❶ 如何做焊接工藝評定設計報告
根據項目選擇選擇行業標准,按標准作焊接工藝評定,一般步驟如下:
1、根據圖紙材料厚度、材質、節點形式,針對性選擇使用的焊接方法;
2、准備合格焊工、合格材料做評定試板、焊接設備;
3、按照規范和經驗做一份預焊接工藝指導書
4、按照預焊接工藝指導書進行施焊,對整個焊接過程要做記錄,實際的預熱溫度、層間溫度、每道焊縫電流、電壓、速度等;焊接完成冷卻具備無損檢測條件,做探傷(一般RT或UT都可);
5、按照標准在焊接的試件上取拉伸、導向彎曲試樣,標准有規定還需做沖擊,試樣結果按標准驗 收;
6、試驗合格後整理焊接記錄,將實際數據編制到焊接工藝評定報告上去,在根據焊接工藝評定報告,編制焊接工藝指導書,按照規范調整焊接工藝指導書每個參數的范圍;
希望對你有用!對看看規范;
❷ 45號鋼焊接工藝分析。
當焊接45號鋼時,如果焊接材料的選擇和焊接過程的控制不好,則焊縫和近縫區可能產生硬脆的馬氏體組織,導致接頭使用性能下降,在振動或疲勞載荷下容易破壞,也是誘發冷裂紋的主要因素。
為了減少或避免焊縫、近縫區的淬硬組織,改善接頭性能,需要採取必要的工藝措施,通常焊前要進行預熱,預熱溫度為150~250℃,若構件厚度或剛性較大,則可在250~400℃。
焊接過程中,層間溫度保持不低於250℃。焊件結構比較復雜而採用某些防止裂紋的措施有困難時,應當盡量選用低氫型焊條,在不要求焊接接頭與母材等強度的情況下,可選用強度低一級的焊條,能獲得塑性更好的焊縫金屬,有利於避免裂紋的產生。
焊條條件許可時優先選用鹼性焊條。
坡口形式將焊件盡量開成U形坡口式進行焊接。如果是鑄件缺陷,鏟挖出的坡口外形應圓滑,其目的是減少母材熔入焊縫金屬中的比例,以降低焊縫中的含碳量,防止裂紋產生。
焊接工藝參數由於母材熔化到第一層焊縫金屬中的比例最高達30%左右,所以第一層焊縫焊接時,應盡量採用小電流、慢焊接速度,以減小母材的熔深。
焊後最好立即進行600~650℃消除應力的回火處理,如不能立即消除應力,也應進行消氫處理,其保溫時間約每10mm厚度1h左右即可。
❸ 如何做好焊接工藝評定
材料采購來以後是各種厚度、材質的板子。焊接:也稱作熔接、鎔接,是一種以加熱、高溫或者高壓的方式接合金屬或其他熱塑性材料如塑料的製造工藝及技術。 焊接通過下列三種途徑達成接合的目的:1,、加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助;2、單獨加熱熔點較低的焊料,無需熔化工件本身,借焊料的毛細作用連接工件(如軟釺焊、硬焊);3、在相當於或低於工件熔點的溫度下輔以高壓、疊合擠塑或振動等使兩工件間相互滲透接合(如鍛焊、固態焊接)。
❹ 從工藝角度分析,焊接件的結構設計應注意哪些事項
既然涉及到結構的設計,那就要弄明白:1、你所設計的結構所起的作用(要做什麼用)2、結構所屬的環境(是酸性?鹼性?低溫?高溫?動載?靜載?等等)3、做好1、2,才能選材料,選了材料,才能談焊接。不同的材料,焊接方法是千差萬別的。一般焊接結構設計,最先要考慮的是:結構的安全性,穩定性,可行性。首先要保證你設計出來的東西是安全的,穩定的,在使用年限內不會出問題(如事故、變形等等);還有工人能不能按照你的設計思路做出來。接下來,才考慮其他(如焊接設備,焊接材料,焊接參數等等),一般焊接結構而言,所使用的設備,焊材,參數都是大同小異。
❺ 什麼是焊接工藝參數
焊接工藝參數
1、掌握焊接參數的要求及其選定;
2、熟悉焊接接熱參數的確定方法;
教學重點: 焊接電流等工藝參數的選定
教學難點:焊接工藝參數的匹配及其對焊接質量的影響 教學內容:
