導航:首頁 > 焊接工藝 > 高頻焊接感應磁場用什麼材料

高頻焊接感應磁場用什麼材料

發布時間:2023-03-23 06:01:31

Ⅰ 電流互感器用到的磁性材料有哪些

硅鋼片鐵芯、坡莫合金、非晶及納米晶軟磁合金
磁性材料
一. 磁性材料的基本特性
1. 磁性材料的磁化曲線
磁性材料是由鐵磁性物質或亞鐵磁性物質組成的,在外加磁場H 作用下,必有相應的磁化強度M 或磁感應強度B,它們隨磁場強度H 的變化曲線稱為磁化曲線(M~H或B~H曲線)。磁化曲線一般來說是非線性的,具有2個特點:磁飽和現象及磁滯現象。即當磁場強度H足夠大時,磁化強度M達到一個確定的飽和值Ms,繼續增大H,Ms保持不變;以及當材料的M值達到飽和後,外磁場H降低為零時,M並不恢復為零,而是沿MsMr曲線變化。材料的工作狀態相當於M~H曲線或B~H曲線上的某一點,該點常稱為工作點。

2. 軟磁材料的常用磁性能參數
飽和磁感應強度Bs:其大小取決於材料的成分,它所對應的物理狀態是材料內部的磁化矢量整齊排列。
剩餘磁感應強度Br:是磁滯回線上的特徵參數,H回到0時的B值。
矩形比:Br∕Bs
矯頑力Hc:是表示材料磁化難易程度的量,取決於材料的成分及缺陷(雜質、應力等)。
磁導率μ:是磁滯回線上任何點所對應的B與H的比值,與器件工作狀態密切相關。
初始磁導率μi、最大磁導率μm、微分磁導率μd、振幅磁導率μa、有效磁導率μe、脈沖磁導率μp。
居里溫度Tc:鐵磁物質的磁化強度隨溫度升高而下降,達到某一溫度時,自發磁化消失,轉變為順磁性,該臨界溫度為居里溫度。它確定了磁性器件工作的上限溫度。
損耗P:磁滯損耗Ph及渦流損耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,
磁滯損耗Ph的方法是降低矯頑力Hc;降低渦流損耗Pe 的方法是減薄磁性材料的厚度t 及提高材料的電阻率ρ。在自由靜止空氣中磁芯的損耗與磁芯的溫升關系為:
總功率耗散(mW)/表面積(cm2)
3. 軟磁材料的磁性參數與器件的電氣參數之間的轉換
在設計軟磁器件時,首先要根據電路的要求確定器件的電壓~電流特性。器件的電壓~電流特性與磁芯的幾何形狀及磁化狀態密切相關。設計者必須熟悉材料的磁化過程並拿握材料的磁性參數與器件電氣參數的轉換關系。設計軟磁器件通常包括三個步驟:正確選用磁性材料;合理確定磁芯的幾何形狀及尺寸;根據磁性參數要求,模擬磁芯的工作狀態得到相應的電氣參數。

二、軟磁材料的發展及種類
1. 軟磁材料的發展
軟磁材料在工業中的應用始於19世紀末。隨著電力工及電訊技術的興起,開始使用低碳鋼製造電機和變壓器,在電話線路中的電感線圈的磁芯中使用了細小的鐵粉、氧化鐵、細鐵絲等。到20世紀初,研製出了硅鋼片代替低碳鋼,提高了變壓器的效率,降低了損耗。直至現在硅鋼片在電力工業用軟磁材料中仍居首位。到20年代,無線電技術的興起,促進了高導磁材料的發展,出現了坡莫合金及坡莫合金磁粉芯等。從40年代到60年代,是科學技術飛速發展的時期,雷達、電視廣播、集成電路的發明等,對軟磁材料的要求也更高,生產出了軟磁合金薄帶及軟磁鐵氧體材料。進入70年代,隨著電訊、自動控制、計算機等行業的發展,研製出了磁頭用軟磁合金,除了傳統的晶態軟磁合金外,又興起了另一類材料—非晶態軟磁合金。
2. 常用軟磁磁芯的種類
鐵、鈷、鎳三種鐵磁性元素是構成磁性材料的基本組元。
按(主要成分、磁性特點、結構特點)製品形態分類:
(1) 粉芯類: 磁粉芯,包括:鐵粉芯、鐵硅鋁粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、鐵氧體磁芯
(2) 帶繞鐵芯:硅鋼片、坡莫合金、非晶及納米晶合金
三 常用軟磁磁芯的特點及應用
(一) 粉芯類
1. 磁粉芯
磁粉芯是由鐵磁性粉粒與絕緣介質混合壓制而成的一種軟磁材料。由於鐵磁性顆粒很小(高頻下使用的為0.5~5 微米),又被非磁性電絕緣膜物質隔開,因此,一方面可以隔絕渦流,材料適用於較高頻率;另一方面由於顆粒之間的間隙效應,導致材料具有低導磁率及恆導磁特性;又由於顆粒尺寸小,基本上不發生集膚現象,磁導率隨頻率的變化也就較為穩定。主要用於高頻電感。磁粉芯的磁電性能主要取決於粉粒材料的導磁率、粉粒的大小和形狀、它們的填充系數、絕緣介質的含量、成型壓力及熱處理工藝等。
常用的磁粉芯有鐵粉芯、坡莫合金粉芯及鐵硅鋁粉芯三種。
磁芯的有效磁導率μe及電感的計算公式為: μe = DL/4N2S × 109
其中:D 為磁芯平均直徑(cm),L為電感量(享),N 為繞線匝數,S為磁芯有效截面積(cm2)。
(1) 鐵粉芯
常用鐵粉芯是由碳基鐵磁粉及樹脂碳基鐵磁粉構成。在粉芯中價格最低。飽和磁感應強度值在1.4T左右;磁導率范圍從22~100;初始磁導率μi隨頻率的變化穩定性好;直流電流疊加性能好;但高頻下損耗高。

