端的填充性能,可以在这些部位开设逃气槽,增加入子;这一
点,设计前尤其应该考虑的,定结构时,应该有这样一种观念:尽量让流体在模腔内流动时各个部分的压力,温度均恒。
42. 部品肉薄,成形困难的模具,如王锋的0001与0002,通过加大点浇口可提高其成形性能,
但是并非越大越好,如果过大,浇口剪断时会从部品上撕下一些肉,形成一个凹坑,同时,部品的取向作用会增大,易变形。因此点浇口以¢0.5-1.2mm为宜。
43. 电火花加工中,放电间隙和加工精度有直接联系(一般认为为3:1)。
44. 大模仁的压紧块斜度为1°、3°、5°
45. 为了便于斜销顶出,设计时应该把斜销设计得比正常短0.1-0.3mm,即该部份肉比正常厚
0.1-0.3mm。
46. 设计模具时首先应该考虑零件的加工工艺,尽量避免使用放电与线割,而要尽量考虑使用
铣床和磨床的方式,因为从加工成本、加工精度与加工时间来说,前者都比不上后者,虽然慢走丝线切割的精度不错。
47. 设计时应该避免形状简单,但又需大面积的平面放电,既费时,精度又难保证,而且加重
钳工的钳配工作量。
48. 设计时应该尽量避免阶梯形的又需要面与面相互贴合的上下模仁设计,这样常常难以加
工。
49. 超声波打磨的缺点为容易因为手感把握不准确,而使模具表面形状失真。
50. 模具的量产要求为10000-15000/月时,模仁材料为NAK55。
51. 好的注塑机可以通过调整参数,进行5段以上的分段注射,如可以设为第一段为填满流
道;第二段为填满部品的三分之一;第三段为填满部品的二分之一??等等。从而可以通过分析这几种情况下的部品填充情况,来解决注塑中所存在的问题。
52. 对一些部品成型困难,或表面有要求,或有些部位精度在前几次试模中尺寸难达要求的模
具,试模时考虑使用多级注射成型。
53. 注塑机中日本与台湾机都可以进行多级注射成型,但一般来说,台湾机除了能改变注射速
度和。。。。。之外,还能改变注射压力。
54. 模具的cavity number的确定因数有:单件部品的成形费用,平均每件部品的模具制作费
用,部品精度要求,模具制作难易程度等决定。
55. 成型有腐蚀性树脂是模具材料要选择耐腐蚀材料,或在模具表面作防腐处理;成型含玻璃
纤维等高强度填充材料的树脂时,模具零件必须有相应的硬度。
56. 水管离模仁的距离应大于4mm。
57. 如果预估部品成型困难,需要增加成型压力,则设计时要考虑模具的强度,加大模仁的强
度,增加支撑柱,并要注意贴合面之间的公差。
58. 精密模具设计中不应该考虑强制脱模机构,否则对模具的量产性、部品精度、甚至部品表
面有很大的影响。
59. 模具设计中,从成本和制造角度来说,尽量避免滑块和斜梢机构。
60. 如果铣床加工完后的模仁余量只剩15-20条,一模两到四件,则即使是清尖角的电极一般
一粗一精就可。
61. 复杂曲面电极粗电极放时应该X、Y向预留0。06,Z向预留0。07以上,最后再用精电极
来加工。
62. 尖角、半圆及半球电极的放电需要特别注意。
63. 小水口模具的开模行程的确定如下:A.101A板与102板脱流道行程计算为:流道长+机械
手(40-60mm);B.102板与103板脱部品行程计算为:部品+机械手(70mm)
64. 象压块、小水口的流道板、模仁等等在模具装配时难以取出的零件,必需钻起吊螺丝孔;
不过,有时为了简便起见,可以把对角上的两个锁模螺丝孔钻穿,攻牙攻穿来拧起吊螺钉。
65. 要求同心度很好但又不能同时做在固定侧或可动侧的模具,如果模仁的大小允许,固定侧
与可动侧应设计有一公一母的圆锥形导向机构,以保证成型时该位置的同心度。如9018、9026、0004、0032辊筒模具上都加有#251入子。
66. 成型数量大的模具,在模架的选材(可考虑用P20)、滑块的选材(P20)上考虑,同时可
以在侧猾块上安装耐模板。
67. 用磨床或铣床加工厚度小于5mm,长度大于50,即长厚比大于10,比如斜梢之类的模
具零件时,应该注意加工时的变形问题。
68. 有时用于放置模仁的模腔太深,而又必需开设冷却环时,如果直接用刀去加工模腔中的冷
却槽则刀往往不够长,那么,可以考虑把冷却槽开在模仁的底部,但需要注意的一点是,冷却槽中间的圆柱应比冷却环内径略大,让冷却环不易从冷却槽中掉出。(注意,因为,冷却水是从里面过,设计时应该让冷却环内径和贴紧模壁;如果冷却水是从外面过,设计时应该让冷却环外径和贴紧模壁,这一点千万不要搞反了,否则会造成漏油)
69. 冷却水的出、入口温度应尽量小,一般模具控制在5°C以内,精密模具控制在2°C以
内。
70. 水道之间的中心距离一般为水道直径的3~5倍,水道的外周离模具型腔表面的距离一般为
10-15mm。
71. 对聚乙烯(PE)等收缩率较大的成型树脂,必需制品收缩大的方向设置冷却回路。
72. 模具上有数组冷却回路时,冷却水应首先通入接近主流道的部位。(怎么理解?)