一、焊接工藝參數的選定 焊接參數是指焊接時為了保證焊接質量而選定的物理量的總稱。 焊接參數的選定 主要考慮以下幾方面因素:
1)深入的分析產品的材料及其結構形式, 著重分析材料的化學成分和結構因素共 同作用下的焊接性。
2)考慮焊接熱循環對母材和焊縫的熱作用, 這是獲得合格產品及焊接接頭最小的 焊接應力和變形的保證。
3)根據產品的材料、焊件厚度、焊接接頭形式、焊縫的空間位置、接縫裝配間隙 等,去查找各種焊接方法的有關標准、資料(利用資料中經驗公式、圖表、曲線) 圖書等。
4)通過試驗確定焊縫的焊接順序、焊接方向以及多層焊的熔敷順序等。
5)確定焊接參數不應忽視焊接操作者的實踐經驗。
二、焊接熱參數的確定 通過選擇合適的焊接熱參數,可以改善焊接接頭的組織和性能,消除焊接應 力,防止裂紋產生。 焊接熱參數主要包括預熱、後熱及焊後熱處理。
1.預熱 預熱是焊前對焊件的全部或局部加熱。 預熱目的有以下幾方面:
1)減緩焊接接頭加熱時的溫度梯度及冷卻速度,適當延長在 800~500℃區間的 冷卻時間,改善焊縫金屬及熱影響區的顯微組織,提高焊接接頭的抗裂性。
2)有利於擴散氫的逸出,避免焊接接頭延遲裂紋的產生。
3)提高焊件溫度分布的均勻性,減少內應力。
2.後熱 後熱是焊後立即對焊件全部(或局部)進行加熱到 300~500℃並保溫 1~2h 後空冷的工藝措施,其目的是改善組織,加速氫的擴散和逸出,防止焊接區擴散 氫的聚集,避免延遲裂紋的產生,所以後熱也稱除氫處理。對於焊後要立即進行 熱處理的焊件, 因為在熱處理過程中可以達到除氫處理的目的,故不需要另作後 熱。
3.焊後熱處理 熱處理是指將金屬加熱到一定溫度,在這個溫度下保溫一定時間,然後以 一定的冷卻速度冷卻到室溫的工藝過程。焊接結構的焊後熱處理,主要目的是改 善焊接接頭的組織和性能,消除焊接殘余應力,並能降低接頭中的含氫量,提高 結構的幾何穩定性。 預熱、後熱、焊後熱處理方法的工藝參數,主要由結構的材料、焊縫的化學 成分、接頭的拘束程度、焊接方法、結構的剛度及應力情況、承受載荷的類型、 焊接環境的溫度等來確定。
三、手工弧焊的工藝參數
1、焊條種類和牌號的選 焊條的選用應根據鋼材的類別、 化學成分及力學性能, 結構的工作條件(載荷、 溫度、介質)和結構的剛度特點等進行綜合考慮,必要時,需要進行焊接試驗來 確定焊條型號和牌號。
2、焊接電流的種類和極性的選擇
3、焊接速度 主要取決於焊條的類型。 就是焊條沿焊接方向移動的速度。較大的焊接速度可以獲得較高 的焊接生產率,但是,焊接速度過大,會造成咬邊、未焊透、氣孔等缺陷;而過 慢的焊接速度,又會造成熔池滿溢、夾渣、未熔合等缺陷。
4、焊接電流的選擇,主要決定於焊條的類型、焊件材質、焊條直徑、焊件厚度、 接頭形式、焊接位置以及焊接層數等。
5、焊條直徑的選擇是根據被焊工件的厚度、接頭形狀、焊接位置和預熱條件 來確定的。焊條直徑規格為:1.6mm,2.5mm,3.2mm,4.0mm、5.0mm、5.8mm 等。 x09根據被焊工件的厚度,焊條直徑按下表進行選擇。
6、焊接層數的選擇 多層多道焊有利於提高焊接接頭的塑性和韌性,除了低碳 鋼對焊接層數不敏感外, 其他鋼種都希望採用多層多道無擺動法焊接,每層增高 不得大於 4mm。
7、電弧電壓的選擇 電弧電壓是由電弧的長度
拓展內容:
焊接工藝和焊接方法等因素有關,操作時需根據被焊工件的材質、牌號、化學成分,焊件結構類型,焊接性能要求來確定。
首先要確定焊接方法,如手弧焊、埋弧焊、鎢極氬弧焊、熔化極氣體保護焊等等,焊接方法的種類非常多,只能根據具體情況選擇。確定焊接方法後,再制定焊接工藝參數,焊接工藝參數的種類各不相同,如手弧焊主要包括:焊條型號(或牌號)、直徑、電流、電壓、焊接電源種類、極性接法、焊接層數、道數、檢驗方法等。