鐵粉芯初始磁導率隨直流磁場強度的變化
鐵粉芯初始磁導率隨頻率的變化
(2). 坡莫合金粉芯
坡莫合金粉芯主要有鉬坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP 是由81%Ni、2%Mo及Fe粉構成。主要特點是:飽和磁感應強度值在7500Gs左右;磁導率范圍大,從14~550;在粉末磁芯中具有最低的損耗;溫度穩定性極佳,廣泛用於太空設備、露天設備等;磁致伸縮系數接近零,在不同的頻率下工作時無雜訊產生。主要應用於300kHz以下的高品質因素Q濾波器、感應負載線圈、諧振電路、在對溫度穩定性要求高的LC電路上常用、輸出電感、功率因素補償電路等, 在AC電路中常用, 粉芯中價格最貴。
高磁通粉芯HF是由50%Ni、50%Fe粉構成。主要特點是:飽和磁感應強度值在15000Gs 左右;磁導率范圍從14~160;在粉末磁芯中具有最高的磁感應強度,最高的直流偏壓能力;磁芯體積小。主要應用於線路濾波器、交流電感、輸出電感、功率因素校正電路等, 在DC 電路中常用,高DC 偏壓、高直流電和低交流電上用得多。價格低於MPP。
(3) 鐵硅鋁粉芯(Kool Mμ Cores)
鐵硅鋁粉芯由9%Al、5%Si, 85%Fe粉構成。主要是替代鐵粉芯,損耗比鐵粉芯低80%,可在8kHz以上頻率下使用;飽和磁感在1.05T 左右;導磁率從26~125;磁致伸縮系數接近0,在不同的頻率下工作時無雜訊產生;比MPP有更高的DC偏壓能力;具有最佳的性能價格比。主要應用於交流電感、輸出電感、線路濾波器、功率因素校正電路等。有時也替代有氣隙鐵氧體作變壓器鐵芯使用。
2. 軟磁鐵氧體(Ferrites)
軟磁鐵氧體是以Fe2O3為主成分的亞鐵磁性氧化物,採用粉末冶金方法生產。有Mn-Zn、Cu-Zn、Ni-Zn等幾類,其中Mn-Zn鐵氧體的產量和用量最大,Mn-Zn鐵氧體的電阻率低,為1~10 歐姆-米,一般在100kHZ 以下的頻率使用。Cu-Zn、Ni-Zn鐵氧體的電阻率為102~104 歐姆-米,在100kHz~10 兆赫的無線電頻段的損耗小,多用在無線電用天線線圈、無線電中頻變壓器。磁芯形狀種類豐富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圓形等。在應用上很方便。由於軟磁鐵氧體不使用鎳等稀缺材料也能得到高磁導率,粉末冶金方法又適宜於大批量生產,因此成本低,又因為是燒結物硬度大、對應力不敏感,在應用上很方便。而且磁導率隨頻率的變化特性穩定,在150kHz以下基本保持不變。隨著軟磁鐵氧體的出現,磁粉芯的生產大大減少了,很多原來使用磁粉芯的地方均被軟磁鐵氧體所代替。
國內外鐵氧體的生產廠家很多,在此僅以美國的Magnetics公司生產的Mn-Zn鐵氧體為例介紹其應用狀況。分為三類基本材料:電信用基本材料、寬頻及EMI材料、功率型材料。
電信用鐵氧體的磁導率從750~2300, 具有低損耗因子、高品質因素Q、穩定的磁導率隨溫度/時間關系, 是磁導率在工作中下降最慢的一種,約每10年下降3%~4%。廣泛應用於高Q濾波器、調諧濾波器、負載線圈、阻抗匹配變壓器、接近感測器。寬頻鐵氧體也就是常說的高導磁率鐵氧體,磁導率分別有5000、10000、15000。其特性為具有低損耗因子、高磁導率、高阻抗/頻率特性。廣泛應用於共模濾波器、飽和電感、電流互感器、漏電保護器、絕緣變壓器、信號及脈沖變壓器,在寬頻變壓器和EMI上多用。功率鐵氧體具有高的飽和磁感應強度,為4000~5000Gs。另外具有低損耗/頻率關系和低損耗/溫度關系。也就是說,隨頻率增大、損耗上升不大;隨溫度提高、損耗變化不大。廣泛應用於功率扼流圈、並列式濾波器、開關電源變壓器、開關電源電感、功率因素校正電路。

(二) 帶繞鐵芯
1. 硅鋼片鐵芯
硅鋼片是一種合金,在純鐵中加入少量的硅(一般在4.5%以下)形成的鐵硅系合金稱為硅鋼。該類鐵芯具有最高的飽和磁感應強度值為20000Gs;由於它們具有較好的磁電性能,又易於大批生產,價格便宜,機械應力影響小等優點,在電力電子行業中獲得極為廣泛的應用,如電力變壓器、配電變壓器、電流互感器等鐵芯。是軟磁材料中產量和使用量最大的材料。也是電源變壓器用磁性材料中用量最大的材料。特別是在低頻、大功率下最為適用。常用的有冷軋硅鋼薄板DG3、冷軋無取向電工鋼帶DW、冷軋取向電工鋼帶DQ,適用於各類電子系統、家用電器中的中、小功率低頻變壓器和扼流圈、電抗器、電感器鐵芯,這類合金韌性好,可以沖片、切割等加工,鐵芯有疊片式及卷繞式。但高頻下損耗急劇增加,一般使用頻率不超過400Hz。從應用角度看,對硅鋼的選擇要考慮兩方面的因素:磁性和成本。對小型電機、電抗器和繼電器,可選純鐵或低硅鋼片;對於大型電機,可選高硅熱軋硅鋼片、單取向或無取向冷軋硅鋼片;對變壓器常選用單取向冷軋硅鋼片。在工頻下使用時,常用帶材的厚度為0.2~0.35毫米;在400Hz下使用時,常選0.1毫米厚度為宜。厚度越薄,價格越高。
2. 坡莫合金
坡莫合金常指鐵鎳系合金,鎳含量在30~90%范圍內。是應用非常廣泛的軟磁合金。通過適當的工藝,可以有效地控制磁性能,比如超過105的初始磁導率、超過106的最大磁導率、低到2‰奧斯特的矯頑力、接近1或接近0的矩形系數,具有面心立方晶體結構的坡莫合金具有很好的塑性,可以加工成1μm的超薄帶及各種使用形態。常用的合金有1J50、1J79、1J85等。1J50 的飽和磁感應強度比硅鋼稍低一些,但磁導率比硅鋼高幾十倍,鐵損也比硅鋼低2~3倍。做成較高頻率(400~8000Hz)的變壓器,空載電流小,適合製作100W以下小型較高頻率變壓器。1J79 具有好的綜合性能,適用於高頻低電壓變壓器,漏電保護開關鐵芯、共模電感鐵芯及電流互感器鐵芯。1J85 的初始磁導率可達十萬105以上,適合於作弱信號的低頻或高頻輸入輸出變壓器、共模電感及高精度電流互感器等。
3. 非晶及納米晶軟磁合金(Amorphous and Nanocrystalline alloys)
硅鋼和坡莫合金軟磁材料都是晶態材料,原子在三維空間做規則排列,形成周期性的點陣結構,存在著晶粒、晶界、位錯、間隙原子、磁晶各向異性等缺陷,對軟磁性能不利。從磁性物理學上來說,原子不規則排列、不存在周期性和晶粒晶界的非晶態結構對獲得優異軟磁性能是十分理想的。非晶態金屬與合金是70年代問世的一個新型材料領域。它的制備技術完全不同於傳統的方法,而是採用了冷卻速度大約為每秒一百萬度的超急冷凝固技術,從鋼液到薄帶成品一次成型,比一般冷軋金屬薄帶製造工藝減少了許多中間工序,這種新工藝被人們稱之為對傳統冶金工藝的一項革命。由於超急冷凝固,合金凝固時原子來不及有序排列結晶,得到的固態合金是長程無序結構,沒有晶態合金的晶粒、晶界存在,稱之為非晶合金,被稱為是冶金材料學的一項革命。這種非晶合金具有許多獨特的性能,如優異的磁性、耐蝕性、耐磨性、高的強度、硬度和韌性,高的電阻率和機電耦合性能等。由於它的性能優異、工藝簡單,從80年代開始成為國內外材料科學界的研究開發重點。目前美、日、德國已具有完善的生產規模,並且大量的非晶合金產品逐漸取代硅鋼和坡莫合金及鐵氧體湧向市場。
我國自從70年代開始了非晶態合金的研究及開發工作,經過「六五」、「七五」、「八五」期間的重大科技攻關項目的完成,共取得科研成果134項,國家發明獎2項,獲專利16項,已有近百個合金品種。鋼鐵研究總院現具有4條非晶合金帶材生產線、一條非晶合金元器件鐵芯生產線。生產各種定型的鐵基、鐵鎳基、鈷基和納米晶帶材及鐵芯,適用於逆變電源、開關電源、電源變壓器、漏電保護器、電感器的鐵芯元件,年產值近2000萬元。「九五」正在建立千噸級鐵基非晶生產線,進入國際先進水平行列。
目前,非晶軟磁合金所達到的最好單項性能水平為:
初始磁導率 μo = 14 × 104
鈷基非晶最大磁導率 μm= 220 × 104
鈷基非晶矯頑力 Hc = 0.001 Oe
鈷基非晶矩形比 Br/Bs = 0.995
鈷基非晶飽和磁化強度 4πMs = 18300Gs
鐵基非晶電阻率 ρ= 270μΩ/cm
常用的非晶合金的種類有:鐵基、鐵鎳基、鈷基非晶合金以及鐵基納米晶合金。其國家牌號及性能特點見表及圖所示,為便於對比,也列出晶態合金硅鋼片、坡莫合金1J79 及鐵氧體的相應性能。這幾類材料各有不同的特點,在不同的方面得到應用。
牌號基本成分和特徵:
1K101 Fe-Si-B 系快淬軟磁鐵基合金
1K102 Fe-Si-B-C 系快淬軟磁鐵基合金
1K103 Fe-Si-B-Ni 系快淬軟磁鐵基合金
1K104 Fe-Si-B-Ni Mo 系快淬軟磁鐵基合金
1K105 Fe-Si-B-Cr(及其他元素)系快淬軟磁鐵基合金
1K106 高頻低損耗Fe-Si-B 系快淬軟磁鐵基合金
1K107 高頻低損耗Fe-Nb-Cu-Si-B 系快淬軟磁鐵基納米晶合金
1K201 高脈沖磁導率快淬軟磁鈷基合金
1K202 高剩磁比快淬軟磁鈷基合金
1K203 高磁感低損耗快淬軟磁鈷基合金
1K204 高頻低損耗快淬軟磁鈷基合金
1K205 高起始磁導率快淬軟磁鈷基合金
1K206 淬態高磁導率軟磁鈷基合金
1K501 Fe-Ni-P-B 系快淬軟磁鐵鎳基合金
1K502 Fe-Ni-V-Si-B 系快淬軟磁鐵鎳基合金
400Hz: 硅鋼鐵芯 非晶鐵芯
功率(W) 45 45
鐵芯損耗(W) 2.4 1.3
激磁功率(VA) 6.1 1.3
總重量(g) 295 276
(1)鐵基非晶合金(Fe-based amorphous alloys)
鐵基非晶合金是由80%Fe及20%Si,B類金屬元素所構成,它具有高飽和磁感應強度(1.54T),鐵基非晶合金與硅鋼的損耗比較

