导航:首页 > 模具设计 > 模具极冷极热会产生什么效应

模具极冷极热会产生什么效应

发布时间:2022-09-04 12:19:04

Ⅰ 模具表面热处理论文怎么写

我们公司是专门做模具的,所以在这方面会有一些建议供你参考,希望答案能对你有用。如果你需要了解其他一些知识的可以看一下我们网站的。
模具热处理是保证模具性能的重要工艺过程。它对模具的如下性能有着直接的影响。
模具制造精度:组织转变不均匀、不彻底及热处理形成的残余应力过大造成模具在热处理后的加工、装配和模具使用过程中的变形,从而降低模具的精度,甚至报废。
模具的强度:热处理工艺制定不当、热处理操作不规范或热处理设备状态不完好,造成被处理模具强度(硬度)达不到设计要求。
模具的工作寿命:热处理造成的组织结构不合理、晶粒度超标等,导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,影响模具的工作寿命。
模具的制造成本:作为模具制造过程的中间环节或最终工序,热处理造成的开裂、变形超差及性能超差,大多数情况下会使模具报废,即使通过修补仍可继续使用,也会增加工时,延长交货期,提高模具的制造成本。
正是热处理技术与模具质量有十分密切的关联性,使得这二种技术在现代化的进程中,相互促进,共同提高。 20 世纪 80 年代以来,国际模具热处理技术发展较快的领域是真空热处理技术、模具的表面强化技术和模具材料的预硬化技术。
模具的真空热处理技术
真空热处理技术是近些年发展起来的一种新型的热处理技术,它所具备的特点,正是模具制造中所迫切需要的,比如防止加热氧化和不脱碳、真空脱气或除气,消除氢脆,从而提高材料(零件)的塑性、韧性和疲劳强度。真空加热缓慢、零件内外温差较小等因素,决定了真空热处理工艺造成的零件变形小等。
按采用的冷却介质不同,真空淬火可分为真空油冷淬火、真空气冷淬火、真空水冷淬火和真空硝盐等温淬火。模具真空热处理中主要应用的是真空油冷淬火、真空气冷淬火和真空回火。为保持工件(如模具)真空加热的优良特性,冷却剂和冷却工艺的选择及制定非常重要,模具淬火过程主要采用油冷和气冷。
对于热处理后不再进行机械加工的模具工作面,淬火后尽可能采用真空回火,特别是真空淬火的工件(模具),它可以提高与表面质量相关的机械性能,如疲劳性能、表面光亮度、而腐蚀性等。
热处理过程的计算机模拟技术(包括组织模拟和性能预测技术)的成功开发和应用,使得模具的智能化热处理成为可能。由于模具生产的小批量(甚至是单件)、多品种的特性,以及对热处理性能要求高和不允许出现废品的特点,又使得模具的智能化热处理成为必须。模具的智能化热处理包括:明确模具的结构、用材、热处理性能要求;模具加热过程温度场、应力场分布的计算机模拟;模具冷却过程温度场、相变过程和应力场分布的计算机模拟;加热和冷却工艺过程的仿真;淬火工艺的制定;热处理设备的自动化控制技术。国外工业发达国家,如美国、日本等,在真空高压气淬方面,已经开展了这方面的技术研发,主要针对目标也是模具。
模具的表面处理技术
模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果,这也正是表面处理技术得到迅速发展的原因。
模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。虽然旨在提高模具表面性能新的处理技术不断涌现,但在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。 渗氮工艺有气体渗氮、离子渗氮、液体渗氮等方式,每一种渗氮方式中,都有若干种渗氮技术,可以适应不同钢种不同工件的要求。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与模具钢的淬火工艺有良好的协调性,同时渗氮温度低,渗氮后不需激烈冷却,模具的变形极小,因此模具的表面强化是采用渗氮技术较早,也是应用最广泛的。
模具渗碳的目的,主要是为了提高模具的整体强韧性,即模具的工作表面具有高的强度和耐磨性,由此引入的技术思路是,用较低级的材料,即通过渗碳淬火来代替较高级别的材料,从而降低制造成本。
硬化膜沉积技术目前较成熟的是 CVD 、 PVD 。为了增加膜层工件表面的结合强度,现在发展了多种增强型 CVD 、 PVD 技术。硬化膜沉积技术最早在工具(刀具、刃具、量具等)上应用,效果极佳,多种刀具已将涂覆硬化膜作为标准工艺。模具自上个世纪 80 年代开始采用涂覆硬化膜技术。目前的技术条件下,硬化膜沉积技术(主要是设备)的成本较高,仍然只在一些精密、长寿命模具上应用,如果采用建立热处理中心的方式,则涂覆硬化膜的成本会大大降低,更多的模具如果采用这一技术,可以整体提高我国的模具制造水平。
模具材料的预硬化技术
模具在制造过程中进行热处理是绝大多数模具长时间沿用的一种工艺,自上个世纪 70 年代开始,国际上就提出预硬化的想法,但由于加工机床刚度和切削刀具的制约,预硬化的硬度无法达到模具的使用硬度,所以预硬化技术的研发投入不大。随着加工机床和切削刀具性能的提高,模具材料的预硬化技术开发速度加快,到上个世纪 80 年代,国际上工业发达国家在塑料模用材上使用预硬化模块的比例已达到 30 %(目前在 60 %以上)。我国在上世纪 90 年代中后期开始采用预硬化模块(主要用国外进口产品)。
模具材料的预硬化技术主要在模具材料生产厂家开发和实施。通过调整钢的化学成分和配备相应的热处理设备,可以大批量生产质量稳定的预硬化模块。我国在模具材料的预硬化技术方面,起步晚,规模小,目前还不能满足国内模具制造的要求。
采用预硬化模具材料,可以简化模具制造工艺,缩短模具的制造周期.

