『壹』 設計焊接工裝夾具時應遵循哪些基本原則
一、工裝夾具設計的基本原則
1.滿足使用過程中工件定位的穩定性和可靠性;
2.有足夠的承載或夾持力度以保證工件在工裝夾具上進行的施工過程;
3.滿足裝夾過程中的簡單與快速操作;
4.易損零件必須是可以快速更換的結構,條件充分時最好不需要使用其它工具進行;
5.滿足夾具在調整或更換過程中重復定位的可靠性;
6.盡可能的避免結構復雜、成本昂貴;
7.盡可能選用市場上質量可靠的標准品作組成零件;
8.滿足夾具使用國家或地區的安全法令法規;
9.設計方案遵循手動、氣動、液壓、伺服的依次優先選用原則;
10.形成公司內部產品的系列化和標准化。
『貳』 焊接考試用的工裝支架怎麼做
上設有位置可調的支架頂板支座和用於連接支架前、後腿連接板的連接板底座。使用前將支架上連接板(頂板)和下連接板尺寸和位置尺寸定製好,然後將支架上連接板和下連接板定好位置後與支架頂板支座和連接板底座緊固;然後將連接腿(支架前、後腿)焊接到上、下連接板上。由於連接板尺寸和位置尺寸是工裝按照圖紙定製好的,所以焊接完成後滿足其整體設計要求。
『叄』 什麼是焊接工裝汽車焊裝夾具結構設計
(一)點焊夾具
點焊夾具結構簡單,可以移動,應以輕巧、靈活為主,定位基準一定要准確。
(二)CO2氣體保護焊夾具
這種夾具一般以固定式為主,其結構簡單。但如果一副夾具僅焊一個組件,則效率太低,這時可將其依次或對稱設計成幾組定位夾緊機構,做到一具多用,以提高焊接效率。
(三)綜合夾具
這類夾具所裝夾組件,既有CO2焊,又有點焊。這對一些全點焊組件中有些位置不適宜在夾具上點焊,而一些焊點對外觀和質量無特殊要求的焊件,如果用CO2焊先在夾具上預焊,則很方便,且夾具設計簡單。所以應適當地進行工藝調整達到簡化夾具和提高效率的目的。
(四)大型焊接夾具
中大型焊接夾具機構龐大、復雜,各部件總成與車身焊接總成之間既相互關聯又相互制約和影響。
(五)工藝措施與夾具的關系
汽車焊接夾具是焊接工藝能否順利、正確執行的保證,而工藝過程是否合理也影響夾具的設計和使用效果。如因散件裝焊次序不同而產生的焊接質量差異等。因此工藝人員和工裝設計人員應密切配合,設計出合理的夾具及工藝。
(六)調試過程中的再設計
對於大型焊接夾具,因結構復雜,調試時會出現許多設計、製造上的問題,以及焊接散件超差等現象。這就要求設計者根據實際情況予以指導修正。調試是一項很復雜的技術工作,而小批量調試和大批量生產又會出現許多不同的問題,因此設計者應隨時了解情況,不斷地予以修正,在調試過程中再設計。
夾具調試還有另一項重要工作,即驗證焊接散件是否合格,但調試時應避免因散件質量問題而認為夾具不合格的錯誤。當然散件有些是屬於合理的回彈變形,有些誤差也可通過夾具修正成合格品。因此夾具設計者應充分了解沖壓件的工藝特性,通過合理的夾具設計,放寬沖壓件的合格品范圍。
『肆』 焊接工裝如何設計
因情況而異,焊接工裝主要根據實際的設備情況,要限制的情況,如變形,轉動,錯邊等等,進行工裝設計。
這是一個獨立的部門在製造廠里,需要對力學有很好的了解才能做的好,並且需要大量的實際經驗積累,最好有老師傅帶帶,他們畢竟見多識廣。
『伍』 車門焊接夾具怎麼設計
在汽車焊接流水線上,真正用於焊接操作的工作量僅佔30%~40%,而60%~70%為輔助和裝夾工作。因裝夾是在焊接夾具上完成的,所以夾具在整個焊接流程中起著重要作用。
在焊接過程中,合理的夾具結構,有利於合理安排流水線生產,便於平衡工位時間,降低非生產用時。對具有多種車型的企業,如能科學地考慮共用或混型夾具,還有利於建造混型流水線,提高生產效率。
