㈠ 選用焊接方法與焊接材料原則是什麼
所選用的焊接方法必須能保證焊接質量,達到產品設計的技術要求;同時能提高焊接生產效率、降低製造成本和改善勞動條件。
㈡ 焊條選擇原則
現在電焊條的種類很多,就國產的有十幾類上百種,加上進口電焊條,品種就等多了。有些特殊材料一時半會兒找不到合適電焊條,甚至自製了好些品種。這些電焊條該怎麼選用呢?根據實際情況要考慮哪些因素呢?
化學成分
熔敷金屬的合金成分應接近母材。當母材化學成分中C、S、P等有害雜質較高時,應選擇抗裂性和抗氣孔能力較強的焊條。對於普通結構鋼,通常要求焊縫金屬與母材等強度,以選用熔敷金屬抗拉強度等於或高於母材的焊條。例如:焊接20、Q235等低碳鋼和抗拉強度在400MPa左右的低碳或低合金結構鋼就可以選用E43系列焊條。Q345、16Mng等抗拉強度在500MPa范圍的鋼,應選用E50系列焊條。這里有個誤區,有人認為選用抗拉強度高的焊條來焊接抗拉強度低的材料好,這個觀點是不正確的。因為通常抗拉強度高的材料塑性指標都較差,單純追求焊縫金屬的抗拉強度,降低了他的塑性往往不一定有利。在焊接結構剛性大、接頭應力大、焊縫以產生裂紋的情況下,應考慮選擇比母材強度低的焊條。
使用環境
對於接觸腐蝕介質的焊件,應根據介質的性質及腐蝕特徵選用不銹鋼類焊條或其他乃是焊條。在高溫、低溫、耐磨或其他特殊條件下工作的焊件,應選用相應的耐熱鋼、低溫鋼、堆焊或其他特殊用途焊條。對於水下焊接和航空材料焊接應採用水下焊條和航空焊條。對於承受動載荷和沖擊載荷的焊件,除滿足強度要求外,主要應保證焊縫金屬具有較高的沖擊韌性和塑性,可用塑性和韌性指標較高的低氫焊條焊條。
結構特點
對因條件限制不能反轉的焊件,應選用適於全位置焊接的焊條。對受力不大、焊接位置難以清理干凈的焊件應選用對鐵銹、氧化皮、油污不敏感的酸性焊條,以免產生氣孔等缺陷。對於結構形狀復雜、剛性大的厚達焊接件,由於焊接過程中產生很大的內應力,容易使焊縫產生裂紋,應選用抗裂性能好的鹼性低氫焊條。
㈢ 什麼是焊接淬硬傾向
淬硬傾向指鋼鐵向高的強度和硬度發展的傾向。
不易淬火鋼的組織分布特點:焊接空冷條件下不易形成馬氏體。馬氏體為中高碳鋼中加速冷卻通常能夠獲得這種組織,高的強度和硬度是鋼中馬氏體的主要特徵之一。如低碳鋼,16Mn,15MnV和15MnTi等。按加熱溫度和組織特徵可劃分為過熱區、正火區、部分正火區和再結晶區四個區域。
根據鋼的熱處理特性,把焊接用鋼分為兩類,一類是淬火傾向很小的鋼種,如低碳鋼和某些低合金鋼,稱為不易淬火鋼。
另一類是淬硬傾向較大的鋼種,如中碳鋼,低、中碳調質合金鋼等,稱為易淬火鋼。由於淬火傾向不同,這兩類鋼的焊接熱影響區組織也不同。
(3)適合焊接材料的特徵是什麼擴展閱讀
焊接時熱影響區處於AC3以上的區域,由於這類鋼的淬硬傾向較大,故焊後得到淬火組織(馬氏體)。在靠近焊縫附近(相當於低碳鋼的過熱區),由於晶粒嚴重長大,故得到粗大的馬氏體,而相當於正火區的部位得到細小的馬氏體。
根據冷卻速度和線能量的不同,還可能出現貝氏體,從而形成了與馬氏體共存的混合組織。這個區在組織特徵上都是屬同一類型(馬氏體),只是粗細不同,因此統稱為完全淬火區。
