導航:首頁 > 焊接工藝 > 焊接深度如何計算

焊接深度如何計算

發布時間:2023-07-13 07:46:45

焊縫長度如何計算

鋼筋焊接按鋼筋直徑計算倍數,一般圖紙或規范要求是幾倍d,並要求焊縫高度與鋼筋焊平;鋼板焊接根據板厚要求不一樣,一般圖紙會標注出焊縫寬度和高度。
因為焊縫在起弧落弧的位置質量難保證,所以計算不予計入,計算長度需要用實際長度減去2t以考慮這點不利影響。但是如果採用了引弧板,則起弧和落弧就被轉移到了母材以外的位置,所以起落弧的不利影響就可以不用考慮了。

Ⅱ 有誰知道焊接厚度是怎樣算的

焊接上面有關厚度的幾個術語:
焊縫金屬厚度,母材厚度,熔深,焊道熔敷金屬厚專度,腰高
焊縫屬金屬厚度就是焊接接頭中焊縫的厚度,一般不計算余高,和焊腳高度。
母材厚度就是整個接頭中母材的名義厚度。
熔深是焊接時從母材表面向其內部熔化的深度,一般以單道焊縫橫截面測量。
焊道熔敷金屬厚度,單條焊道的厚度,
腰高,角焊縫斜邊上的垂線長度。
你說的是哪個厚度呢?

Ⅲ 焊縫高度怎麼計算

不知道有計算焊縫高度的方法。
我們用焊縫檢驗尺,測量焊縫的高度、寬度等專指標。屬
你們的焊縫如果方便測量,不妨用這個辦法,直觀、簡便還沒有計算錯誤的風險。尺子很簡單,就3幾十元,大的五金商店有售。
另外,可以用超聲儀,通過檢測時的顯示數值得到焊縫高度,這種方法,適合不方便用焊縫檢驗尺測量的焊縫和容器內部無法觀察的焊縫。
如果你的問題是焊接設計環節,我覺得針對需要焊接的材料,選擇合適的焊材和確定正確的施焊工藝很重要,對重要的焊接參數,要有工藝試驗和工藝評定確定。只要熔敷金屬(焊條、焊絲)的牌號適當,焊接工藝正確,施焊質量沒有問題,焊縫高度一般不做要求。我們做的焊縫試驗,都是將焊縫余高除去的結果。當然,有餘高會在一定程度上加強焊縫強度。不知道你們是不是一定有焊縫余高?
希望對你有幫助。

Ⅳ 埋弧焊角焊縫熔深計算公式是什麼焊肉高度的,用什麼計算,

焊接電流 焊接電壓(伏) 焊接速度(米/時) 焊絲直徑
1500(安)以內 由22~24
到32~34 由34~36
到50~60 10~40 40~100
熔深 顯著增大 略增大 略減小 無變化 減小 減小
熔寬 略增大 增大 顯著增大
(除直流正接) 減小 減小 增大
余高 顯著增大 減小 減小 略增大 略增大 減小
形狀系數 顯著減小 增大 顯著增大
(除直流正接) 減小 略減小 增大
熔合比 顯著減小 略增大 無變化 顯著增大 增大 減小

焊縫特點 當以下規范增大時的影響
焊絲前傾 焊件傾斜 間歇和坡口 焊劑粒度
上坡焊 下坡焊
熔深 顯著減小 略增大 減小 無變化 略減小
熔寬 增大 略減小 增大 無變化 略增大
余高 減小 增大 減小 減小 略減小
形狀系數 顯著增大 減小 增大 無變化 增大
熔合比 減小 略增大 減小 減小 略減小