一、汽車焊接工藝特點
(一)材料與結構
汽車焊接材料主要是低碳鋼的冷軋鋼板,鍍鋅鋼板,及少量的熱軋鋼板。它們可焊性好,適宜大多數的焊接方法,但由於是薄板件,因而剛性差、易變形。
在結構上,焊接散件大多數是具有空間曲面的沖壓成形件,形狀、結構復雜。有些型腔很深的沖壓件,除存在因剛性差而引起的變形外,還存在回彈變形。
(二)焊接方法
汽車焊接方法主要有CO2氣體保護焊和電阻焊。CO2氣體保護焊應用范圍較廣,且對夾具結構要求不十分嚴格。電阻焊對夾具要求嚴格,尤其是多點焊、反作用焊和機器人點焊。因汽車焊接以電阻焊為主,所以本文將針對電阻焊夾具的設計進行探討。
(三)焊接工藝流程
汽車焊接的基本特徵就是組件到部件再到總成的一個組合再組和過程。
從組件到車身焊接總成的每一個過程,既相互獨立,又承前啟後,因此組件的焊接精度決定著部件總成的焊接精度,最後影響和決定著車身焊接總成的焊接精度與質量,這就要求相互關聯的組件、部件及車身焊接總成夾具的定位基準應具有統一性和繼承性,只有這樣才能保證最終產品質量,即使出現質量問題也易於分析原因,便於糾正和控制。
焊接過程以流水線生產為主,所以夾具設計應有利於流水線的布置和設計,同時也考慮給生產管理提供方便。
二、焊接夾具的設計方法與步驟
1.在設計焊接夾具之前,應首先了解生產綱領、產品結構特徵、工藝需要及生產線布置方式,作好充分的工藝調研,參照國內外先進的夾具結構,並結合實際情況確定夾具總體方案。諸如是固定夾具還是隨行夾具,機械化、自動化水平是高是低,幾種車型主要夾具是否混型共用等。
2.根據焊件結構特點及所需焊接設備型號、規格,確定定位及夾緊方式;同時根據沖壓件的工藝特點及後續裝配工藝的需要選擇合適的定位點及關鍵定位點。
3.主體機構確定後,便可確定輔助裝置。如水、電、氣迴路,氣、液動元件以及覆蓋件外部焊點所需保護銅板等。
4.因焊接夾具總體結構都很龐大,空間結構及尺寸復雜,所以其設計應採用坐標法及模塊化設計的方法,以提高設計效率。
5.在進行夾具的具體結構設計時,應盡可能多的採用標准化元件,或提高自身的通用化、系列化程度。
三、焊接夾具的組成、結構及要求
汽車焊接夾具通常由夾具地板、定位裝置、夾緊機構、測量系統及輔助系統等五大部分組成。
(一)夾具地板
夾具地板是焊接夾具的基礎元件,它的精度直接影響定位機構的准確性,因此對工作平面的平面度和表面粗糙度均有嚴格的要求。
夾具自身測量裝置的基準是建立在夾具地板上,因此在設計夾具地板時,應留有足夠的位置來設立測量裝置的基準槽,以滿足實際測量的需要。另外,在不影響定位定位機構裝配和定位槽建立的情況下,應盡可能採用框架結構,這樣可以節約材料、減輕夾具自重,這一點對流水線上的隨行夾具尤為重要。
(二)定位裝置
定位裝置中的零部件通常有固定銷、插銷、檔鐵、V型塊,以及根據焊件實際形狀確定的定位塊等{圖1所示為專用定位塊}。
1.因焊接夾具使用頻率極高,所以定位元件應具有足夠的剛性和硬度,以保證在更換修整期的精度。
2.為便於調整和更換主要定位元件及使夾具具備柔性的混型功能,定位機構應盡可能設計成組合可調式的。如圖1中的定位元件A-1由產品形狀確定,因此通過更換件A-1即可達到修整夾具和適應不同車型的需要。
3.標准化設計。如圖1中的支承件A-2,可設計成混、通用系列的元件。因汽車結構區別較大,尤其是重、中、輕、微型車,所以應根據車型分別指定汽車焊接夾具標准,以適應不同車型的需要。