73. 斜梢的材料一般要求比较硬(使用SKH9、或STAVAX),同时为了提高量产性,在斜梢
底部(#106顶针板与#107顶针固定板)间增加耐磨板(SKS3材料),厚度与顶针底同厚。
74. 一般产品的凹陷量为3%以下,几乎都可以使用强制脱模,如果超过一定范围,在脱模时将
使成品产生刮伤甚至破坏的现象。凹陷量也因材料而易,软质材料如PP、NYLON可达5%,而PC、POM等只能为2.5~3%之间。
75. 滑块的安全距离一般为1.5~5mm。
76. 塑料螺纹的根部或顶端部应有一小平面(0.8mm左右),是为了成型后易脱模,且不易伤
害螺纹部分的表面。
77. 间隔板的公差一般为+0.1mm,如果模具的压力大则需要加支撑柱,支撑柱的公差一般为
+0.02~0.03mm,也就是组立后比间隔板厚0.02~0.03mm,这样考虑的原因是:支撑柱(S45C或S55C)的表面经过淬火比模板硬,使用一段时间后模板会下凹正好补偿该公差。若支撑柱比间隔板薄0.1mm,注塑时的压力使#103板产生的变形会放大的模仁上,产生不止0.1mm的弯曲,从而产生毛边。
78. PD613(较优于SKD11)、PD555(较优于SUS 420 J2)与NAK 101(较优于SKD11)等
热处理的最大变形量为0.065/50,有高耐磨耗性、高耐腐蚀性、高镜面加工性,适合于加工精密模具。
79. 分模面与流道周围常常开设排气槽,对一般模具排气槽的外边一般为0.5mm深,靠部品侧
为0.02mm;而对象相机前后盖本体等精密模具排气槽的外边一般为0.07-0.1mm深,靠部品侧为0.007-0.01mm。
80. 为保证可动侧与固定侧贴合良好,分模面一般比模板高0.02mm;并且常在#103的四个角上
铣C10-20深0。5-1的缺口,以保证#102与#103不干涉。
81. 象聚缩醛(polyacetal)成品尺寸公差是±0.2%左右,模穴数增加1个公差约增大5%.8穴则
增大1.4倍,达±0.28%。
82. 用肯纳¢16小刀片(KCM25)切NAK80材料每刀深0.4mm,宽2/3刀直径,线速度
55m/min, 0.5mm/rev,风冷,较合适。
83. 磨床加工中,0.5mm的沟槽也能磨出。
84. 回位梢的表面只有0.5mm厚左右是硬的,里面是软的。
85. 精加工平面时,STEP一般采取刀具直径的2/3~4/5,和慢走刀方式。
86. 滑块槽的公差为-0.01和+0.01。
87. 设计前,与客户对图面打合(分型面的确定、顶针位置的确定、倒沟的处置方式、浇口位
置与形状、肉厚与缩水的关系、公差大小等的进一步的确认)是非常必要的,这对进一了解客户的设计意图、增加设计命中率是非常必要的,这是设计者首先应该树立的观念,设计者不能自作主张。
88. 热流道一般适用于量产24万件以上的塑料模。
89. 对于象9029、0031等采用潜伏式浇口的模具,进胶口的直端部分常采用圆形或扁形,然
后,采用圆形或扁形的顶针顶出,但因为顶针小进胶口长,如果进胶口处没有脱模斜度,部品顶出时常会发生顶出不良或把顶针折断的现象,因此,该处应开0.5°~1°的脱模斜度,以便顶出。
90. 象Olympus的cg5375f1背盖,PC料、一模一件,一个点浇口的模具,使用住友75吨成型
机注塑时注塑压力达200MPA。
91. 流道比较大的模具,起冷料作用的部位也应该相应加长,如象0039的主流道末端第一次试
模后加长了14mm。
92. 大模具在设计时就应该考虑好排气槽的设计,不应该在试模后再指定,根据经验,一般在
模具的四周用铣刀或磨床(根据模具精度需要而定),加工出一周的浅槽,深度小于塑料的溢边值。