熱,熔深增加。電流過大時會造成燒穿鋼板,電流過大還會使焊縫余高過高,熱影響區增大和引起較大焊接變形。
電流減小,熔深減小。電流過小時,容易產生未焊透,電弧穩定性不好。
電流變化對熔寬變化影響不大。
(2) 焊接電壓 焊接電壓是焊絲端頭與熔化金屬表面間的電壓,即電弧兩
端的電壓。由於這個電壓難以測量,實際生產中是測量導電嘴與工件間的電壓,可由機頭上的電壓表讀出。當焊接電纜較長時,由於電流大,在電纜上有電壓降,焊接電源上電壓表的指示值,比機頭上電壓表的指示值要高1~2伏以上。調節焊接電壓時,應根據機頭上的電壓表指示值進行。
焊接電壓對焊絲熔化速度影響不大,但對焊縫橫截面和外表成形有很大影響。
焊接電壓增高時弧長增加,電弧的活動范圍增大,熔寬增大,同時焊縫余高和熔深略為減小,焊縫變得平坦。電弧活動范圍增大後,使焊劑熔化量增多,如果是含合金的燒結焊劑,向焊縫過渡的合金元素增多。當裝配間隙略大時,增高電壓有利於焊縫成形。
焊接電壓過高,對接焊時會形成「蘑菇形」焊縫,容易在焊縫內產生裂紋;角焊時會造成咬邊和凹陷焊縫。如果焊接電壓繼續增高,電弧會突破熔渣的覆蓋,使熔化金屬失去保護而與空氣接觸,造成密集氣孔。
焊接電壓降低時熔寬減小,焊縫變得高而窄。如果焊接電壓過低,會造成母材熔化不足,焊縫成形不良和脫渣困難。
焊接電壓應與焊接電流相適應(見表2)。焊接厚板深坡口焊縫和進行高速埋弧焊時,為了減小磁偏吹,焊接電壓應選得低一些,以增大電弧的「剛性」。
表2 焊接電流與相應的焊接電壓
焊接電流(安) 600~700 700~850 850~1000 1000~1200
焊接電壓(伏) 34~36 36~38 38~40 40~42
(3) 焊接速度 焊接速度對熔寬及熔深有明顯的影響,在其他規范不變的
條件下,焊接速度增大時,電弧對母材的加熱減少,熔寬明顯減小。與此同時,電弧向後方排斥熔池金屬的作用加強,電弧直接加熱熔池低部的母材,使熔深略為增加。當焊接速度提高到40米/時以上時,由於電弧對母材加熱量顯著減少,熔深隨焊接速度增大而減小。
焊接速度過高會造成咬邊、未焊透、焊縫粗糙不平等缺陷。
降低焊接速度,熔池體積增大而存在時間增長,有利於氣體浮出熔池,減小
形成氣孔的傾向。但焊接速度過低會形成易裂的「蘑菇形」焊縫,或產生燒穿、夾渣、焊縫不規則等缺陷。
對於角焊縫,增大焊接速度可以提高生產率。對於開坡口的對接焊縫,焊接速度的變化對生產率的影響不大。
(4) 焊絲直徑 焊絲直徑主要影響熔深。在同樣的焊接電流下,不同直徑
的焊絲電流密度不同,直徑較細的焊絲電流密度較大,電弧的吹力大熔深大。細焊絲時電流密度大,易於引弧。
焊絲越粗,允許採用的電流越大,生產率越高。當裝配不良時,粗焊絲比細焊絲的操作性能好,有利於控制焊縫成形,不易燒穿。
焊絲直徑應與所用的焊接電流大小相適應,如果粗焊絲用小電流焊接,會造成焊接電弧不穩定;相反,細焊絲用大電流焊接,容易形成「蘑菇形」焊縫,而且熔池不穩定,焊縫成形差。不同直徑焊絲適用的焊接電流范圍如表3 。
表3 不同直徑焊絲適用的焊接電流
焊絲直徑(毫米) 2 3 4 5 6
焊接電流(安) 200~400 350~600 500~800 700~1000 800~1200
電流密度(安/毫米) 63~125 50~85 40~63 36~50 28~42
臨界電流(安) 280 300 530 700

(5) 伸出長度 焊絲伸出長度是指焊絲伸出導電嘴部分的長度,就是導電
嘴下端到熔池表面的距離。為了測量方便,一般將導電嘴下端到焊件表面的距離作為伸出長度。
伸出導電嘴外的焊絲存在一定電阻,埋弧焊的焊接電流很大,在這部分焊絲
上產生的電阻熱很大,焊絲受到的電阻熱的預熱,熔化速度增大,焊絲直徑越細或伸出長度越長時,這種預熱作用越大。所以,焊絲直徑小於3mm時,要嚴格控制伸出長度;焊絲直徑較粗時,伸出長度的影響較小,但也要控制在合適的范圍內。伸出長度一般應為焊絲直徑的6~10倍。對不銹鋼焊絲等電阻較大的材料,伸出長度應小一些,以免焊絲過熱。
伸出長度太短,電弧容易返燒到導電嘴上,如果導電嘴是銅材製成的時,焊縫會熔入銅而產生裂紋,所以伸出長度不宜過短。