磁導率、激磁電流和鐵損等各方面都優於硅鋼片的特點,特別是鐵損低(為取向硅鋼片的1/3-1/5),代替硅鋼做配電變壓器可節能60-70%。鐵基非晶合金的帶材厚度為0.03mm左右,廣泛應用於配電變壓器、大功率開關電源、脈沖變壓器、磁放大器、中頻變壓器及逆變器鐵芯, 適合於10kHz 以下頻率使

2)鐵鎳基、鈷基非晶合金(Fe-Ni based-amorphous alloy)
鐵鎳基非晶合金是由40%Ni、40%Fe及20%類金屬元素所構成,它具有中等飽和磁感應強度〔0.8T〕、較高的初始磁導率和很高的最大磁導率以及高的機械強度和優良的韌性。在中、低頻率下具有低的鐵損。空氣中熱處理不發生氧化,經磁場退火後可得到很好的矩形回線。價格比1J79便宜30-50%。鐵鎳基非晶合金的應用范圍與中鎳坡莫合金相對應, 但鐵損和高的機械強度遠比晶態合金優越;代替1J79,廣泛用於漏電開關、精密電流互感器鐵芯、磁屏蔽等。鐵鎳基非晶合金是國內開發最早,也是目前國內非晶合金中應用量最大的非晶品種,年產量近200噸左右.空氣中熱處理不發生氧化鐵鎳基非晶合金( 1K503) 獲得國家發明專利和美國專利權。
(4) 鐵基納米晶合金(Nanocrystalline alloy)
鐵基納米晶合金是由鐵元素為主,加入少量的Nb、Cu、Si、B元素所構成的合金經快速凝固工藝所形成的一種非晶態材料,這種非晶態材料經熱處理後可獲得直徑為10-20 nm的微晶,彌散分布在非晶態的基體上,被稱為微晶、納米晶材料或納米晶材料。納米晶材料具有優異的綜合磁性能:高飽和磁感(1.2T)、高初始磁導率(8×104)、低Hc(0.32A/M), 高磁感下的高頻損耗低(P0.5T/20kHz=30W/kg),電阻率為80μΩ/cm,比坡莫合金(50-60μΩ/cm)高, 經縱向或橫向磁場處理,可得到高Br(0.9)或低Br 值(1000Gs)。是目前市場上綜合性能最好的材料;適用頻率范圍:50Hz-100kHz,最佳頻率范圍:20kHz-50kHz。廣泛應用於大功率開關電源、逆變電源、磁放大器、高頻變壓器、高頻變換器、高頻扼流圈鐵芯、電流互感器鐵芯、漏電保護開關、共模電感鐵芯。
(三)常用軟磁磁芯的特點比較
1. 磁粉芯、鐵氧體的特點比較:
MPP 磁芯:使用安匝數< 200,50Hz~1kHz, μe :125 ~ 500 ; 1 ~ 10kHz; μe :125 ~ 200; > 100kHz:μe: 10 ~ 125
HF 磁芯:使用安匝數< 500,能使用在較大的電源上,在較大的磁場下不易被飽和,能保證電感的最小直流漂移,μe :20 ~ 125
鐵粉芯:使用安匝數>800, 能在高的磁化場下不被飽和, 能保證電感值最好的交直流疊加穩定性。在200kHz以內頻率特性穩定;但高頻損耗大,適合於10kHz以下使用。
FeSiAlF磁芯:代替鐵粉芯使用,使用頻率可大於8kHz。DC偏壓能力介於MPP與HF之間。
鐵氧體:飽和磁密低(5000Gs),DC偏壓能力最小
3. 硅鋼、坡莫合金、非晶合金的特點比較:
硅鋼和FeSiAl 材料具有高的飽和磁感應值Bs,但其有效磁導率值低,特別是在高頻范圍內;
坡莫合金具有高初始磁導率、低矯頑力和損耗,磁性能穩定,但Bs 不夠高,頻率大於20kHz時,損耗和有效磁導率不理想,價格較貴,加工和熱處理復雜;
鈷基非晶合金具有高的磁導率、低Hc、在寬的頻率范圍內有低損耗,接近於零的飽和磁致伸縮系數,對應力不敏感,但是Bs 值低,價格昂貴;
鐵基非晶合金具有高Bs值、價格不高,但有效磁導率值較低。
納米晶合金的磁導率、Hc值接近晶態高坡莫合金及鈷基非晶,且飽和磁感Bs與中鎳坡莫合金相當,熱處理工藝簡單,是一種理想的廉價高性能軟磁材料;雖然納米晶合金的Bs值低於鐵基非晶和硅鋼,但其在高磁感下的高頻損耗遠低於它們,並具有更好的耐蝕性和磁穩定性。納米晶合金與鐵氧體相比,在低於50kHz時,在具有更低損耗的基礎上具有高2至3倍的工作磁感,磁芯體積可小一倍以上。
四、幾種常用磁性器件中磁芯的選用及設計
開關電源中使用的磁性器件較多,其中常用的軟磁器件有:作為開關電源核心器件的主變壓器(高頻功率變壓器)、共模扼流圈、高頻磁放大器、濾波阻流圈、尖峰信號抑制器等。不同的器件對材料的性能要求各不相同,如表所示為各種不同器件對磁性材料的性能要求。
(一)、高頻功率變壓器
變壓器鐵芯的大小取決於輸出功率和溫升等。變壓器的設計公式如下:
P=KfNBSI×10-6T=hcPc+hWPW
其中,P為電功率;K為與波形有關的系數;f為頻率;N為匝數;S為鐵芯面積;B為工作磁感;I為電流;T為溫升;Pc為鐵損;PW為銅損;hc和hW為由實驗確定的系數。
由以上公式可以看出:高的工作磁感B可以得到大的輸出功率或減少體積重量。但B值的增加受到材料的Bs值的限制。而頻率f可以提高幾個數量級,從而有可能使體積重量顯著減小。而低的鐵芯損耗可以降低溫升,溫升反過來又影響使用頻率和工作磁感的選取。一般來說,開關電源對材料的主要要求是:盡量低的高頻損耗、足夠高的飽和磁感、高的磁導率、足夠高的居里溫度和好的溫度穩定性,有些用途要求較高的矩形比,對應力等不敏感、穩定性好,價格低。單端式變壓器因為鐵芯工作在磁滯回線的第一象限,對材料磁性的要求有別於前述主變壓器。它實際上是一隻單端脈沖變壓器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大; 同時要求高的脈沖磁導率。特別是對於單端反激式開關主變壓器,或稱儲能變壓器,要考慮儲能要求。
線圈儲能的多少取決於兩個因素: 一個是材料的工作磁感Bm值或電感量L, 另一個是工作磁場Hm或工作電流I,儲能W=1/2LI2。這就要求材料有足夠高的Bs值和合適的磁導率,常為寬恆導磁材料。對於工作在±Bm之間的變壓器來說,要求其磁滯回線的面積,特別是在高頻下的回線面積要小,同時為降低空載損耗、減小勵磁電流,應有高磁導率,最合適的為封閉式環形鐵芯,其磁滯回線見圖所示,這種鐵芯用於雙端或全橋式工作狀態的器件中。