4.定位元件可選用厚度為16mm、18mm、20mm、三種尺寸的鋼板,{如圖1中件A-1、A-2},統一備料。另外,定位元件的熱處理應在夾具調試合格後進行,但應准確記錄更改數據,並相應修整夾具資料,使之符合調試合格狀況,為今後製造提供准確資料。
3.3夾緊機構
汽車焊接夾具的夾緊機構以快速夾緊機構和氣動夾緊機構為主。快速夾緊機構具有以下優點:
1.如圖2所示的快速夾緊器,其結構簡單,動作迅速,從自由狀態到夾緊僅需幾秒鍾,符合大批量生產需要。
2.快速夾緊器根據需要可幾個串聯或並聯在一起使用,達到二次夾緊或多點夾緊的目的。另外對定位精度較低的焊件能實現夾緊和定位同時進行,消除了專用定位元件。它還能通過轉換其機構組成發揮更多作用,應用范圍較廣。
3.配以螺紋調節壓塊,可糾正焊件變形,保證焊點搭邊能緊密配合,不產生脫焊、虛焊現象,提高焊接質量。
4.同氣缸配套使用,可實現手動、氣動混用,保證了流水線正常運行(圖2)。
(四)輔助機構
輔助機構在焊接過程中發揮著重要作用。下面介紹三種常用輔助機構。
1.旋轉系統
在夾具地板和夾具支撐中布置如圖3所示的旋轉系統,可使夾具體在平面上做360度旋轉(為使轉動靈活輕巧還配備有滾動軸承)。這樣的系統可解決或克服焊機少的缺陷,因為當焊機不動,電纜長度有限時,轉動夾具可使焊點移動到焊鉗的工作區域進行焊接,使焊接工作方便輕松地進行,保證焊接質量。另外,為保證夾具在裝夾、拆卸時能處於穩定工況,還應設計止動裝置。
2.翻磚機構
如圖4所示,當焊點處於中間位置時,如果用X型焊鉗進行點焊,則焊鉗無法伸進,喉深也不夠,難以焊接;若用C型焊鉗,如果夾具平放,雖能焊接,但工人的勞動強度大。所以設計夾具時,可將其設計成可翻轉夾具,使焊件能向兩邊翻轉90度,焊件平面處於豎直位置,這樣工人只要將焊槍處於水平位置便可焊接,大大降低了勞動強度。在設計翻轉夾具時需要設計止動機構,以防止夾具自動回復原位造成事故。
3.反作用焊接機構
在微型車和轎車底版部位的焊接總成中,如圖5所示的中間位置焊點,是普通X型焊和C型焊無法焊接的,一般是採用反作用點焊進行焊接。在使用反作用點焊時,夾具中心需配置有反作用焊臂(見圖5),反作用焊臂應具有一定的穩定性和剛性,在裝夾焊件和取出焊件時,反作用焊臂應能旋轉讓位。
(五)測量機構
利用夾具本體自身設計測量機構是提高夾具設計和製造精度的重要措施。在傳統的夾具設計中,夾具合格的標準是利用實際沖壓件進行裝配組合來檢驗的,但由於沖壓件不可能十分准確,部件總成更有累計誤差,所以車身焊接總成的精度必然不高,很難達到設計要求。有不少廠家使用三坐標測量儀進行檢驗,可它對一些結構復雜的定位元件仍然無法測量。通過實踐證明,利用夾具自身測量機構與三坐標測量儀配合使用,可大大提高焊接夾具的精度。
1.測量機構組成
(1)基準面和基準槽。測量機構的基準面為夾具地板的工作表面;基準槽是在夾具地板上設計兩條相互垂直的十字交叉槽,其結構如圖6。槽子的位置可由實際需要確定。
(2)測量器具。測量器除常規量具、三坐標測量儀外,還需設計專用量塊和方箱
2.實際測量時應注意的問題
(1)定位元件的倒角應在測量、調試合格後進行加工,即保留測量點;(2)測量器使用要得當,防止人為誤差造成的假象。若能使用三坐標測量儀時,可進行對比檢查。
四、典型夾具機構特點分析
(一)點焊夾具
點焊夾具結構簡單,可以移動,應以輕巧、靈活為主,定位基準一定要准確。
(二)CO2氣體保護焊夾具