㈣ 我想知道鋁合金焊接性能
鋁合金及其焊接性
【摘要】
鋁及鋁合金材料密度低,強度高,熱電導率高,耐腐蝕能力強,具有良好的物理特性和力學性能,因而廣泛應用於工業產品的焊接結構上。鋁合金在車輛部件中的應用情況、發展趨向及其在組焊中存在很多問題。對鋁合金及其異種金屬焊接接頭進行了焊接性試驗研究結果表明,其焊接接頭有滿意的力學性能、抗裂性及抗應力腐蝕性能,適合用於製造輕軌車輛,航空航天領域的廣泛應用。
【關鍵字】
鋁合金 焊接性 氣孔 熱裂紋 等強性
【正文】
雖然已經應用鋁及其合金焊成許多重要產品,但實際上並不是沒有困難,主要的問題有:焊縫中的氣孔、焊接熱裂紋、接頭「等強性」等
鋁合金焊接中的氣孔
氫是鋁及其合金熔焊時產生氣孔的主要原因,已為實踐所證明。弧柱氣氛中的水分、焊接材料以及母材所吸附的水分都是焊縫氣孔中氫的重要來源。其中,焊絲及母材表面氧化膜的吸附水份,對焊縫氣孔的產生,常常佔有突出的地位。
1.1 弧柱氣氛中水分的影響
弧柱空間總是或多或少存在一定數量的水分,尤其在潮濕季節或濕度大的地區進行焊接時,由弧柱氣氛中水分分解而來的氫,溶入過熱的熔融金屬中,可成為焊縫氣孔的主要原因。這時所形成的氣孔,具有白亮內壁的特徵。
1.2 氧化膜中水分對氣孔的影響
在正常的焊接條件下,焊絲或工件的氧化膜中所吸附的水分將是生成焊縫氣孔的主要原因。而氧化膜不緻密、吸水性強的鋁合金,主要是Al-Mg合金,要比氧化膜緻密的純鋁具有更大的氣孔傾向。因為Al-Mg合金的氧化膜中含有不緻密的MgO,焊接時,在熔透不足的情況下,母材坡口端部未除凈的氧化膜中所吸附的水分,常常是產生焊縫氣孔的主要原因。
1. 3 減少焊縫氣孔的途徑
避免熔池吸氫是消除或減少焊接氣孔的有效方法。為防止焊縫氣孔,可從兩方面著手:第一,限制氫溶入熔融金屬,或者是減少氫的來源,或者減少氫同熔融金屬作用的時間;第二,盡量促使氣孔自熔池逸出。為了在熔池凝固之前使氫以氣泡形式及時排出,這就要改善冷卻條件以增加氫的逸出時間Hidetoshi Fujii等在失重條件下進行焊接試驗,發現氣孔明顯較重力下多。
(1)減少氫的來源
所有使用的焊接材料(包括保護氣體、焊絲、焊條、焊劑等)要嚴格限制含水量,
使用前均需乾燥處理。一般認為,氬氣中的含水量小於0.08%時不易形成氣孔。
(2)控制焊接工藝
焊接工藝參數的影響比較明顯,但其影響規律並不是一個簡單的關系,須進行具體分析。焊接工藝參數的影響主要可歸結為對熔池在高溫存在時間的影響,也就是對氫的溶入時間和氫的析出時間的影響。焊接時,焊接工藝參數的選擇,一方面盡量採用小線能量以減少熔池存在時間,從而減少氣氛中氫的溶入,同時又要能充分保證根部熔合,以利根部氧化膜上的氣泡浮出。所以採用大的焊接電流配合較高的焊接速度是比較有利的。
2. 鋁合金的焊接熱裂紋
鋁及其合金焊接時,焊縫金屬和近縫區所發現的熱裂紋主要是焊縫金屬結晶裂紋,也可在近縫區見到液化裂紋。
2.1 鋁合金焊接熱裂紋的特點