通常,金屬晶態材料要降低高頻下的鐵損是不容易的,而對於非晶合金來說,它們由於不存在磁晶各向異性、金屬夾雜物和晶界等,此外它不存在長程有序的原子排列,其電阻率比一般的晶態合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄帶,特別適用於高頻功率輸出變壓器。已廣泛應用於逆變弧焊電源、單端脈沖變壓器、高頻加熱電源、不停電電源、功率變壓器、通訊電源、開關電源變壓器和高能加速器等鐵芯,在頻率20-50kHz、功率50kW以下,是變壓器最佳磁芯材料。
近年來發展起來的新型逆變弧焊電源單端脈沖變壓器,具有高頻大功率的特點,因此要求變壓器鐵芯材料具有低的高頻損耗、高的飽和磁感Bs和低的Br以獲得大的工作磁感B,使焊機體積和重量減小。常用的用於高頻弧焊電源的鐵芯材料為鐵氧體,雖然由於其電阻率高而具有低的高頻損耗, 但其溫度穩定性較差,工作磁感較低,變壓器體積和重量較大,已不能滿足新型弧焊機的要求。採用納米晶環形鐵芯後,由於其具有高的Bs 值(Bs>1.2T),高的ΔB 值(ΔB>0.7T),很高的脈沖磁導率和低的損耗,頻率可達100kHz. 可使鐵芯的體積和重量大為減小。近年來逆變焊機已應用納米晶鐵芯達幾萬只,用戶反映用納米晶變壓器鐵芯再配以非晶高頻電感製成的焊機,不僅體積小、重量輕、便於攜帶,而且電弧穩定、飛濺小、動態特性好、效率高及可靠性高。這種環形納米晶鐵芯還可用於中高頻加熱電源、脈沖變壓器、不停電電源、功率變壓器、開關電源變壓器和高能加速器等裝置中。可根據開關電源的頻率選用磁芯材料。
環形納米晶鐵芯具有很多優點,但它也有繞線困難的不利因素。為了在匝數較多時繞線方便,可選用高頻大功率C 型非晶納米晶鐵芯。採用低應力粘結劑固化及新的切割工藝製成的非晶納米晶合金C 型鐵芯的性能明顯優於硅鋼C 型鐵芯。目前這種鐵芯已批量用於逆變焊機和切割機等。逆變焊機主變壓器鐵芯和電抗器鐵芯系列有: 120A、160A、200A、250A、315A、400A、500A、630A 系列。
(二)、脈沖變壓器鐵芯
脈沖變壓器是用來傳輸脈沖的變壓器。當一系列脈沖持續時間為td (μs)、脈沖幅值電壓
為Um (V)的單極性脈沖電壓加到匝數為N 的脈沖變壓器繞組上時,在每一個脈沖結束時,鐵芯中的磁感應強度增量ΔB (T)為: ΔB = Um td / NSc × 10-2 其中Sc為鐵芯的有效截面積(cm2)。即磁感應強度增量ΔB 與脈沖電壓的面積(伏秒乘積)成正比。對輸出單向脈沖時,ΔB=Bm-Br , 如果在脈沖變壓器鐵芯上加去磁繞組時,ΔB = Bm + Br 。在脈沖狀態下,由動態脈沖磁滯回線的ΔB 與相應的ΔHp 之比為脈沖磁導率μp。理想的脈沖波形是指矩形脈沖波,由於電路的參數影響,實際的脈沖波形與矩形脈沖有所差異,經常會發生畸變。比如脈沖前沿的上升時間tr 與脈沖變壓器的漏電感Ls、繞組和結構零件導致的分布電容Cs 成比例,脈沖頂降λ 與勵磁電感Lm成反比,另外渦流損耗因素也會影響輸出的脈沖波形。
脈沖變壓器的漏電感 Ls = 4βπN21 lm / h
脈沖變壓器的初級勵磁電感 Lm = 4μπp Sc N2 / l ×10-9
渦流損耗 Pe = Um d2td lF / 12 N21 Scρ
β為與繞組結構型式有關的系數,lm為繞組線圈的平均匝長,h 為繞組線圈的寬度,N1為初級繞組匝數,l為鐵芯的平均磁路長度,Sc為鐵芯的截面積,μp為鐵芯的脈沖磁導率,ρ 為鐵芯材料的電阻率,d為鐵芯材料的厚度,F為脈沖重復頻率。
從以上公式可以看出,在給定的匝數和鐵芯截面積時,脈沖寬度愈大,要求鐵芯材料的磁感應強度的變化量ΔB 也越大;在脈沖寬度給定時,提高鐵芯材料的磁感應強度變化量ΔB,可以大大減少脈沖變壓器鐵芯的截面積和磁化繞組的匝數,即可縮小脈沖變壓器的體積。要減小脈沖波形前沿的失真,應盡量減小脈沖變壓器的漏電感和分布電容,為此需使脈沖變壓器的繞組匝數盡可能的少,這就要求使用具有較高脈沖磁導率的材料。為減小頂降,要盡可能的提高初級勵磁電感量Lm,這就要求鐵芯材料具有較高的脈沖磁導率μp。為減小渦流損耗,應選用電阻率高、厚度盡量薄的軟磁帶材作為鐵芯材料,尤其是對重復頻率高、脈沖寬度大的脈沖變壓器更是如此。
脈沖變壓器對鐵芯材料的要求為:
① 高飽和磁感應強度Bs 值;
② 高的脈沖磁導率,能用較小的鐵芯尺寸獲得足夠大的勵磁電感;
③ 大功率單極性脈沖變壓器要求鐵芯具有大的磁感應強度增量ΔB,使用低剩磁感應材料;當採用附加直流偏磁時,要求鐵芯具有高矩形比,小矯頑力Hc。
④ 小功率脈沖變壓器要求鐵芯的起始脈沖磁導率高;
⑤ 損耗小。
鐵氧體磁芯的電阻率高、頻率范圍寬、成本低,在小功率脈沖變壓器中應用較多,但其ΔB
和μp 均較低,溫度穩定性差,一般用於對頂降和後沿要求不高的場合。
(三). 電感器磁芯
鐵芯電感器是一種基本元件,在電路中電感器對於電流的變化具有阻抗的作用, 在電子設備中應用極為廣泛。對電感器的主要要求有以下幾點:
① 在一定溫度下長期工作時,電感器的電感量隨時間的變化率應保持最小;
② 在給定工作溫度變化范圍內,電感量的溫度系數應保持在容許限度之內;
③ 電感器的電損耗和磁損耗低;
④ 非線性歧變小;
⑤ 價格低,體積小。
電感元件與電感量L、品質因素Q、鐵芯重量W、繞線的直流電阻R 有著密切的關系。
電感L 抗拒交流電流的能力用感抗值ZL來表示: ZL = 2πfL , 頻率f 越高,感抗值ZL 越大?/ca> 這也是我參考別人的