Ⅱ 向大家请教一个问题,压铸模具是不是一定要预热

一定要,否则对模具的破坏性极大,如果让模具急冷急热势必会造成模具的开裂,影响模具的寿命,是极端不符责任的做法。

Ⅲ 模具急冷急热有什么好处

这是根据产品的需要的,有些产品要急冷,使产品成型快不变形,有些产品需要急热的,产品胶料易走胶,熔接线不会明显,外观要求比较高的。

Ⅳ 热处理变形的形式

热处理变形一般是因为热应力和组织应力综合作用产生的。
热应力也就是通常说的热胀冷缩,加热时有胀大趋势。而组织应力则是组织转变时由于体积的变化造成的。
一般情况下,热应力和组织应力作用效果正好相反,可以抵消一部分。所以,变形主要出现在工件边角、薄壁等部分。

Ⅳ 高光模温机工作原理是什么

高光模温机也叫急冷急热模温机,是采用高温蒸汽,在模具上做均衡的加温道,当注塑机合模后吹入高温蒸汽,首先把模具温度提高到一个设定值(一般在130度-140度间),然后开始给模腔注射塑胶,在注塑机完成保压转入冷却后,开始注入冷水,模具温度很快下降到一个设定值后开模,再向模具吹入空气把冷水完全吹走,完成整个注塑过程。
希望可以帮助你,谢谢!

Ⅵ 搪玻璃反应釜操作时不能急冷、急热是为了防止什么

如果因温度变化大而使搪玻璃产生的应力超过其使用应力,搪玻璃将被破坏。因此搪玻璃釜遇冷、热急变,极易爆瓷。

Ⅶ 急冷急热模温机

也有人称这种机器为:高光设备、蒸汽加热控制器、蒸汽热效控制器和RHCM等。它是利用高温蒸汽作为热源的辅助加热设备;其中应用了急冷急热控制的特殊工艺来实现生产,能够配合此工艺完美实现生产的设备为数不多,有国外的(日本小野)、中国的(北京中拓)等(也被叫做急冷急热高光设备),到目前为止国内几家大的家电制作商都在使用该成型工艺,汽车、办公、体育器材等领域也在加速应用,比如:TCL王牌、海尔电器、海信电器、创维等等,有那么多知名企业在使用中拓高光(高温蒸汽辅助成型设备)设备,效果不容置疑。
另外,还有一种不能实现急冷急热特殊工艺的高温设备,那就是模温机。
此特殊工艺提高了某些产品外观质量、节省了原材料、缩短了生产周期以及大大的节省了制造成本等等,目前在注塑行业颇为盛行。
在设备使用方面,国产设备的市场占有率远远的超越了国外设备,因为进口设备在使用过程中技术支持、维修能力和费用都不如国内设备那么周到、快捷和实惠,最为突出的就是北京中拓,他们的设备、技术和服务都是较领先的水平。
最后提示:只有高温蒸汽设备才能完美配合高光注塑工艺,同时还能实现节能、节电的功能。
注:还有一种设备也叫速冷速热模温机,它是利用"过热水"作为热源的,它的加热和冷却性能都远远不能和利用"高温蒸汽"作为热源的设备相媲美。