這種夾具一般以固定式為主,其結構簡單。但如果一副夾具僅焊一個組件,則效率太低,這時可將其依次或對稱設計成幾組定位夾緊機構,做到一具多用,以提高焊接效率。
(三)綜合夾具
這類夾具所裝夾組件,既有CO2焊,又有點焊。這對一些全點焊組件中有些位置不適宜在夾具上點焊,而一些焊點對外觀和質量無特殊要求的焊件,如果用CO2焊先在夾具上預焊,則很方便,且夾具設計簡單。所以應適當地進行工藝調整達到簡化夾具和提高效率的目的。
(四)大型焊接夾具
中大型焊接夾具機構龐大、復雜,各部件總成與車身焊接總成之間既相互關聯又相互制約和影響。
(五)工藝措施與夾具的關系
汽車焊接夾具是焊接工藝能否順利、正確執行的保證,而工藝過程是否合理也影響夾具的設計和使用效果。如因散件裝焊次序不同而產生的焊接質量差異等。因此工藝人員和工裝設計人員應密切配合,設計出合理的夾具及工藝。
(六)調試過程中的再設計
對於大型焊接夾具,因結構復雜,調試時會出現許多設計、製造上的問題,以及焊接散件超差等現象。這就要求設計者根據實際情況予以指導修正。調試是一項很復雜的技術工作,而小批量調試和大批量生產又會出現許多不同的問題,因此設計者應隨時了解情況,不斷地予以修正,在調試過程中再設計。
夾具調試還有另一項重要工作,即驗證焊接散件是否合格,但調試時應避免因散件質量問題而認為夾具不合格的錯誤。當然散件有些是屬於合理的回彈變形,有些誤差也可通過夾具修正成合格品。因此夾具設計者應充分了解沖壓件的工藝特性,通過合理的夾具設計,放寬沖壓件的合格品范圍。
六、發展趨勢
1.為提高汽車產量,適應流水線生產,應細化工藝,使用高效率夾具,提高生產效率。
2.為適應系列車型需要,應發展快速可調的混型夾具。
3.提高夾具機具一體化程度,諸如多點焊機,車門包邊焊接機等。
4.採用新的設計方法,如坐標法、模塊化設計法、計算機輔助設計等。
5.提高夾具通用化、系列化、標准化水平。
『陸』 汽車焊接夾具設計流程是怎樣的
汽車焊接夾具設計流程如下:
1,結構設計;
2,基座設計基礎平台及支架,包括鑄造平台,槽鋼焊接的框架,起吊裝置,拖曳裝置,叉車腳等。
3,聯接件設計;
4,車身主檢具精度檢測4.1檢測原理;
5,測量結果處理。
夾具是機械製造過程中用來固定加工對象,使之佔有正確的位置,以接受施工或檢測的裝置,又稱卡具(qiǎ jǜ)。從廣義上說,在工藝過程中的任何工序,用來迅速、方便、安全地安裝工件的裝置,都可稱為夾具。
『柒』 超聲波焊接 工裝 要求
超聲波塑料件的焊接線設計
代注塑方式能有效提供比較完美的焊接用塑膠件。光我們決定用超聲波焊接技術完成熔合時,塑料件的結構設計必須首先考慮如下幾點:
1 焊縫的大小(即要考慮所需強度)
2 是否需要水密、氣密
3 是否需要完美的外觀
4 避免塑料熔化或合成物的溢出
5 是否適合焊頭加工要求
焊接質量可能通過下幾點的控制來獲得:
1 材質
2 塑料件的結構
3 焊接線的位置和設計
4 焊接面的大小
5 上下表面的位置和松緊度
6 焊頭與塑料件的妝觸面
7 順暢的焊接路徑
8 底模的支持
為了獲得完美的、可重復的熔焊方式,必須遵循三個主要設計方向:
1 最初接觸的兩個表面必須小,以便將所需能量集中,並盡量減少所需要的總能量(即焊接時間)來完成熔接。
2 找到適合的固定和對齊的方法,如塑料件的接插孔、台階或企口之類。
3 圍繞著連接界面的焊接面必須是統一而且相聯系互緊密接觸的。如果可能的話,接觸面盡量在同一個平面上,這樣可使能量轉換時保持一致。
下面就對塑料件設計中的要點進行分類舉例說明:
整體塑料件的結構
1.1塑料件的結構