Ⅱ 利用感應加熱的高頻焊操作安全與防護是什麼










Ⅲ 高頻焊接機工作原理

工作原理是:首先在高頻焊接機內由一整套獨特的電子線路,將從電網輸入進來的低頻交流電(50Hz)轉變成高頻交流電(一般在20000Hz以上)。高頻電流加到電感線圈(即感應圈)後,利用電磁感應原理轉換成高頻磁場,並作用在處於磁場中的金屬物體上;利用渦流效應,在金屬物體中生成與磁場強度成正比的感生電流,此渦流受集膚效應影響,頻率越高,越集中於金屬物體的表層。渦流在金屬物體內流動時,會藉助於內部所固有的電阻值,利用電流熱效應原理生成熱量。 這種熱量直接在物體內部生成的。
所以,加熱速度快,效率高。可瞬間熔化任何金屬物。而且加熱速度和溫度可控。此設備特別適宜熱處理淬火、退火、金屬透熱鍛打、擠壓成型,釺料焊接等。
鍛壓行業
1、鋼板加熱,折彎成型。
2、標准件,緊固件的透熱成型。
3、五金工具透熱,如鉗子,扳手等加熱透熱成型。
4、探礦釺桿錐柄擠壓。
5、鋼管透熱成型如彎管等。