Ⅷ 急冷急热高温模温机

急冷急热高温模温机简称高光模温机,在市场上也有叫急冷急热模温机、速冷速热模温机、变温模温机、急冷急热模具温度控制机,不管称呼怎样,作用都是一个用途。为了有效的提高产品的品质、减少产品成型周期,目前应用在家电、汽车、通讯、日用品、医疗器材等行业已经广泛应用。

对模具使用速冷速热模具水路要求:模具流道尽量靠近产品表面,以使产品加热冷却更加快速,传热速度更快。同时也可以在加热与冷却过程中无需将整个模具温度都升温或冷却到相同温度,只需要将靠近产品部分模具温度控制到所需温度即可,从而能够更加的节省时间与能量损耗。

Ⅸ 模具失效的特点

模具失效
冷热模具在服役中失效的基本形式可分为:塑性变形;磨损;疲劳;断裂。
(1)塑性变形。
塑性变形即承受负荷大于屈服强度而产生的变形。如凹模出现型腔塌陷、型孔扩大、棱角倒塌陷以及凸模出现镦粗、纵向弯曲等。尤其热作模具,其工作表面与高温材料接触,使型腔表面温度往往超过热作模具钢的回火温度,型槽内壁由于软化而被压塌或压堆。低淬透性的钢种用作冷镦模时,模具在淬火加热后,对内孔进行喷水冷却产生一个硬化层。模具在使用时,如冷镦力过大,硬化层下面的基底抗压屈服强度不高,模具孔腔便被压塌。模具钢的屈服强度一般随碳(c)的含量从某些合金元素的增多而升高,在硬度相同的情况下,不同化学成分的钢具有的抗压强度不同,当钢硬度为63HRC时,下列4种钢的抗屈服强度由高到低依次顺序为:W18Cr4V>Cr12>Cr6WV>5CrNiW。
(2)磨损失效。
磨损失效是指刃门钝化、棱角变圆、平面下陷、表面沟痕、剥落粘膜(在摩擦中模具工作表而粘了些坯料金属)。另外,凸模在工作中,由于润滑剂燃烧后转化为高压气体,对凸模表面进行剧烈冲刷,形成气蚀。
冷冲时,如果负荷不大,磨损类型主要为氧化,磨损也可为某种程度的咬合磨损,当刃口部分变钝或冲压负荷较大时,咬合磨损的情况会变得严重,而使磨损加快,模具钢的耐磨性不仅取决于其硬度,还决定于碳化物的性质、大小、分布和数量,在模具钢中,目前高速钢和高铬钢的耐磨性较高。但在钢中存在有严重的碳化物偏析或大颗粒的碳化物情况下,这些碳化物易剥落,而引起磨粒磨损,使磨损加快。较轻冷作模具钢(薄板冲裁、拉伸、弯曲等)的冲击,载荷不大,主要为静磨损。在静磨损条件下,模具钢的含碳量多,耐磨性就大。在冲击磨损条件下(如冷镦、冷挤、热锻等),模具钢中过多的碳化物无助于提高耐磨性,反而因冲击磨粒磨损,而降低耐磨性。
研究表明,在冲击磨粒磨损条件下,模具钢含碳量以O.6%为上限,冷镦模在冲击载荷条件下工作,如模具钢中碳化物过多,容易固冲击磨损而山现表面剥落。这些剥落的硬粒子将成为磨粒,加快磨损速度。热作模具的型腔表面,由于高温软化而使耐磨性降低,此外,氧化铁皮也起到磨料的作用,同时还有高温氧化腐蚀作用。
(3)疲劳失效。
疲劳失效的特征:模具某些部位经过一定的服役期,萌生了细小的裂纹,并逐渐向纵深扩展,扩展到一定尺寸时,严重削弱模具的承载能力而引起断裂。疲劳裂纹萌生于应力较大部位,特别是应力集中部位(尺寸过渡、缺口、刀痕、磨损裂纹等处),疲劳断裂时断门分两部分,一部分为疲劳裂纹发展形成的疲劳处破裂断面,呈现贝壳状,疲劳源位于贝壳顶点。另一部分为突然断裂,呈现不平整粗糙断面。
使模具发生疲劳损伤的根本原因为特环载荷,凡可促使表面拉应力增大的因素均能加速疲劳裂纹的萌生。
冷作模具在高硬状态下工作时,模具钢具有很高的屈服强度和很低的断裂韧性。高的屈服强度有利于推迟疲劳裂纹的产生,但低的断裂韧性使疲劳裂纹的扩展速率加快和临界长度减小,使疲劳裂纹扩展循环数大大缩短,因此,冷作模具疲劳寿命主要取决于疲劳裂纹萌生时间。
热作模具一般在中等或较低的硬度状态下服役,模具断裂韧性比冷作模具高得多,因此,在热作模具中,疲劳裂纹的扩展速度低于冷作模具,临界长度大于冷作模,热作模具疲劳裂纹的亚临界扩展周期较冷作模长得多,但热作模具表面受急冷,急热很易萌生冷热疲劳裂纹,热作模具的疲劳裂纹萌生时间比冷作模短得多,因此,许多热作模其疲劳断裂寿命主要取决于疲劳裂纹扩展的时间。
(4)断裂失效。
断裂失效常见形式有:崩刃、脶齿、劈裂、折断、胀裂等,不同模具断裂的驱动力不同。冷作模具、所受的主要为机械作用力(冲压力)。热作模所受除机械力外,还有热应力和组织应力,有许多热作模具的工作温度较高,又采用强制冷却,其内应力可远远超过机械应力,因此,许多热作模的断裂主要与内应力过大有关。