93. 带C角的入子,如果 C角部位正好与 模仁相接,为了防止在部品上出现毛边,其入子底部
到C角处的长度公差应该为+0.05
94. 放电加工中对一般要求的模具面粗度7um即可,精密模具中的一般面粗度为4um,象外观
要求高的模具面粗度要求达2um。
95. 模具材料的订购一般应该比要求的最大尺寸大3~5mm。
96. 拉料梢尽量不要采用背面锁螺丝的固定方式,因为该方式会产生应力会使拉料梢易断,比
较好的方式是拉料梢能够较自由的活动。
97. 线切割一般会在尖角部位产生0.2mm的R角,在模具设计中在碰到要求使用线切割的位置
(入子孔、方型顶针孔等),一定要考虑此R的影响,以免产生飞边、毛刺等问题。
98. 滑块与模仁的贴合部位一般应该设计成单边2-3°的斜度,既可以避免磨损,又便于产生预
压。
99. 涂装的厚度一般为单边0.02~0.03mm,模具的抛光量一般为单边0.02~0.03mm,在产品设计
和模具设计的配合尺寸的选取上一定要考虑这一点。
100. 钳工在配入子时手法非常重要,入子以能缓缓流动为最佳,入子插入腔中1/4深度时不能有
松动的感觉。
101. 在成型镜片、高精度齿轮等精密零件时,为了提高部品的精度,保持模具的高刚性非常重
要,为此,除#102、#103外其它模具零件(材料S45C、S55C)常需热处理到45°HRC;#102、#103之所以不需热处理,是因为模仁部分常比模板高。
102. 成型镜片常需采用YAG-250(粉末冶金钢材、非常纯净、产于大同钢材)的模具材料,热
处理到56±1°HRC。
103. 有时模具的表面有一些小圆凹点需要抛光,在用常规方法难以解决的前提下,有时采用纤
维油石(非常贵),有时采用一种简单的方法,把牙签夹在小摇臂钻上打到6000-10000转/分钟,用手轻托模仁,沾上钻石膏,把需要抛光部分轻轻去碰牙签来抛光。
104. 一般部品的顶针逃肉深为0.1(公差为0~+0.02),精密成形时是0.03(公差为0~+0.01),在这种情
况下对顶针固定板(上顶出板)、顶针垫板(下顶出板)及用于固定顶针的逃孔深度、左右两支撑块、可动侧模板、可动侧模仁、顶针本身靠位的长度及其总长度都有非常严格的要求,必须按设计要求严格执行。
105. 查看已经成形好的部品的顺序为:表面是否有烧焦,流痕,侧壁是否有拉伤,填充是否充
分,分模线、靠破线位置是否有毛边,肉厚处的反面是否有收缩,顶针的反面是否有顶出痕,顶针逃肉深度是否合理。
106. 用推板顶出式模具,如果为一模多件,固定侧与可动侧也不宜分成多块,而以采用整体式
模仁设计为宜,以便于顶出平衡。
107. 对抛光来说#5000~#8000的钻石膏即可以达到镜面效果。
108. 绞刀加工的圆跳动为0.05mm。
109. YKMA-0058(大分佳能前盖)螺牙计算步骤:螺压主参数:M41×0.75(螺距P=0.75、大径
D=41、中径D2=D-0.649519×P、小径D1=D-1.082532×P、作用高度H1=0.541266×P),部品收缩率为S=1.0058,因此,模仁的螺距p1=0.75×S、大径d1=41×S、中径D2=
d1-
0.649519×p1、小径D1= d1-1.082532×p1、作用高度H1=0.541266×p1。
⑨ 精密塑胶模具主要要求在那些方面
塑料模具结构
一.设计注射模具应考虑的问题:
1.了解塑料熔体的流动行为,考虑塑料在流道和型腔各流动的阻力,流动速度,校验最大流动长度.根据塑料在模具内流动方向(即充模顺序),考虑塑料在模具内重新熔合和模腔原有空气导出的问题.