鋁合金屬於典型的共晶型合金,最大裂紋傾向正好同合金的「最大」凝固溫度區間相對應。但是由平衡狀態圖的概念得出的結論和實際情況是有較大出入的。因此,裂紋傾向最大時的合金組元均小於它在合金中的極限溶解度。這是由於焊接時的加熱和冷卻速度都很迅速,使合金來不及建立平衡狀態,在不平衡的凝固條件下,相圖中的固相線一般要向左下方移動,以致在較少的平均濃度下就出現共晶體,且共晶溫度比平衡冷卻過程將有所降低。至於近縫區的「液化裂紋」,同焊縫凝固裂紋一樣,也是與晶間易熔共晶的存在有聯系,但這種易熔共晶夾層並非晶間原已存在的,而是在不平衡的焊接加熱條件下因偏析而熔化形成的,所以稱為晶間「液化」。
2.2 防止焊接熱裂紋的途徑
對於液化裂紋目前還無行之有效的防止措施,一般的辦法是減小近縫區過熱。對於焊縫金屬的結晶裂紋主要是通過合理選定焊縫的合金成分並配合適當的焊接工藝來進行控制。
(1)控製成分
從抗裂角度考慮,調整焊縫合金系統的著眼點在於控制適量的易熔共晶並縮小
結晶溫度區間。由於現有鋁合金均為共晶型合金,少量易熔共晶的存在總是增大凝固裂紋傾向,所以,一般都是使主要合金元素含量超過裂紋傾向最大時的合金成分,以便能產生癒合作用。
(2)在焊絲中添加變質劑
鋁合金焊絲中幾乎都有Ti、Zr、B、V等微量元素,一般都是作為變質劑加入的。不僅可以細化晶粒而改善塑性、韌性,並可顯著提高抗裂性能。Ti、Zr、B、V、Ta等元素的共同特點是都能同鋁形成一系列包晶反應生成細小的難熔質點,可成為液體金屬凝固時的非自發凝固的晶核,從而可以產生細化晶粒的作用。
(3)合理選用焊接工藝參數
焊接工藝參數影響凝固過程的不平衡性和凝固的組織狀態,也影響凝固過程中
的應變增長速度,因而影響裂紋的產生。熱能集中的焊接方法,有利於快速進行焊接過程,可防止形成方向性強的粗大柱狀晶,因而可以改善抗裂性【5】。減小焊接電流、降低拘束度、改善裝配間隙對減小熱裂傾向都是有利的。而焊接速度的提高,促使增大焊接接頭的應變速度,而增大熱裂的傾向。增大焊接速度和和焊接電流,都可促使增大裂紋傾向。
3. 焊接接頭的等強性
時效強化鋁合金,除了Al-Zn-Mg合金,無論是退火狀態下還是時效狀態下焊接,若焊後不經熱處理,強度均低於母材。所有時效強化的鋁合金,焊後不論是否經過時效處理,其接頭塑性均未能達到母材的水平【1】。就焊縫而言,由於是鑄造組織,即使在退火狀態以及焊縫成分同母材基本一樣的條件下,強度可能差別不大,但焊縫塑性一般都不如母材。若焊縫成分不同於母材,焊縫性能將主要決定於所用的焊接材料。為保證焊縫強度與塑性,固溶強化型合金系統要優於共晶型合金系統。一般說來,焊接線能量越大,焊縫性能下降的趨勢也越大【1】。對於熔合區,在時效強化鋁合金焊接時,除了晶粒粗化,還可能因晶界液化而產生顯微裂紋。所以,熔合區的變化主要是惡化塑性。
總之,鋁合金應為具有重量輕、抗腐蝕、易成型等優點;隨著新型硬鋁、超硬鋁等材料的出現使得這類材料的性能不斷提高,因而在航空、航天、高速列車、高速艦艇、汽車等工業製造領域得到了越來越廣泛的應用。同時由於鋁及其合金由於熱膨脹系數大而引起的較大變形;易氧化焊接時需要用惰性氣體保護;易產生氣孔、熱裂紋以及熱影響區的軟化、強度降低問題。為了解決以上問題攪拌摩擦焊作為一種新型的焊接方式逐漸在鋁及其合金的焊接中廣泛之用。深入的研究鋁及其合金的焊接性是開發新型鋁合金及解決其焊接問題的前提。