模具断裂过程有两种:一次性断裂和疲劳断裂。一次性断裂为模具有时在冲压时突然断裂,裂纹一旦萌生,后即失稳、扩展。它的主要原因为严重超载或模具材料严重脆化(如过热、回火不足、严重应力集十及严重的冶金缺陷等)。
3
模具失效原因及预防措施
(1)结构设计不合理引起失效。
尖锐转角(此处应力集中高于平均应力十倍以上)和过大的截面变化造成应力集中,常常成为许多模具早期失效的根源。并且在热处理淬火过程中,尖锐转角引起残余拉应力,缩短模具寿命。
预防措施:凸模各部的过渡应平缓圆滑,任何役小的刀痕都会引起强烈的应力集中,其直径与长度应符合—定要求。
(2)模具材料质量差引起的失效。
模具材料内部缺陷,如疏松、缩孔、夹杂成份偏析、碳化物分布不均、原表面缺陷(如氧化、脱碳、折叠、疤痕等)影响钢材性能,
a.夹杂物过多引起失效。
钢中存在夹杂物足模具内部产生裂纹的根源,尤其是脆性氧化物和硅酸盐等,在热压力加工中不发生塑性变形,只会引起脆性的破裂而形成微裂纹。在以后的热处理和使用中访裂纹进一步扩展,而引起模具的开裂。此外,在磨削中,由于大颗粒夹杂物剥落造成表面孔洞。
b.表面脱碳引起失效。
模具钢在热压力加工和退火时,常常由于加热温度过高,保温时间过长,而造成钢材表面脱碳,严重脱碳的钢材在机械加工后,有时仍残留有脱碳层,这样在淬火时,由于内外层组织的不同(表面脱碳层为铁索体,内部为珠光体)造成组织转变不一致,而产生裂纹。
c.碳化物分布不匀,引起失效。
Crl2、Cr112MoV等模具钢含碳量和合金元素较高,形成了许多共晶碳化物,这些碳化物在锻造比较小时,易呈现带状和网状偏析,导致淬火时常出现沿带状碳化物分布的裂纹,模具在使用中裂纹进一步扩展,而造成模具开裂失效。
预防措施:钢在缎轧时,模具应反复多方向锻造,从而钢中的共晶碳化物击碎得更细小均匀,保证钢碳化物不均匀度级别要求。
(3)模具的机加上不当。
a
切削中的刀痕:模具的型腔部位或凸模的圆角部位在机加工中,常常因进刀太探而使局部留下刀痕,造成严重应力集中,当进行淬火处理时,应山集中部位极易产生微裂纹。
预防措施:在零件粗加工的最后一道切削中,应尽量减少进刀量,提高模具表面光洁度。
b
电加工引起失效。模具在进行电加工时,由于放电产生大量的热,将使模具被加工部位加热到很高温度,使组织发生变化,形成所谓的电加工异常层,在异常层表面由于高温发生熔融,然后很快地凝固,该层在显微镜下呈白色,内部有许多微细的裂纹,白色层下的区域发生淬火,叫淬火层,再往里由于热影响减弱,温度不高,只发生回火,称回火层。测定断面硬度分布:熔融再凝固层,硬度很高,达610~740HRC,厚度为30μm,淬火层硬度400~500HRC,厚为20μm。回火属高温回火,组织较软,硬度为380—400HRC,厚为10μm。
预防措施:①用机械方法去除开常层中的再凝固层,尤其是微观裂纹;②在电加工后进行一次低温回火,使异常层稳定化,以防微裂纹扩展。
c磨削加工造成失效。模具型腔面进行磨削加工时,由于磨削速度过大,砂轮粒度过细或冷却条件差等因素影响,均会导致磨削表曲过热或引起表面软化,硬度降低,使模具在使用中因磨损严重,或热应力而产生
磨削裂纹,导致早期失效。
预防措施:①采用切削力强的粗砂轮或粘结性差的砂轮;②减少工件进给量;③选用合适的冷却剂;④磨削加工后采用250~350℃回火,以除磨削应力。
(4)模具热处理工艺不合适。
加热温度的高低、保温时间长短、冷却速度快慢等热处理工艺参数选择不当,都将成为模具失效因素。
a.加热速度:模具钢中含有较多的碳和合命元素,导热性差,因此,加热速度不能太快,应缓慢进行,防止模具发生变形和开裂。在空气炉中加热淬火时,为防止氧化和脱碳,采用装箱保护加热,此时升温速度不宜过快,而透热也应较慢。这样,不会产生大的热应力,比较安全。若模具加热速度快,透热快,模具内外产生很大的热应力。如果控制不当,很容易产生变形或裂纹,必须采用预热或减慢升温加速度来预防。
b.氧化和脱碳的影响。模具淬火是在高温度下进行的,如不严格控制,表曲很易氧化和脱碳。另外,模具表面脱碳后,由于内外层组织差异、冷却中出现较大的组织应力、导致淬火裂纹。
预防措施:可采用装箱保护处理,箱内填充防氧化和脱碳的填充材料。
(1)冷却条件的影响。
不同模具材料,据所要求的组织状态、冷却速度是不同的。对高合金钢,由于含较多合金元素,淬透性较高,可以采用油冷、空冷甚至等温淬火和等级淬火等热处理工艺。