2. 確定規范時應考慮的因素
選擇埋弧焊規范的基本原則,是在保證焊縫成形良好,內在質量和接頭性能滿足要求的前提下,盡可能提高生產率。切不能單純追求生產率而盲目選用粗焊絲和大焊接電流,必須考慮各種規范之間的配合和每種規范的合理范圍。通常要注意以下三方面:
(1) 焊縫形狀系數 每一道焊縫都有一定的熔寬(b)、熔深(t)和余高(h)
如下圖。它們決定了焊縫截面的基本形狀:焊縫是深而窄,或是寬而淺等。為了反映各種不同熔寬和熔深時的焊縫橫截面形狀,常採用焊縫形狀系數(ψ)表示:
ψ=b/t
焊縫形狀系數大的焊縫,其熔寬較熔深大,形狀系數小的焊縫,熔寬相對熔深較小。焊縫形狀系數過小的焊縫,焊縫深而窄,熔池凝固時,柱狀結晶從兩側向中心生長,低熔點雜質不易從熔池中浮出,積聚在結晶交界面上形成薄弱的結合面,在收縮應力和外界拘束應力作用下,很可能在焊縫中心產生結晶裂紋。因此,選擇埋弧焊規范時,要注意控制形狀系數,一般以1.3~2左右為宜。
影響形狀系數的主要規范,是焊接電壓和焊接電流。焊接電流大時熔深大,這時如不相應增高焊接電壓,焊縫形狀系數就可能太小。當然,對於一定的焊接
電流,過分增高焊接電壓也是不必要的,會使焊縫過寬或造成缺陷。埋弧焊時,與焊接電流相應的焊接電壓范圍見表5 。
表5 焊接電流與相應的焊接電壓
焊接電流(安) 600~700 700~850 850~1000 1000~1200
焊接電壓(伏) 34~36 38~38 38~40 40~42

(2) 母材熔合比 埋弧焊縫是由熔化的母材及填充金屬組成的,熔化的母
材在焊縫中所佔的比例稱為母材熔合比(r)見上圖。Am表示焊縫中母材的熔化面積;At表示焊縫中填充金屬的面積。則母材熔合比用下式表示:
r=Am/(Am+At)
通常母材中的含碳量和硫、磷雜質的含量比焊絲高,合金元素含量與焊絲也有差別。所以母材熔合比大的焊縫,由母材帶入焊縫的碳量及雜質量較多;當母材合金元素與焊絲有較大差別時,母材對焊縫成分有較大影響。
依據焊接規范的不同,埋弧焊縫的母材熔合比為30%~60%。單道焊縫或多層焊時第一層焊縫,母材熔合比較大,母材容合比對焊縫塑性和韌性有很大影響,對於某些材料,應防止在第一層焊縫中熔入過多的母材,而降低焊縫的抗裂性。埋弧堆焊時,為了減少堆焊層數和保證堆焊層成分,必須減少熔合比。
生產中也有採用較大母材熔合比的情況,例如不開坡口埋弧對接焊時,母材熔合比較大,用合金元素含量較低的H08MnA或H08A焊絲,配焊劑431焊接16Mn鋼,就可以保證焊縫得到合適的化學成分,保證足夠的強度。
影響焊縫熔深的不同規范,對母材熔合比也都有影響,減小母材熔合比的常用措施有:減小焊接電流;採用下坡焊或焊絲前傾布置;用正極性焊接;增大焊絲伸出長度;用帶極代替絲極堆焊;不開坡口焊接改成開坡口焊接等。
(3) 線能量 焊接接頭的性能除與母材和焊縫的化學成分有關外,還受到
焊接加熱和冷卻過程的影響。焊接時母材受電弧加熱的程度,與焊接電弧的功率大小有直接關系,電弧功率是焊接電流和焊接電壓的乘積,電弧功率越大,對母材的加熱越強烈。但是,母材的加熱程度還與電弧移動速度(即焊接速度)有關,焊接速度增大,每段焊縫得到的電弧熱量相應減少。可以用線能量綜合表示這三個因素的影響。線能量是單位長度焊縫(即焊縫中的任一小段焊縫)得到的電弧熱量,用下式可以算出:
q=IU/V
式中 I — 焊接電流 (安);
U — 焊接電壓 (伏);
V — 焊接速度 (厘米/秒)
q — 線能量 (焦耳/厘米)。
例如,焊接電流700安,焊接電壓36伏,焊接速度1厘米/秒(36米/時)時,線能量為25200叫焦耳/厘米。
從線能量計算公式可以看出,線能量與焊接電流和焊接電壓成正比,與焊接速度成反比。也就是說,焊接電流、焊接電壓越高,線能量越大;焊接速度增大時,線能量減小。由於埋弧焊焊接電流和焊接速度能在較大范圍中調節,線能量的變化范圍比焊條電弧焊大得多。
線能量增大時,熱影響區增大,過熱區明顯增寬,晶粒變粗,造成焊接接頭的塑性和韌性下降。對於低合金鋼,這種影響尤其顯著。如果用大線能量焊接不銹鋼,會使近縫區在「敏化區」范圍停留時間增長,影響焊接接頭抗晶間腐蝕的性能。焊接低溫鋼時,大線能量會造成焊接接頭的低溫沖擊韌性明顯降低。
所以,埋弧焊時,必須根據母材的性能特點和對焊接接頭的要求,選擇合適的線能量。