Ⅳ 萬急:高頻焊接原理

焊管高頻焊接原理

作者:江南五里湖
高頻焊接起源於上世紀五十年代,它是利用高頻電流所產生的集膚效應和相鄰效應,將鋼板和其它金屬材料對接起來的新型焊接工藝。高頻焊接技術的出現和成熟,直接推動了直縫焊管產業的巨大發展,它是直縫焊管(ERW)生產的關鍵工序。高頻焊接質量的好壞,直接影響到焊管產品的整體強度,質量等級和生產速度。
作為焊管生產製造者,必須深刻了解高頻焊接的基本原理;了解高頻焊接設備的結構和工作原理;了解高頻焊接質量控制的要點。
1 高頻焊接的基本原理
所謂高頻,是相對於50Hz的交流電流頻率而言的,一般是指50KHz~400KHz的高頻電流。高頻電流通過金屬導體時,會產生兩種奇特的效應:集膚效應和鄰近效應,高頻焊接就是利用這兩種效應來進行鋼管的焊接的。那麼,這兩個效應是怎麼回事呢?
集膚效應 是指以一定頻率的交流電流通過同一個導體時,電流的密度不是均勻地分布於導體的所有截面的,它會主要向導體的表面集中,即電流在導體表面的密度大,在導體內部的密度小,所以我們形象地稱之為:「集膚效應」。集膚效應通常用電流的穿透深度來度量,穿透深度值越小,集膚效應越顯著。這穿透深度與導體的電阻率的平方根成正比,與頻率和磁導率的平方根成反比。通俗地說,頻率越高,電流就越集中在鋼板的表面;頻率越低,表面電流就越分散。必須注意:鋼鐵雖然是導體,但它的磁導率會隨著溫度升高而下降,就是說,當鋼板溫度升高的時候,磁導率會下降,集膚效應會減小。
鄰近效應 是指高頻電流在兩個相鄰的導體中反向流動時,電流會向兩個導體相近的邊緣集中流動,即使兩個導體另外有一條較短的邊,電流也並不沿著較短的路線流動,我們把這種效應稱為:「鄰近效應」。鄰近效應本質上是由於感抗的作用,感抗在高頻電流中起主導的作用。鄰近效應隨著頻率增高和相鄰導體的間距變近而增高,如果在鄰近導體周圍再加上一個磁心,那麼高頻電流將更集中於工件的表層。
這兩種效應是實現金屬高頻焊接的基礎。高頻焊接就是利用了集膚效應使高頻電流的能量集中在工件的表面;而利用了鄰近效應來控制高頻電流流動路線的位置和范圍。電流的速度是很快的,它可以在很短的時間內將相鄰的鋼板邊部加熱,熔融,並通過擠壓實現對接。
2 高頻焊接設備的結構和工作原理
了解了高頻焊接原理,還得要有必要的技術手段來實現它。高頻焊接設備就是用於實現高頻焊接的電氣—機械繫統,高頻焊接設備是由高頻焊接機和焊管成型機組成的。其中高頻焊接機一般由高頻發生器和饋電裝置二個部分組成,它的作用是產生高頻電流並控制它;成型機由擠壓輥架組成,它的作用是將被高頻電流熔融的部分加以擠壓,排除鋼板表面的氧化層和雜質,使鋼板完全熔合成一體。
高頻發生器 過去的焊管機組上使用高頻發生器是三迴路的:高頻發電機組;固體變頻器;電子高頻振盪器,後來基本上都改進為單迴路的了。調節高頻振盪器輸出功率的方法有多種,如自耦變壓器,電抗法,晶閘管法等。
饋電裝置 這是為了向管子傳送高頻電流用的,包括電極觸頭,感應圈和阻抗器。接觸焊中一般採用耐磨的銅鎢合金的電極觸頭,感應焊中採用的是紫銅制的感應圈。阻抗器的主要元件是磁心,它的作用是增加管子表面的感抗,以減少無效電流,提高焊接速度。阻抗器的磁心採用鐵氧體,要求它的居里點溫度不低於310°,居里點溫度是磁心的重要指標,居里點溫度越高,就能靠得離焊縫越近,靠得越近,焊接效率也越高。
近年來,世界上一些大公司開始採用了固態模塊式結構,大大提高了焊接可靠性,保證了焊接質量。如EFD公司設計的WELDAC G2 800高頻焊機由以下部分組成:整流及控制單元(CRU),逆變器,匹配及補償單元(IMC),CRU與IMC間的直流電纜,IMC到線圈或接觸組件。
機器的兩個主要部分是CRU及IMC。CRU包括一個帶有主隔絕開關及一個全橋二極體整流器的整流部分(它把交流電轉換為直流電),一個帶有控制裝置及外部控制設備界面的控制器。IMC包括逆變器模塊,一個匹配變壓器以及一個用於為感應線圈提供必需的無功功率的電容組。
主供電電壓(3相480V),通過主隔絕開關被送到主整流器中。在主整流器中,主電壓被轉換為640V的直流電並且通過母線與主直流線纜相連接。直流電通過由數個並聯電纜組成的直流電輸送線被送到IMC。DC線纜在IMC單元母線上終止。逆變部分的逆變器模塊通過高速直流保險同DC母線以並聯方式連接在一起。DC電容也與DC母線連接在一起。
每個逆變器模塊構成一個全橋IGBT三極體逆變器。三極體的驅動電路則在逆變器模塊內的一個印刷電路板上。直流電由逆變器變為高頻交流電。根據具體的負載,交流電的頻率范圍在100-150KH范圍之間。為根據負載對逆變器進行調整,所有逆變器都以並聯方式同匹配變壓器連接。變壓器有數個並聯的主繞組,及一個副繞組。變壓器的匝數比是固定的。
輸出電容由數個並聯電容模塊組成。電容器以串聯方式同感應線圈相連接,因此輸出電路也是串聯補償的。電容器的作用是根據感應線圈對無功功率的要求進行補償,及通過此補償來使輸出電路的共振頻率達到所要求的數值。
頻率控制系統被設計用來使三極體始終工作在系統的共振頻率上。共振頻率通過測量輸出電流的頻率確定。此頻率隨即被用來作為開通三極體的時基信號。三極體驅動卡向每個逆變器模塊上的每個三極體發送信號來控制三極體何時開通,何時關斷。
感應加熱系統的輸出功率控制是通過控制逆變器的輸出電流來控制的。上述控制是通過一個用來控制三極體驅動器的功率控制卡完成的。
輸出功率參考值由IMC操縱面板上的功率參考電位計給出,或者由外部控制面板輸出給控制系統。此數值被傳送給系統控制器後,將與由整流單元測量系統測量出的 DC功率數值相比較。控制器包括一個限定功能,它可以根據參考功率值與DC功率測量值的比較結果計算出一個新的輸出電流設定值。控制器計算出來的輸出功率設定值被送到功率控制卡,此控制卡將根據新的設定值來限定輸出電流。
報警系統根據IMC中報警卡的輸入信號及IMC,CRU中的各類監視設備發出的信號來工作。報警將顯示在工作台上。
控制及整流器單元(CRU)
逆變器,匹配及補償單元 (IMC)
直流線纜 輸出功率匯流排,線圈及接觸頭連接
冷卻系統安裝在一個自支撐鋼框架內,所有部件聯結成為一個完整的單元。系統包括:帶有電機的循環泵,熱交換器(水/水),補償容器,輸出過程端(次輸出)壓力表,主進水口溫度控制閥門,控制閥以及電氣櫃。主進水口端的熱交換器使用未處理的支流水作為冷卻用水,次端的熱交換器則使用凈化後的中性飲用水作為冷卻水。未處理的水由恆溫閥門控制,它用來測量次輸出端的溫度。鋼框架可以用螺栓固定在門上。
3高頻焊接質量控制的要點
影響高頻焊接質量的因素很多,而且這些因素在同一個系統內互相作用,一個因素變了,其它的因素也會隨著它的改變而改變。所以,在高頻調節時,光是注意到頻率,電流或者擠壓量等局部的調節是不夠的,這種調整必須根據整個成型系統的具體條件,從與高頻焊接有關聯的所有方面來調整。
影響高頻焊接的主要因素有以下八個方面:
第一, 頻率
高頻焊接時的頻率對焊接有極大的影響,因為高頻頻率影響到電流在鋼板內部的分布性。選用頻率的高低對於焊接的影響主要是焊縫熱影響區的大小。從焊接效率來說,應盡可能採用較高的頻率。100KHz的高頻電流可穿透鐵素體鋼0.1mm, 400KHz則只能穿透0.04mm,即在鋼板表面的電流密度分布,後者比前者要高近2.5倍。在生產實踐中,焊接普碳鋼材料時一般可選取 350KHz~450KHz的頻率;焊接合金鋼材料,焊接10mm以上的厚鋼板時,可採用50KHz~150KHz那樣較低的頻率,因為合金鋼內所含的鉻,鋅,銅,鋁等元素的集膚效應與鋼有一定差別。國外高頻設備生產廠家現在已經大多採用了固態高頻的新技術,它在設定了一個頻率范圍後,會在焊接時根據材料厚度,機組速度等情況自動跟蹤調節頻率。
第二, 會合角
會合角是鋼管兩邊部進入擠壓點時的夾角。由於鄰近效應的作用,當高頻電流通過鋼板邊緣時,鋼板邊緣會形成預熱段和熔融段(也稱為過梁),這過梁段被劇烈加熱時,其內部的鋼水被迅速汽化並爆破噴濺出來,形成閃光,會合角的大小對於熔融段有直接的影響。
會合角小時鄰近效應顯著,有利提高焊接速度,但會合角過小時,預熱段和熔融段變長,而熔融段變長的結果,使得閃光過程不穩定,過梁爆坡後容易形成深坑和針孔,難以壓合。
會合角過大時,熔融段變短,閃光穩定,但是鄰近效應減弱,焊接效率明顯下降,功率消耗增加。同時在成型薄壁鋼管時,會合角太大會使管的邊緣拉長,產生波浪形折皺。現時生產中我們一般在2°--6°內調節會合角,生產薄板時速度較快,擠壓成型時要用較小的會合角;生產厚板時車速較慢,擠壓成型時要用較大的會合角。有廠家提出一個經驗公式:會合角×機組速度≮100,可供參考。
第三, 焊接方式
高頻焊接有兩種方式:接觸焊和感應焊。
接觸焊是以一對銅電極與被焊接的鋼管兩邊部相接觸,感應電流穿透性好,高頻電流的兩個效應因銅電極與鋼板直接接觸而得到最大利用,所以接觸焊的焊接效率較高而功率消耗較低,在高速低精度管材生產中得到廣泛應用,在生產特別厚的鋼管時一般也都需要採用接觸焊。但是接觸焊時有兩個缺點:一是銅電極與鋼板接觸,磨損很快;二是由於鋼板表面平整度和邊緣直線度的影響,接觸焊的電流穩定性較差,焊縫內外毛刺較高,在焊接高精度和薄壁管時一般不採用。
感應焊是以一匝或多匝的感應圈套在被焊的鋼管外,多匝的效果好於單匝,但是多匝感應圈製作安裝較為困難。感應圈與鋼管表面間距小時效率較高,但容易造成感應圈與管材之間的放電,一般要保持感應圈離鋼管表面有5~8 mm的空隙為宜。採用感應焊時,由於感應圈不與鋼板接觸,所以不存在磨損,其感應電流較為穩定,保證了焊接時的穩定性,焊接時鋼管的表面質量好,焊縫平整,在生產如API等高精度管子時,基本上都採用感應焊的形式。
第四, 輸入功率
高頻焊接時的輸入功率控制很重要。功率太小時管坯坡口加熱不足,達不到焊接溫度,會造成虛焊,脫焊,夾焊等未焊合缺陷;功率過大時,則影響到焊接穩定性,管坯坡口面加熱溫度大大高於焊接所需的溫度,造成嚴重噴濺,針孔,夾渣等缺陷,這種缺陷稱為過燒性缺陷。高頻焊接時的輸入功率要根據管壁厚度和成型速度來調整確定,不同成型方式,不同的機組設備,不同的材料鋼級,都需要我們從生產第一線去總結,編制適合自己機組設備的高頻工藝。
第五, 管坯坡口
管坯的坡口即斷面形狀,一般的廠家在縱剪後直接進入高頻焊接,其坡口都是呈「I」形。當焊接材料厚度大於8~10mm以上的管材時,如果採用這種「I」形坡口,因為彎曲圓弧的關系,就需要融熔掉管坯先接觸的內邊層,形成很高的內毛刺,而且容易造成板材中心層和外層加熱不足,影響到高頻焊縫的焊接強度。所以在生產厚壁管時,管坯最好經過刨邊或銑邊處理,使坡口呈「X」形,實踐證明,這種坡口對於均勻加熱從而保障焊縫質量有很大關系。
坡口形狀的選取,也影響到調節會合角的大小。
焊接接頭口設計在焊接工程中設計中是較薄弱的環節,主要是許多鋼結構件的結法治坡口設計不是出自焊接工程技術人員之手,硬性套標准和工藝性能較差的坡口屢見不鮮。坡口形式對控制焊縫內部質量和焊接結構製造質量有著很重要作用。坡口設計必須考母材的熔合比,施焊空間,焊接位置和綜合經濟效益等問題。應先按下式計算橫向收縮值ΔB。
ΔB=5.1Aω/t+1.27d
式中Aω——焊縫橫截面積,mm³ ,t——板厚,mm,d——焊縫根部間隙,mm。 找出ΔB與Aω的關系後,即可根據兩者關系列表分析,處理數據,進行優化設計,最後確定矩形管對接焊縫破口形式(圖2)。