Ⅹ 急冷急热模具用什么钢材好

以上回答都是错的,急冷急热模具对钢材有两个很关键的要求,第一,急冷急热模版具的冷却水孔距离权型腔非常近,特别容易发生水孔开裂,所以要求钢材必须要有足够高的韧性,这一点正宗H13可以满足。第二,塑胶例子在急冷急热模具成型生产过程中,特别容易产生瓦斯气体,瓦斯会腐蚀钢材表面,影响塑胶产品外观,所以模具钢材需要同时具备耐腐蚀性。另外,第一点提及的开裂,大多数情况是冷却水孔首先被腐蚀,产生微裂纹,进而由于生产应力使微裂纹扩展,导致最终开裂,所以针对急冷急热的模具,同时要具备的两点,第一,搞韧性,第二,高腐蚀性。而H13是不具备耐腐蚀性的,因此不能满足。能够满足以上条件的,目前已知最成功的材料是一胜百的MIRRAX ESR(淬硬钢),MIRRAX40(预硬钢)。

阅读全文

与模具极冷极热会产生什么效应相关的资料

热点内容
脚踝取钢板后吃什么比较好 浏览:747
不锈钢双人锅怎么清洗 浏览:379
不锈钢方管碰焊视频 浏览:502
防城港万鑫钢铁厂目前有多少人 浏览:10
24伏的灯带如何焊接 浏览:94
钢铁厂需要什么冷却塔 浏览:109
不锈钢拉伸怎么处理 浏览:866
不锈钢和全钢哪个艾灸盒好 浏览:1000
铝合金板吊顶缝怎么处理 浏览:48
钢铁是怎么炼成的花山出版社 浏览:445
钢管875下差什么意思 浏览:598
钢铁侠2之后接的是什么 浏览:181
钢筋算量中如何识别柱表 浏览:849
天津的钢材批发市场在哪里 浏览:168
铝合金门窗多少平方需要检测 浏览:331
简易衣柜钢管用的是什么型号 浏览:308
广联达钢结构的压型钢板怎么画 浏览:386
工地消防电缆如何焊接 浏览:977
六米长八个的钢筋多少钱一根 浏览:424
立柱焊接是什么 浏览:659