塑料件必須有一定的剛性及足夠的壁厚,太薄的壁厚有一定的危險性,超聲波焊接時是需要加壓的,一般氣壓為2-6kgf/cm2 。所以塑料件必須保證在加壓情況下基本不變形。
1.2罐狀或箱形塑料等,在其接觸焊頭的表面會引起共振而形成一些集中的能量聚集點,從而產生燒傷、穿孔的情況(如圖1所示),在設計時可以罐狀頂部做如下考慮
○1 加厚塑料件
○2 增加加強筋
○3 焊頭中間位置避空
1.3尖角
如果一個注塑出來的零件出現應力非常集中的情況,比如尖角位,在超聲波的作用下會產生折裂、融化。這種情況可考慮在尖角位加R角。如圖2所示。
1.4塑料件的附屬物
注塑件內部或外部表面附帶的突出或細小件會因超聲波振動產生影響而斷裂或脫落,例如固定梢等(如圖3所示)。通過以下設計可盡可能減小或消除這種問題:
○1 在附屬物與主體相交的地方加一個大的R角,或加加強筋。
○2 增加附屬物的厚度或直徑。
1.5塑料件孔和間隙
如被焊頭接觸的零件有孔或其它開口,則在超聲波傳遞過程中會產生干擾和衰減(如圖4所示),根據材料類型(尤其是半晶體材料)和孔大小,在開口的下端會直接出現少量焊接或完全熔不到的情況,因此要盡量預以避免。
1.6塑料件中薄而彎曲的傳遞結構
被焊頭接觸的塑件的形狀中,如果有薄而彎曲的結構,而且需要用來傳達室遞超聲波能量的時候,特別對於半晶體材料,超聲波震動很難傳遞到加工面(如圖5所示),對這種設計應盡量避免。
1.7近距離和遠距離焊接
近距離焊接指被焊接位距離焊頭接觸位在6mm以內,遠距離焊接則大於6mm,超聲波焊接中的能量在塑料件傳遞時會被衰減地傳遞。衰減在低硬底塑料里也較厲害,因此,設計時要特別注意要讓足夠的能量傳到加工區域。
遠距離焊接,對硬膠(如PS,ABS,AS,PMMA)等比較適合,一些半晶體塑料(如POM,PETP,PBTB,PA)通過合適的形狀設計也可用於遠距離焊接。
1.8塑料件焊頭接觸面的設計
注塑件可以設計成任何形狀,但是超聲波焊頭並不能隨意製作。形狀、長短均可能影響焊頭頻率、振幅等參數。焊頭的設計需要有一個基準面,即按照其工作頻率決定的基準頻率面。基準頻率面一般佔到焊頭表面的70%以上的面積,所以,注塑件表面的突超等形狀最好小於整個塑料面的30%。一滑、圓弧過渡的塑料件表面,則比標准可以適當放寬,且突出位盡量位於塑料件的中部或對稱設計。
塑料件焊頭接觸面至少大於熔接面,且盡量對正焊接位,過小的焊頭接觸面(如圖6所示),會引起較大損傷和變形,以及不理想的熔接效果。
在焊頭表面有損傷紋,或其形狀與塑料件配合有少許差異的情況下,焊接時,會在塑料件表面留下傷痕。避免方法是:在焊頭與塑料件表面之間墊薄膜(例如PE膜等)。
焊接線的設計
2 焊接線的設計
焊接線是超聲波直接作用熔化的部分,其基本的兩種設計方式:
○1 能量導向
○2 剪切設計
2.1能量導向
能量導向是一種典型的在將被子焊接的一個面注塑出突超三角形柱,能量導向的基本功能是:集中能量,使其快速軟化和熔化接觸面。能量導向允許快速焊接,同時獲得最大的力度,在這種導向中,其材料大部分流向接觸面,能量導向是非晶態材料中最常用的方法。
能量導向柱的大小和位置取決於如下幾點:
○1 材料
○2 塑料件結構
○3 使用要求
圖7所示為能量導向柱的典型尺寸,當使用較易焊接的材料,如聚苯乙烯等硬度高、熔點低的材料時,建議高度最低為0.25mm。當材料為半晶體材料或高溫混合樹脂時(如聚乙碳),則高度至少要為0.5mm,當用能量導向來焊接半晶體樹脂時(如乙縮荃、尼龍),最大的連接力主要從能量柱的底盤寬頻度來獲得。