2.考虑冷却过程中塑料收缩及补缩问题.
3.通过模具设计来控制塑料在模具内结晶.取向和改善制品的内应力.
4.进浇点分型面的选择问题
5.制件的横向分型抽芯及顶出的问题.
6.模具的冷却或加热问题.
7.模具有关尺寸与所用注射机的关系,包括与注射机的最大注射量.锁模力.装模部分的尺寸等的关系.
8.模具总体结构和零件形状要简单合理,模具应具有适当的精度.光洁度.强度和刚度,易於制造和装配
二.注射模具的典型结构
1.成型零件
型腔是直接成型,塑料制件的部分通常由公模仁,母模仁组成.
2.浇注系统.
将塑料由少射机喷嘴引向型腔的流道称为浇注系统,由主流道.分流道.浇口.冷料井所组成.
3.导向部分
为确保动模与定模合模时准确对中面设导向零件.通常有:导柱(GP).定位块.顶出导柱(EGP)等
4.分型抽芯机构
带有外侧凹或侧孔塑件在被顶出之前,必须先进行侧向分型,才能顺利脱模.常见机构有:滑块(包括母模抽芯滑块,母模爆炸式滑块),斜销等.
5.顶出装置
在开模过程中,将塑件从模具中顶出的装置.常见机构有:顶针.顶管.顶出块.斜销等.
6.冷却加热系统
为了满足注射工艺对模具温度的要求,模具设有冷却或加热系统.一般在模具内开设冷却水道,加热或油类物质.
※水孔直径选取Φ4.Φ6.Φ8.Φ10.Φ12.Φ16… …
※”○”型环(见图6 )
A内压式 B外压式
水路的形式(见图7)
* 一般隔板式用图(见图7a)
用于小型模具(见图7b)
用于成品模腔很深的模具(见图7c)
7.排气系统
为了在注射过程中将型腔内原有的空气排,常在分型面处开设排气槽,但有时小型塑件排气排气量不大,可直接利用分型面排气.许多模具的顶杆或入子与模具的配合间隙,均可起排气作用.(见图8/9)
8.支撑柱
对於较大或大型模具,为防止公模板变形而加设支撑柱.一般要求支撑柱高出模脚0.10~~0.15mm以补偿支撑柱本身受压变形.
9.回位机构
为使上下顶出板回位面设有回位机构
回位机构除回位销(RP)外,还有强制拉回的机构,急回机构
(1)通常RP上装有弹簧(见图#) 装此弹簧的作用就是在弹簧弹力的作用下让上下顶出板迅速回位
弹簧规格一般选轻小荷重或轻重荷重
(2)有时当斜销有靠破或顶针有靠破时而加弹簧於回位销底部.目的是保护顶针或斜销, 或者顶针和斜销碰伤母模面(见图2)选择型号一般为中荷重或重荷重
(3)当模具结构中没有斜销机构时一般都要加顶出板来装强制拉回机构以防止斜销运动不畅,对於大型模具而言,一定要加设拉回机构(见图#)
(4)模具的滑块机构底下有顶针时,为保护顶针而加设急回机构,常见急回机构如图.(见图4)
10.标准模座
(1).我们的模座全部由外协厂订做,所以模座的选取及规格的要求不是很严格.(通常我们模座规格采用富德巴标准模座)
(2).二板模模座的构成(见图5)
通常二板模由上固定板.下固定板.母模板.公模板.上顶出板.下顶出板
有时也会出现以下两种情况:
a当为增加母模板强度加厚母模板,而省掉上固定板
b当有时增加热流板
三.二板模之结构及各零件的名称:
四.部分标准零件的配置要求
※GP的配置要求
1 ‧GP的作用:
1. 使固定侧与可动侧精确定位。
2. 支承模具重量。
3. 保护模仁
2‧GP材质SUJ2; 热处理HRC60°±2(高频淬火)。
3.GP规格及配合要求。(超连结GP标准件)
4.GP直径及位置的选取。(超连结GP直径及位置)
5.GP配置形式及使用场合。(如下图)
使用A型衬套 使用B型衬套 公模板深及大型 便于取成品
一般场合下 模板深减小衬 模具 母模仁落差大
套配合长度 增加模具强度 防止导注油污沾上成品
6.GP长度的确定。(如下图)
高出成品面 15~25MM左右 高出斜撑销10~15MM左右
※RP的配置要求:(RP的作用:使顶出板回位)
1. 模具需自动生产时一般要在RP下装弹簧,如图一所示:弹簧规格为TR型。(超连结TR弹簧规格)
注:弹簧安装要求