第六, 焊接速度
焊管機組的成型速度受到高頻焊接速度的制約,一般來說,機組速度可以開得較快,達到100米/每秒,世界上已有機組速度甚至於達到400米/每秒,而高頻焊接特別是感應焊只能在60米/每秒以下,超過10mm的鋼板成型,國內機組生產的成型速度實際上只能達到8~12米/每秒。
焊接速度影響焊接質量。焊接速度提高時,有利於縮短熱影響區,有利於從熔融坡口擠出氧化層;反之,當焊接速度很低時,熱影響區變寬,會產生較大的焊接毛刺,氧化層增厚,焊縫質量變差。當然,焊接速度受輸出功率的限制,不可能提得很高。
國內機組操作經驗顯示,2~3 mm的鋼管焊接速度可達到40米/秒,4~6mm的鋼管焊接速度可達到25米/秒,6~8 mm的鋼管焊接速度可達到12米/秒,10~16 mm的鋼管焊接速度在12米/秒以下。接觸焊時速度可高些,感應焊時要低些。
第七, 阻抗器
阻抗器的作用是加強高頻電流的集膚效應和相鄰效應,阻抗器一般採用M-XO/N-XO類鐵氧化體製造,通常做成Φ10mm×(120--160)mm規格的磁棒,捆裝於耐熱,絕緣的外殼里,內部通以水冷卻。
阻抗器的設置要與管徑相匹配,以保證相應的磁通量。要保證阻抗器的磁導率,除了阻抗器的材料要求以外,同時要保證阻抗器的截面積與管徑的截面積之比要足夠的大。在生產API管等高等級管子時,都要求去除內毛刺,阻抗器只能安放在內毛刺刀體內,阻抗器的截面積相應會小很多,這時採取磁棒的集中扇面布置的效果要好於環形布置。
阻抗器與焊接點的位置距離也影響焊接效率,阻抗器與管內壁的間隙一般取6~15 mm,管徑大時取上限值;阻抗器應與管子同心安放,其頭部與焊接點的間距取10~20 mm,同理,管徑大時取大的值。
第八, 焊接壓力
焊接壓力也是高頻焊接的主要參數。理論計算認為焊接壓力應為100~300MPa,但實際生產中這個區域的真實壓力很難測量。一般都是根據經驗估算,換算成管子邊部的擠壓量。不同的壁厚取不同的擠壓量,通常2mm以下的擠壓量為:3~6 mm時為0.5t~ t;6~10 mm時為0.5t;10 mm以上時為0.3t~0.5t。
API鋼管生產中,常出現焊縫灰斑缺陷,灰斑缺陷是難熔的氧化物,為達到消除灰斑的目的,寶鋼等廠家多採取了加大擠壓力,增加焊接餘量的方法,6mm以上鋼管的擠壓餘量達0.8~1.0的料厚,效果很好。
高頻焊接常見的問題及其原因,解決方法:
《1》焊接不牢,脫焊,冷疊;
原因:輸出功率和壓力太小;
解決方法:1 調整功率;2 厚料管坯改變坡口形狀;3 調節擠壓力
《2》焊縫兩邊出現波紋;
原因:會合角太大,
解決方法:1 調整導向輥位置;2 調整實彎成型段;3 提高焊接速度
《3》焊縫有深坑和針孔;
原因:出現過燒
解決方法:1 調整導向輥位置,加大會合角;2 調整功率;3提高焊接速度
《4》焊縫毛刺太高;
原因:熱影響區太寬
解決方法:1提高焊接速度;2 調整功率;
《5》夾渣;
原因:輸入功率過大,焊接速度太慢
解決方法:1 調整功率;2 提高焊接速度
《6》焊縫外裂紋;
原因:母材質量不好;受太大的擠壓力
解決方法:1 保證材質;2 調整擠壓力
《7》錯焊,搭焊
原因:成型精度差;
解決方法:調整機組成型模輥;
高頻焊接是焊管生產中的關鍵工序,由於系統性的影響因素,至今還需要我們在生產第一線中探索經驗,每一台機組都有它的設計和製造差別,每一個操作者也有不同的習慣,也就是說有,機組和人一樣,都有自己的個性。我們將這些資料提供給大家,是為了讓我們更好得了解高頻焊接的基本原理,從而更好地結合自己的生產實踐,總結出適合於自己機組的操作規程。

附:API標准關於管子焊接質量的規定
(美國石油學會)API—5L/5CT焊縫標准
API-5CT標准規定:
10.5 壓扁試驗
10.5.4 第1組試驗方法----非整體熱處理的管子
試樣應在平行板間壓扁。在每組壓扁試樣中,一個試樣應在90°位置壓扁,另一個試樣應在0°位置壓扁。試樣應壓扁至相對管壁相接觸為止。在板間距離不小於表 C.23或表E.23規定值時,試樣任何部位不應產生裂紋或斷裂。在整個壓扁過程中,不應出現不良的組織結構、焊縫未熔合、分層、金屬過燒或擠出金屬等現象。
10.5.5 第1和第2組試驗方法----整體熱處理的管子
試樣應在平行板間壓扁,且焊縫處於彎曲程度最大處。由檢驗人員決定,還應使焊縫位於距彎曲程度最大處90°位置進行壓扁試驗。試樣應壓扁至相對管壁相接觸為止。在板間距離不小於表C.23或表E.23規定值時,試樣任何部位不應產生裂紋或斷裂。在整個壓扁過程中,不應出現不良的組織結構、焊縫未熔合、分層、金屬過燒或擠出金屬等現象。

API-5L標准規定:
6.2.2 壓扁試驗驗收標准
壓扁試驗驗收標准如下:
a) 鋼級高於A25級的電焊鋼管以及規格小於12-3/4的激光焊鋼管。
1)對於規定壁厚等於或大於0.500in(12.7mm),且鋼級為X60或更高鋼級的鋼管原始外徑(OD)的三分之二的焊縫應不出現開裂。對所有其他鋼級和規定壁厚的鋼管,壓扁到鋼管原始外徑的1/2時,焊縫不應出現開裂。
2)對D/t大於10的鋼管繼續壓扁到鋼管原始外徑(OD)的三分之一,除焊縫之外不應出現焊縫或斷裂。
3)對所有D/t的鋼管,繼續壓扁,直到鋼管的管壁貼合為止,在整個壓扁試驗過程中,不得出現分層或過燒金屬的現象。
b)對A25鋼級的焊接鋼管,壓扁到鋼管原始外徑的四分之三焊縫應不出現開裂。繼續壓扁到到鋼管原始外徑的60%,除焊縫之外的金屬應不出現焊縫或斷裂。
注1:對於所有壓扁試驗,規格小於2-3/8的鋼管,焊縫包括熔合線兩側各1/4in(6.4mm)范圍內的金屬,規格不小於2-3/8的鋼管焊縫包括熔合線兩側各1/2in(12.7mm)范圍內的金屬
注2:對於經過熱減徑機的電焊鋼管,在熱減徑前進行壓扁試驗,壓扁試驗的原始外徑由製造廠確定。其他情況下,原始外徑為規定外徑。

表C.23 電焊管壓扁試驗板間距離
鋼級 D/t 最大板間距離mm
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子規定外徑,mm。
t——管子規定壁厚,mm。
(a) 如果壓扁試樣失效於12或6點位置,壓扁試驗應繼續進行,直到剩餘試樣在3或9點位置失效。12或6點位置上的早期失效不應作為拒收依據。
(b) 見A.5(SR11)。壓扁應至少為0.85D。

表E.23 電焊管壓扁試驗板間距離
鋼級 D/t 最大板間距離in
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子規定外徑,in。
t——管子規定壁厚,in。
(a)如果壓扁試樣失效於12或6點位置,壓扁試驗應繼續進行,直到剩餘試樣在3 或9點位置失效。12或6點位置上的早期失效不應作為拒收依據。
(b)見A.5(SR11)。壓扁應至少為0.85D。

