Ⅰ 真空渡和PVD电镀有区别吗
有区别,区别如下:
1、导电区别:PVD真空电镀现在有不连续镀膜可以不导电。而真空渡产品后导电性显著增强。
2、颜色区别:PVD真空电镀加工的颜色要比真空渡的丰富,色泽光亮度要比真空渡的亮。
3、氧化区别:PVD真空电镀保色时间长,不会腐蚀氧化。真空渡的轮毂很容易发黄腐蚀的。
4、工艺区别:PVD真空电镀为绿色环保工艺,技术发展快。而真空渡为传统工艺,高污染,行业受国家政策影响。
5、单价区别:PVD真空电镀适用范围较广,如ABS料、ABS+PC料、PC料的产品。同时因其工艺流程复杂、环境、设备要求高,单价比真空渡昂贵。
6、PVD真空电镀是行业里面统称,它属于电镀技术的一种,属于表面真空镀膜处理技术,它环保高效,解决了表面处理上的很多难题。
Ⅱ 什么是pvd电镀
PVD电镀是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
Ⅲ 冲压模具的td处理和镀铬有什么区别
模具的td处理的镀层比较薄,镀铬的镀层要厚一些。尤其是一些尺寸亏欠的工件,通过镀铬版加大工权件的尺寸,挽救报废的工件。而模具的td处理的钒、铌、铬、钛等,这种覆层具有极高的耐磨,抗咬合,耐蚀等性能,可提高工件寿命数倍至数十倍,具有极高的使用价值。
Ⅳ PVD效果好还是电镀效果好
PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
[编辑本段]
PVD技术的发展
PVD技术出现于二十世纪七十年代末,制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。与 CVD工艺相比,PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层; PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。目前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。
PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。
Ⅳ 模具表面做PVD涂层有什么作用
1、PVD涂层提高模具表面耐磨性,使其硬度变的更高;
2、PVD涂层的摩擦系数低,致使它的润滑性很好;
3、通过PVD涂层技术使模具抗化学腐蚀能力大大提高。
PVD的作用是可以使某些有特殊性能的微粒喷涂在性能较低的母体上,使得母体具有更好的性能。基本方法有:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)。
(5)模具镀铬和pvd有什么区别扩展阅读
PVD最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。
PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层;PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。
当前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、车刀片、异形刀具、焊接刀具等的涂层处理。
PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。
Ⅵ PVD镀和DLC有什么区别
PVD镀和DLC区别为:特性不同、方法不同、用途不同。
一、特性不同
1、PVD镀:PVD镀具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性。
2、DLC:DLC具有硬度高,摩擦系数低,耐磨,耐腐蚀,抗粘结性好且环保等特性。
二、方法不同
1、PVD镀:PVD镀的方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。
2、DLC:DLC的方法有真空蒸发 、溅射、等离子体辅助化学气相沉积、离子注入等。
三、用途不同
1、PVD镀:PVD镀广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域。
2、DLC:DLC广泛应用于机械功能领域,如钻头、铣刀、光盘模具及其辅助模具、剪刀、刮胡刀刀片、粉末冶金成型模具、塑胶成型模具、引线框弯曲模具、玻璃片成型模具、镁合金加工模具、在轴承等。
参考资料来源:
网络——物理气相沉积
网络——DLC
Ⅶ pvd与电镀的区别是什么
PVD基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)。
电镀(Electroplating)就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程,是利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺从而起到防止金属氧化(如锈蚀),提高耐磨性、导电性、反光性、抗腐蚀性(硫酸铜等)及增进美观等作用。
Ⅷ 铁件PVD 为什么要先镀铬
铁件,他不能直接PVD。需要先水镀打底,镀铬或镀镍都可以。原因是铁件直接上PVD,在炉里表面没有附着力,需先电镀一层金属层,方有附着力。
Ⅸ 两种pvd技术分别是什么各自的特点是什么
VD简介
PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
[编辑本段]
PVD技术的发展
PVD技术出现于二十世纪七十年代末,制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。与 CVD工艺相比,PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层; PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。目前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。
PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。
[编辑本段]
涂层的PVD技术
增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。
过滤阴极弧:过滤阴极电弧(FCA )配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒, 因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。
磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。根据使用的电离电源的不同,导体和非导体材料均可作为靶材被溅射。
离子束DLC:碳氢气体在离子源中被离化成等离子体,在电磁场的共同作用下,离子源释放出碳离子。离子束能量通过调整加在等离子体上的电压来控制。碳氢离子束被引到基片上,沉积速度与离子电流密度成正比。星弧涂层的离子束源采用高电压,因而离子能量更大,使得薄膜与基片结合力很好;离子电流更大,使得DLC膜的沉积速度更快。离子束技术的主要优点在于可沉积超薄及多层结构,工艺控制精度可达几个埃,并可将工艺过程中的颗料污染所带来的缺陷降至最小。
[编辑本段]
补充
物理气向沉积技术 * PVD 介绍 物理气相沉积具有金属汽化的特点,
与不同的气体发应形成一种薄膜涂层。今天所使用的大多数 PVD 方法是电弧和溅射沉积涂层。这两种过程需要在高度真空条件下进行。
Ionbond 阴极电弧 PVD 涂层技术在 20 世纪 70 年代后期由前苏联发明,如今,绝大多数的刀模具涂层使用电弧沉积技术。
工艺温度
典型的 PVD 涂层加工温度在 250 ℃— 450 ℃之间,但在有些情况下依据应用领域和涂层的质量, PVD 涂层温度可低于 70 ℃或高于 600 ℃进行涂层。
涂层适用的典型零件
PVD 适合对绝大多数刀具模具和部件进行沉积涂层,应用领域包括刀具和成型模具,耐磨部件,医疗装置和装饰产品。
材料包括钢质,硬质合金和经电镀的塑料。
典型涂层类型
涂层类型有 TiN, ALTIN,TiALN,CrN,CrCN,TiCN 和 ZrN, 复合涂层包括 TiALYN 或 W — C : H/DLC
涂层厚度一般 2~5um ,但在有些情况下,涂层薄至 0.5um , 厚至 15um装载容量。
涂层种类和厚度决定工艺时间,一般工艺时间为 3~6 小时。
加工过程优点
适合多种材质,涂层多样化
减少工艺时间,提高生产率
较低的涂层温度,零件尺寸变形小
对工艺环境无污染