Ⅳ 電熔焊接參數怎麼計算

  1. 按照電熔焊機的操作要求連接導線,設置好電熔焊機正確焊接參數,可以用手動或自動兩種輸入方式。

  2. 檢查無誤後,啟動電熔焊機,進入焊接過程,當達到焊接時間後,機器會自動進入冷卻狀態。

  3. 當管件完全冷卻後,撤去電熔焊機。

  4. 用塑料管材切刀或帶切削導向裝置的細齒鋸切斷管材,並使其端面垂直於管材軸線。用小刀切除內部邊緣的毛剌,在管材或插口端的焊接區域刮皮,清理焊接區域。

  5. 應盡可能使用專用的夾具固定要連接的組件,管子的圓度不應超過管子外徑的1.5%,否則應在相應的夾具上進行校正。

  6. 管材與管件應有適合的間隙,一般以用微力插入為宜,間隙過大或過小都會影響介面的質量。

  7. 檢查可以插入深度,將承口管件滑入插口端並正確定位。

Ⅵ 知道所有參數。怎麼計算焊接熔池深度,有什麼公式

熔池是指在焊接熱源作用下,焊件上所形成的具有一定幾何形狀的液態金屬部分。熔池結晶後形成焊縫,熔化焊均產生熔池。對於手工電弧焊、熔化極氣體保護焊及芯焊絲電弧焊來說,熔池是類似的,但也不是完全相同的。手工或半自動焊工必須首先學習如何控制熔池金屬。而焊或自動焊系統通過感測器及裝置來控制熔池金屬。必須對焊接工藝文件中的所有焊接參數(包括熔滴過渡方式)進行正確的設置才能保證得到可控的熔池。熔池行為是非常復雜的,必須從多個角度進行考慮。
大部分熔池的控制,特別是立焊及仰焊時熔池的控制均涉及電源及送絲機調節以及電弧的正確操縱。如果熔池過大,熔池重力使熔池金屬流失,不能形成焊縫。如果熔深過大,則會使厚度較小的工件燒穿。但是,如果熔池的尺寸不夠大,則不能形成有效的焊縫。薄板焊接時,如果焊接速度適當,則熔池的體積較小,電弧穩定走後熔池立即凝固,可得到高質量的焊縫。弧焊電源的動態響應特性也影響熔池的穩定性。
熔池是隨電弧一起移動的,這使得熔池行為更加復雜。電弧熱輸入必須足夠大才能熔化母材,形成熔池。電弧熱輸入是指單位時間內輸入到焊縫中的熱量,是可計算的。通常計算單位焊縫長度上的熱輸入,即線能量。線能量計算公式如下;
H(W/in或W/m)=60EI/S
式中,E為電弧電壓、V;I為焊接電流,A:S為焊接速度,in/min或m/min;H為線能量,W/in或W/m。電弧產生的熱量並不能全部輸入到工件中,一部分通過輻射的形式散失到周圍空間中,一部分用於熔化焊絲或焊條或者加熱鎢極。輸入到工件中的熱量占電弧總熱量的百分數稱為熱效率系數。不同焊接方法的電弧熱效率系數相差很大,最低只有20%,最高可達95%。
熔池中的液態金屬的量取決於多種因素,包括電弧溫度、熱輸入、母材的熔點、工件厚度、工件大小、母材的熱導率以及工件的初始溫度等。而熱輸入又受焊絲(或焊條、鎢極)直徑和極性、電弧氣氛、焊接方法、焊接電流、電弧長度及焊接速度等的影響。只有正確地理解了這些焊接參數之間的關系才能成功地控制熔池。這些焊接參數還影響熔池的冷卻速度和凝固速度。
