『壹』 超聲波金屬焊接機的工作原理是怎麼樣的
超聲波金屬焊接是利用高頻振動波傳遞到兩個需焊接的金屬表面,在加壓的情況下,使兩個金屬表面相互摩擦而形成分子層之間的熔合,其優點在於快速、節能、熔合強度高、導電性好、無火花、接近冷態加工;缺點是所焊接金屬件不能太厚(一般小於或等於5mm)、焊點位不能太大、需要加壓。
超聲波金屬焊接是19世紀30年代偶然發現的。當時在作電流點焊電極加超聲振動試驗時,發現不通電流也能焊接上,因而發展了超聲金屬冷焊技術。超聲波焊接雖然發現較早,但是到目前為止,其作用機理還不是很清楚。它類似於摩擦焊,但有區別,超聲焊接時間很短,溫度低於再結晶;它與壓力焊也不相同,因為所加的靜壓力比壓力焊小的多。一般認為在超聲波焊接過程中的初始階段,切向振動出去金屬表面的氧化物,並是粗糙表面的突出部分產生反復的微焊和破壞的過程而使接觸面積增大,同時使焊區溫度升高,在焊件交界面產生塑性變形。這樣在接觸壓力的作用下,相互接近到原子引力能夠發生作用的距離時,即形成焊點。焊接時間過長,或超聲波振幅過大會使焊接強度下降,甚至破壞。
超聲波金屬焊接的特點是:不需要焊劑和外加熱,不因受熱而變形,沒有殘余應力,對焊件表面的焊前處理要求不高。不但同類金屬,而且異類金屬之間也可以焊接。可以將薄片或細絲焊接在厚板上。超聲焊接良導電體的能量比電流焊接少的多,常用於晶體管或集成電路的引線的焊接。用於葯物和易爆材料的密封焊時,能避免一般焊接因有溶解物體而污染葯品,不會因受熱而發生爆炸等等。
『貳』 超聲波檢測時焊口清理有哪些規定
在每次探傷操作前都必須利用標准試塊(CSK- IA、CSK- ⅢA)校準儀器的綜合性能,校準面板曲線,以保證探傷結果的准確性。
(1)探測面的修整:應清除焊接工作表面飛濺物、氧化皮、凹坑及銹蝕等,光潔度一般低於▽4。焊縫兩側探傷面的修整寬度一般為大於等於2KT+50mm, (K:探頭K值,T:工件厚度)。一般的根據焊件母材選擇K值為2.5 探頭。例如:待測工件母材厚度為10mm,那麼就應在焊縫兩側各修磨100mm。
(2)耦合劑的選擇應考慮到粘度、流動性、附著力、對工件表面無腐蝕、易清洗,而且經濟,綜合以上因素選擇漿糊作為耦合劑。
(3)由於母材厚度較薄因此探測方向採用單面雙側進行
(4)由於板厚小於20mm所以採用水平定位法來調節儀器的掃描速度。
(5)在探傷操作過程中採用粗探傷和精探傷。為了大概了解缺陷的有無和分布狀態、定量、定位就是精探傷。使用鋸齒形掃查、左右掃查、前後掃查、轉角掃查、環繞掃查等幾種掃查方式以便於發現各種不同的缺陷並且判斷缺陷性質。
(6)對探測結果進行記錄,如發現內部缺陷對其進行評定分析。焊接對頭內部缺陷分級應符合現行國家標准GB/T 11345- 2013《焊縫無損檢測 超聲檢測 技術、檢測等級和評定》的規定,來評判該焊否合格。如果發現有超標缺陷,向車間下達整改通知書,令其整改後進行復驗直至合格。一般的焊縫中常見的缺陷有:氣孔、夾渣、未焊透、未熔合和裂紋等。到目前為止還沒有一個成熟的方法對缺陷的性質進行准確的評判,只是根據熒光屏上得到的缺陷波的形狀和反射波高度的變化結合缺陷的位置和焊接工藝對缺陷進行綜合估判。