A‧在作动前状态下,弹簧预压量取5~10MM。
B‧如需先回位情况下,弹簧预压量取10MM以上。
2. 模具有斜销机构且斜销无靠破时,RP下可不装弹簧,以防止成品被
斜销拉回。如图二所示:
3. 模具有斜销机构且斜销有靠破时,RP底部装弹簧以保护斜销靠破面。
如图三所示:
4. 模具装有顶板导柱(EGP)时,RP在各板之间均逃料。如图四所示:
3‧RP材质------SUJ2; 热处理HRC60°±2(高频淬火)。
4‧RP规格(超连结RP标准件)。
图一 图二 图三 图
※EFP的配置要求
1‧EGP的作用:
导向顶出板运动,防止顶出板受力不均而顶出不平衡。
2‧EGP的材质------SUJ2; 热处理HRC60°±2(高频淬火)。
3‧EGP规格及配合要求。(超连结EGP标准件)
4‧EGP直径的选取。
EGP直径大小与RP直径大小一致。
5‧EGP的装配形式及使用场合。(如下图)
一般模具 小模具 模温高及压铸模
6‧当模具装有EGP时,RP在各模板均逃料。(超连结RP配置要求)
※STP的配置要求
1‧STP的作用。
1. 减少顶出板与下固定板接触面积,易条整顶出板平面度。
2. 防止顶出板与下固定板直接接触。
2‧STP材质-----S45C, 热处理HRC40°~45°
3‧STP规格(超连结)。
4‧STP位置的确定。
A回位梢(RP)下必装STP,因受力最大,防止变形。(如图一):
B STP避免与其它零件干涉,如SP、EGP、K.0孔及顶管。
5‧STP数量的确定。(如图二)
图1 图2 图三
L长度 数量
L<200 4支
200<L<400 6支
400<L 8支以上
注:大型模具需在中间加STP,以增加下顶出板的支点,防止顶板变形。(如图三)
6‧STP安装形式。(如下图):
易取下,可 单独加工, 不易取下,一般用在小
大型模具建义使用此STP 。 型模具中可整体加工。
※KO孔的规格
1‧K.O孔平面布置图如下:
注:A型K.O孔=Φ40; B型K.O孔=Φ60
2‧K.O孔的中心位置要与注口中心一致。
3‧模具较大且斜销时要装拉回机构
五.三板模
1. 三板模结构介绍(见附图)
2. 三板模的开模顺序
合模 射出成型 保压 开模 B与C分开 A与B分开 C与D分开.
3. 小拉杆的行程确定
4. 大拉杆的行程确定
⑩ 一般模具中都要用导柱和导套以保证零件质量,但也有模具可以不采用导柱和导套的,举例说明并说明为什么
一般来说,冷冲模具中一些要求精度高、配合间隙小的冲孔模具、落料模具都是需要采用导柱导套的结构来保证模具的使用寿命和产品的尺寸精度。
导柱导套是模具常用的导向元件,作为导向装置,在设计和装配时都要注意。导柱与导套应在凸模工作前或压料板接触到工件前充分闭合,并且此时应保证导柱上端距上模座上平面留有10- 15mm的间隙。导柱、导套与上、下模板装配后,应保证导柱与下模座的下平面、导套上端与上模座的上平面均留2-3mm的间隙。
每一个小细节都会影响到生产,无论是生产者还是使用者都不能忽视细节的重要性。所以,决定模具导柱使用寿命不只是质量和模具配件厂家的专业性,还有使用者的细心。
而对于形状对称的工件。为避免合模安装时引起的方向错误,两侧导柱直径或位置应有所不同;当冲模有较大的侧向压力时。模座上应装设止推垫,避免导套、导柱承受侧向力;导套应开排气孔以排除空气。
(10)精密模具配件强韧怎么决定扩展阅读:
辨认模具导柱品质的好坏主要通过这几个方面:
1、模具导柱产品质量:模具制成产品的尺寸的稳定性、符合性,制品表面的光洁度、制品材料的利用率等可以反映出模具本身的质量高低。
2、模具导柱使用寿命:在确保制品质量的前提下,模具所能完成的工作循环次数或生产的制件数量。
3、模具导柱的使用维护:使用是否最方便、生产辅助时间能否尽可能的短。
4、维修成本、维修周期性:模具导柱维修周期性的长短、维修的费用也都是纳入到模具质量好坏的考核范围内。