電弧還通過影響加熱及冷卻速度來影響熔池和焊縫的冶金特點。冷卻速度影響焊縫及熱影響的冶金性能,對於高碳鋼和合金鋼的影響尤其明顯。另外當焊絲的成分與母材不相同時,電弧還通過影響熔池的合金來影響焊縫的冶金性能。這些因素及其與熔池的關系將在後面予以闡述。
手工電弧焊時,焊工通過觀察熔池來調節焊接參數並操縱電弧。而自動焊需採用感測器來監視熔池,進而調節焊接參數。熔池的深度及寬度是影響焊縫質量的主要因素。
通過觀察熔池還可預先湊數是否有產生焊接缺陷的可能。高速焊接時,容易產生咬邊和駝峰缺陷。駝峰是焊道上的一列金屬熔瘤,這種缺陷通常產生於焊接速度大於50in/min(1270mm/min)的情況。咬邊缺陷是指沿焊縫趾部的母材部位燒熔出的凹陷或溝槽的寬度取決於電弧 的能量,特別是電弧電壓。如果熔池金屬在填滿坡口前就快速凝固,則產生咬邊缺陷。這種情況下,熔池金屬還沒有鋪展到坡口邊緣就已凝固。產生咬邊的主要原因是焊接速度過快人,另外,熔池金屬對工件的潤濕性也有一定的影響。熔池金屬的潤濕性取決於相關的各個表面張力之間關系。氧化物的表面張力顯著小於純金屬的表面張力。駝峰產生的主要原因也是焊接速度過快快,但焊絲角度以及通過保護氣體或工件表面的塗層進入電弧空間的氧氣也具有很大的影響。
熔池結晶特點如下:
(1)由於熔池體積小,周圍被冷卻金屬所包圍,所以熔池冷卻速度很快。
(2)熔池中液體金屬的溫度比一般澆注鋼水的溫度高得多,過渡熔滴的平均溫度約在2300℃左右,熔池平均溫度在1700℃左右,所以熔池中的液體金屬處於過熱狀態。
(3)熔池中心液休金屬溫度高,而邊緣凝固界面處冷卻速度大,所以熔他結晶是在很大溫度梯度(溫差)下進行的。
(4)熔池一般隨電弧的移動而移動,所以熔他的形狀和結晶組織受焊接速度的影響較大。同時,焊條的擺動、電弧的吹力、電磁力對熔池有強烈攪拌作用,熔池內的熔化金屬是在運動狀態下結晶的。

Ⅶ 全焊接閥門的焊接處的深度是怎麼確定的和閥門本身的壁厚有多大的關系的。。。

一般加工時按經驗,按壓力大小,常壓4-5mm,不打剖口,中壓單剖口5mm,高壓另算

閱讀全文

與焊接深度如何計算相關的資料

熱點內容
l415m鋼管用什麼焊絲和焊條 瀏覽:728
哪裡有好的鋼材國標 瀏覽:771
不銹鋼方管拉絲機圖片 瀏覽:300
什麼材質比硬質合金鑽頭還硬 瀏覽:833
不銹鋼管內拋光怎麼弄 瀏覽:634
鍋爐鋼材質用什麼焊條 瀏覽:152
鋼構線管預埋怎麼做彎 瀏覽:115
不銹鋼鍋上面的污漬怎麼去除 瀏覽:971
鋼鐵俠是什麼作家 瀏覽:654
鋼板刷漆多少錢一平米 瀏覽:194
彩色壓型鋼板每平米多少錢 瀏覽:246
接地網焊接跟連接有什麼區別 瀏覽:319
學跳鋼管舞不標准怎麼辦 瀏覽:76
鋼鐵雄心怎麼ob 瀏覽:147
不銹鋼貼在大理石上用什麼膠水 瀏覽:559
煤礦鋼筋網需要什麼材料 瀏覽:580
2個板拉伸需要多少模具 瀏覽:44
塑料焊接縫隙怎麼清理 瀏覽:919
鋼板倉的驗收規范是什麼 瀏覽:751
鋼材45號鋼有多少度 瀏覽:637