Ⅳ 高頻焊管磁棒用鐵連接有什麼影響

焊接時,磁棒在 感應線圈產生的高頻交變磁場作用下被反復磁化,這一過程本身也將消耗能量(如存在著磁滯損耗 、渦流損耗和剩餘損耗),這部分消耗的能量通常以Q值或比損耗表示。這不但造成能量損耗,還 會使磁棒的溫度升高。因此,應要求磁棒有高的Q值或低的比損耗能量。由於這部分能量損耗較小 ,不是使磁棒溫度上升的主要原因,對焊接影響不大,所以通常不標出該性能。3對磁棒的正確選 擇和使用近年來,我國在高頻焊接磁棒的研究和生產方面有了飛速的發展。特別是,個別專門致力 於該產品的研製和開發的專業廠家的建立,更加快了這種發展的進程。它們生產的磁棒在技術性能 方面已經接近或達到國
我可能給你提供一些技術支持,請看你的私信里或我的資料里 答案在消息里。

Ⅵ 高蘋焊接原理

高頻焊接,它主要是利用高頻電流所產生的集膚效應和相鄰效應,將鋼板和其它金屬材料對接起來的新型焊接工藝。高頻焊接技術的出現和成熟,它是直縫焊管生產的關鍵工序。高頻焊接質量的好壞,會直接影響到焊管產品的整體強度、質量等級以及生產速度。
高頻焊接設備就是用於實現高頻焊接的電氣—機械繫統,它主要是由高頻焊接機和焊管成型機組成的。其中高頻焊接機一般由高頻發生器和饋電裝置二個部分組成,它的作用是產生高頻電流並控制它;成型機由擠壓輥架組成,它的作用是將被高頻電流熔融的部分加以擠壓,排除鋼板表面的氧化層和雜質,使鋼板完全熔合成一體。
高頻焊接是在高頻電磁場的作用下引起介電損耗而加熱,從而使接合面熔合粘接的一種焊接法,它主要是先利用渦流的原理,然後是電磁感應,最終是由電磁感應產生的電流焊上的焊接原理。高頻焊接通過繞在部件上的線圈以及輸入的高頻電流產生磁感應現象因為出入電流頻率高,根據E=n(ΔФ/Δt),且有Q=I^2Rt,在崩裂的焊縫有著極高的電阻,加上極高的電流,所以產生足以融化部件焊縫處的高溫,以此焊接裂縫。

Ⅶ 用高頻焊機怎麼焊接,是用什麼焊條

高頻焊機採用用焊環焊接,當然也可以用焊條,但是焊條沒焊環方回便,而且使用焊環可以控制答焊料成本,比起焊條來說簡單方便,還能實現自動化。

至於用什麼焊料,要看你具體焊什麼材料,如鐵、鋼、硬質合金類多用黃銅焊料或銀釺焊料,銅銅可用磷銅焊料或含銀焊料,銅鐵用銀焊料,鋁的只能用鋁焊料。焊料的狀態也有分,有焊膏、和固體釺焊料,在焊接過程中要使用助焊劑,助焊有粉狀和水濟,有的甚至包含在焊料裡面。

Ⅷ 請問硬質合金焊接。有什麼高頻焊接機嗎謝謝

高頻焊接機一直是有的,上網查一查什麼地方有買。
高頻感應釺焊 高頻感應釺焊是利用頻率為600kHz,功率在10~100kW之間的高頻感應加熱電源,產生高頻電流。當高頻電流穿過感應器時產生高頻交變磁場,在感應器中的被焊金屬中產生感應電流。罩譽渣高頻加熱速度很快,可以在很短時間內加熱到很高的溫度,使焊料熔化。高頻感應釺焊使用的感應器大多是用直徑5~10mm的紫銅管繞制而成。感應器的幾何形狀和尺寸選擇是否合適,是決定高頻感應釺焊的加熱速度、溫度均勻性、生產效率及釺焊質量的重要因素之一。
在焊接前,應根據焊接工具的大小調節高頻設備的輸出功率,使工件加熱速度適中,溫度均勻。功率過大易使工件局部過熱和釺料熔化不完全,易使硬質合金產生裂紋;虛哪功率太小,物悄則加熱時間過長,容易造成刀體氧化,影響生產效率。一般焊接加熱速度為30~60℃/s,鎢鈦鈷合金的加熱速度應為10~40℃/s。
高頻感應釺焊加熱速度快,效率高,操作簡單,勞動條件比較好。適用於大批量的自動或半自動釺焊。但是設備投資大,耗電量多。

Ⅸ 鎢鋼焊接問題

鎢鋼怎樣焊接:
鎢鋼的焊接方法: 鎢鋼因為硬度高,耐磨是優點,然版而,硬度高同時也權會增加加工的難度。鎢鋼為一種粉末冶金成型燒結的產品,本身帶有極高硬度,在焊接的時候,盡量用火直接燒在鎢鋼上面,這樣容易造成鎢鋼的開裂。 鎢鋼為了不要加熱太高,可以選用銀焊來焊接,銀的熔點比銅的熔點低,這樣就減少的鎢鋼的加溫。在天氣寒冷的地方,焊接好的鎢鋼產品,最好用生石灰保溫。

Ⅹ 高頻感應加熱為何能用於不銹鋼焊接焊接原理是什麼

英國物理學家法拉第的電磁感應定律告訴我們磁可以生電,丹麥的自然哲學家奧斯特的右手定則(安培定則)告訴我們電可以生磁。然而無論是磁生電還是電生磁,所針對的物體必須具有良好的導電、導磁或既導電又導磁的特性。由於通常只有金屬材料才能符合條件,而非金屬材料中則只有石墨等極少數物質符合條件。因此電磁感應加熱技術主要應用於對金屬材料和石墨的加熱。
那麼,熱量是如何產生的呢?設備輸出的交變電流,通過電感線圈(感應圈)轉換成交變磁場後,作用於處於電磁場中的金屬工件(或石墨)上。這時在工件中便會自然地產生許多閉合的旋轉電流(渦流),該電流極大(相當於短路電流).由於電流具有熱效應(Q=I*I*R*T),所以就產生了很多的熱量。另外,工件內部還存在著一種磁滯損耗,它也會使工件內部產生一定的熱量(不過這種熱量通常只會在含有磁分子的鐵磁物體中產生)。因此,工件便會在極短的時間(多以秒計)內急劇升溫.如果需要,可使任何金屬材料達到熔點,石墨達到升華。
根據設備所輸出的交變電流的頻率高低不同,可將感應加熱技術按工作頻率分為五類:低頻感應加熱,中頻感應加熱,超音頻感應加熱,高頻感應加熱和超高頻感應加熱等。
需要更多的相關知識,請進入高頻機技術空間查閱,或咨詢丹陽中發電子。

閱讀全文

與高頻焊接感應磁場用什麼材料相關的資料

熱點內容
筷子合金不銹鋼哪個導熱 瀏覽:736
空心鋼管怎麼表示 瀏覽:262
附近哪裡有電子煙管沖孔模具 瀏覽:379
鋼筋為什麼除以1000 瀏覽:286
lc6是什麼合金 瀏覽:889
159焊接彎頭漏水怎麼快修 瀏覽:611
鋼鐵是怎麼連煉成的好段賞析 瀏覽:546
環縫焊接怎麼讓焊口寬一點 瀏覽:431
鋼鐵廠哪些成本可做為研發支出 瀏覽:377
埋弧焊管是直縫焊管嗎 瀏覽:526
premiere無縫轉場怎麼用 瀏覽:289
鋼鍋燒變黑怎麼辦 瀏覽:936
寶寶彎頭怎麼辦 瀏覽:663
fcpx無縫轉場怎麼做 瀏覽:620
模具脹死怎麼拉開 瀏覽:964
撤銷護欄怎麼處理 瀏覽:43
減速帶和護欄怎麼換 瀏覽:33
什麼情況下需要放鋼板 瀏覽:943
深基坑支護鋼管套什麼定額 瀏覽:334