沒有規則說明能量導向應做在塑料件哪一面,特殊情況要通過實驗來確定,當兩個塑料件材質,強度不同時,能量導向一般設置在熔點高和強度低的一面。
根據塑料件要求(例如水密、氣密性、強度等),能量導向設計可以組合、分段設計,例如:只是需要一定的強度的情況下,分段能量導向經常採用(例如手機電池等),如圖8所示。
2.2能量導向設計中對位方式的設計
上下塑料件在焊接過程中都要保證對位準確,限位高度一般不低於1mm,上下塑料平行檢動位必須很小,一般小於0.05mm,基本的能量導向可合並為連接設計,而不是簡單的對接,包括對位方式,採用能量導向的不同連接設計的例子包括以下幾種:
插銷定位:圖9所示為基本的插銷定位方式,插銷定位中應保證插銷件的強度,防此超聲波震斷。
台階定位:圖10所示為基本的台階定位方式,如h大於焊線的高度,則會在塑料件外部形成一條裝飾線,一般裝飾線的大小為0.25mm左右,創出更吸引人的外觀,而兩個零件之間的差異就不易發現。
圖11所示台階定位,則可能產生外溢料。圖12所示台階定位,則可能產生內溢料。圖13所示台階定位為雙面定位,可防止內外溢料。
○1 企口定位:如圖14所示,採用這種設計的好處是防止內外溢料,並提供校準,材料容易有加強密封性的獲得,但這種方法要求保證凸出零件的斜位縫隙,因此使零件更難能可貴於注塑,同時,減小於焊接面,強度不如直接完全對接。
○2 底模定痊:如圖15所示,採用這種設計,塑料件的設計變得簡單,但對底模要求高,通常會引致塑料件的平行移位,同時底模固定太緊會影響生產效果。
○3 焊頭加底模定位:如圖16所示,採用這種設計一般用於特殊情況,並不實用及常用。
○4 其它情況:
A:如圖17所示,為大型塑料件可用的一種方式,應注意的是下支撐模具必須支撐住凸緣,上塑料件凸緣必須接觸焊頭,上塑料件的上表面離凸緣不能太遠,如必要情況下,可採用多焊頭結構。
B:如連接中採用能量導向,且將兩個焊面注成磨砂表面,可增加摩擦和控制熔化,改善整個焊接的質量和力度,通常磨砂深度是0.07mm-0.15mm。
C:在焊接不易熔接的樹脂或不規則形狀時,為了獲得密封效果,則有必要插入一個密封圈,如圖18所示,需要注意的是密封圈只壓在焊接末端。圖19所示為薄壁零件的焊接,比如熱成形的硬紙板(帶塑料塗層),與一個塑料蓋的焊接。
2.3剪切式設計
在半晶體塑料(如尼龍、乙縮醛、聚丙烯、聚乙烯和熱塑聚脂)的熔接中,採用能量導向的連接設計也許達不到理想的效果,這是因為半晶體的樹脂會很快從固態轉變成融化狀態,或者說從融化狀態轉化為固態。而且是經過一個相對狹窄的溫度范圍,從能量導向柱流出的融化物在還沒與相接界面融合時,又將很快再固化。因此,在這種情況下,只要幾何原理允許,我們推薦使用剪切連接的結構。
採用剪切連接的設計,首先是熔化小的和最初觸的區域來完成焊接,然後當零件嵌入到下起時,繼續沿著其垂直壁,用受控的接觸面來融化。如圖20所示,這樣可能性獲得強勁結構或很好的密封效果,因為界面的熔化區域不會讓周圍的空氣進來。由於此原因,剪切連接尤其對半晶體樹脂非常有用。
剪切連接的熔接深度是可以調節的,深度不同所獲得的強度不同,熔接深度一般建議為0.8-1.5mm,當塑件壁厚及較厚及強度要求高時,熔接深度建議為1.25X壁厚。
圖21所示為幾種基本的剪切式結構:
剪切連接要求一個塑料壁面有足夠強度能支持及防止焊接中的偏差,有需要時,底模的支撐高於焊接位,提供輔助的支撐。
實在不了解,可以電話我。13928887644