❻ 焊接的主要特點是什麼2.什麼叫金屬焊接性如何評價金屬焊接性
焊接是通過加熱或加壓,或兩者並用,並且用或不用填充材料,使工件產生原子間結合的一種連接工藝方法。其特點有:
(1)連接性能好 焊縫具有良好的力學性能,能耐高溫、高壓、能耐低溫、具有良好的密 封性、導電性、耐蝕性和耐磨性等。
(2)省料、省工、成本低 採用焊接方法製造金屬結構,一般比鉚接節省金屬材料10%-20%。
(3)重量輕 採用焊接方法製造船舶、車輛、飛機、飛船、火箭等運載工具,可以減輕自 重,提高運載能力。
(4)簡化工藝 可以採用焊接方法製造重型、復雜的及其零部件,簡化鑄造和鍛造工藝, 以及簡化切削加工工藝。
金屬焊接性是金屬材料對焊接加工的適應能力,在一定焊接工藝的條件下,能否獲得優質的焊接接頭和焊接接頭能否在使用條件下安全運行的一種評價尺度。
金屬的焊接性是指金屬材料對焊接加工的適應性,主要指在一定的焊接工藝條件下,獲得優質焊接接頭的難易程度。從廣義來說「焊接性」這一概念還包括「可用性』和「可靠性」。焊接性取決於材料的特性和所採用的工藝條件。金屬材料的焊接性不是靜止不變的,而是發展的,例如原來認為焊接性不好的材料,隨著科學技術的發展,有了新的焊接方法而變為易於焊接,即焊接性變好了。因此我們不能離開工藝條件來泛談焊接性問題。
焊接性包括兩方面的內容:一是接合性能,即在一定的焊接工藝條件下,形成焊接缺陷的敏感性;二是實用性能,即在一定焊接工藝條件下,焊接接頭對使用要求的適應性。
工藝焊接性是指在一定焊接工藝條件下,能否獲得優質、緻密、無缺陷焊接接頭的能力。
分析研究金屬的工藝焊接性時,必然要涉及到焊接過程。對於熔化焊來講,焊接過程一般都要經歷傳熱的冶金反應。因此,把工藝焊接性又分為熱焊接性和冶金焊接性。
(1)熱焊接性:熱焊接性是指在焊接熱過程中,對焊接熱影響區組織性能產生缺陷的影響程度。用它來評定被焊金屬對熱的敏感性(晶粒長大和組織性能變化等),熱焊接性主要與被焊材質及焊接工藝條件有關。
(2)冶金焊接性:冶金焊接性是指冶金反應對焊接性能和產生缺陷的影響程度。它包括合金元素的氧化、還原、蒸發。氫、氧、氮的溶解,對氣孔、夾雜物、裂紋等缺陷的敏感性,它們是影響焊縫金屬化學成分和性能的重要方面。
❼ 求焊接專業論文 題目304L不銹鋼焊接工藝特點,缺陷分析及防治措施
1、不銹鋼焊接工藝特點
奧氏體型不銹鋼以18%Cr-8%Ni鋼為代表。原則上不須進行焊前預熱和焊後熱處理。一般具有良好的焊接性能。但其中鎳、鉬的含量高的高合金不銹鋼進行焊接時易產生高溫裂紋。另外還易發生б相脆化,在鐵素體生成元素的作用下生成的鐵素體引起低溫脆化,以及耐蝕性下降和應力腐蝕裂紋等缺陷。經焊接後,焊接接頭的力學性能一般良好,但當在熱影響區中的晶界上有鉻的碳化物時會極易生成貧鉻層,而貧鉻層和出現將在使用過程中易產生晶間腐蝕。為避免問題的發生,應採用低碳(C≤0.03%)的牌號或添加鈦、鈮的牌號。為防止焊接金屬的高溫裂紋,通常認為控制奧氏體中的δ鐵素體肯定是有效的。一般提倡在室溫下含5%以上的δ鐵素體。對於以耐蝕性為主要用途的鋼,應選用低碳和穩定的鋼種,並進行適當的焊後熱處理;而以結構強度為主要用途的鋼,不應進行焊後熱處理,以防止變形和由於析出碳化物和發生δ相脆化。
雙相不銹鋼的焊接裂紋敏感性較低。但在熱影響區內鐵素體含量的增加會使晶間腐蝕敏感性提高,因此可造成耐蝕性降低及低溫韌性惡化等問題。
對於沉澱硬化型不銹鋼有焊接熱影響區發生軟化等問題。
奧氏體不銹鋼的焊條選用要點:
不銹鋼主要用於耐腐蝕,但也用作耐熱鋼和低溫鋼。因此,在焊接不銹鋼時,焊條的性能必須與不銹鋼的用途相符。不銹鋼焊條必須根據母材和工作條件(包括工作溫度和接觸介質等)來選用。
1、一般來說,焊條的選用可參照母材的材質,選用與母材成分相同或相近的焊條。如:A102對應0Cr19Ni9;A137對應1Cr18Ni9Ti。
2、由於碳含量對不銹鋼的抗腐蝕性能有很大的影響,因此,一般選用熔敷金屬含碳量不高於母材的不銹鋼焊條。如316L必須選用A022焊條。
3、奧氏體不銹鋼的焊縫金屬應保證力學性能。可通過焊接工藝評定進行驗證。
4、對於在高溫工作的耐熱不銹鋼(奧氏體耐熱鋼),所選用的焊條主要應能滿足焊縫金屬的抗熱裂性能和焊接接頭的高溫性能。
(1)對Cr/Ni≥1的奧氏體耐熱鋼,如1Cr18Ni9Ti等,一般均採用奧氏體-鐵素體不銹鋼焊條,以焊縫金屬中含2-5%鐵素體為宜。鐵素體含量過低時,焊縫金屬抗裂性差;若過高,則在高溫長期使用或熱處理時易形成σ脆化相,造成裂紋。如A002、A102、A137。
在某些特殊的應用場合,可能要求採用全奧氏體的焊縫金屬時,可採用比如A402、A407焊條等。
(2)對Cr/Ni<1的穩定型奧氏體耐熱鋼,如Cr16Ni25Mo6等,一般應在保證焊縫金屬具有與母材化學成分大致相近的同時,增加焊縫金屬中Mo、W、Mn等元素的含量,使得在保證焊縫金屬熱強性的同時,提高焊縫的抗裂性。如採用A502、A507。
5、對於在各種腐蝕介質中工作的耐蝕不銹鋼,則應按介質和工作溫度來選擇焊條,並保證其耐腐蝕性能(做焊接接頭的腐蝕性能試驗)。
(1)對於工作溫度在300℃以上、有較強腐蝕性的介質,須採用含有Ti或Nb穩定化元素或超低碳不銹鋼焊條。如A137或A002等。
(2)對於含有稀硫酸或鹽酸的介質,常選用含Mo或含Mo和Cu的不銹鋼焊條如:A032、A052等。
(3)工作,腐蝕性弱或僅為避免銹蝕污染的設備,方可採用不含Ti或Nb的不銹鋼焊條。
為保證焊縫金屬的耐應力腐蝕能力,採用超合金化的焊材,即焊縫金屬中的耐蝕合金元素(Cr、Mo、Ni等)含量高於母材。如採用00Cr18Ni12Mo2類型的焊接材料(如A022)焊接00Cr19Ni10焊件。
6、對於在低溫條件下工作的奧氏體不銹鋼,應保證焊接接頭在使用溫度的低溫沖擊韌性,故採用純奧氏體焊條。如A402、A407。
7、也可選用鎳基合金焊條。如採用Mo達9%的鎳基焊材焊接Mo6型超級奧氏體不銹鋼。
8、焊條葯皮類型的選擇:
(1)由於雙相奧氏體鋼焊縫金屬本身含有一定量的鐵素體,具有良好的塑性和韌性,從焊縫金屬抗裂性角度進行比較,鹼性葯皮與鈦鈣型葯皮焊條的差別不像碳鋼焊條那樣顯著。因此在實際應用中,從焊接工藝性能方面著眼較多,大都採用葯皮類型代號為17或16的焊條(如A102A、A102、A132等)。
(2)只有在結構剛性很大或焊縫金屬抗裂性較差(如某些馬氏體鉻不銹鋼、純奧氏體組織的鉻鎳不銹鋼等)時,才 考慮選用葯皮代號為15的鹼性葯皮不銹鋼焊條(如A107、A407等)。
綜上所述,奧氏體不銹鋼的焊接是有其獨特特點的,奧氏體不銹鋼的焊接時焊條選用尤其值得注意,只有這樣才能達到針對不同材料實施不同的焊接方法和不同材料的焊條,不銹鋼焊條必須根據母材和工作條件(包括工作溫度和接觸介質等)來選用。這樣才有可能能達到所預期的焊接質量.。
奧氏體不銹鋼的缺陷分析及防治措施
(一)容易出現熱裂紋
奧氏體不銹鋼在焊接時熱裂紋是比較容易產生的缺陷,包括焊縫的縱向和橫向裂紋、火口裂紋、打底焊的根部裂紋和多層焊的層間裂紋等,特別是含鎳量較高的奧氏體不銹鋼更容易產生。
1. 產生原因
(1)奧氏體不銹鋼的液、固相線的區間較大,結晶時間較長,且單相奧氏體結晶方向性強,所以雜質偏析比較嚴重。
(2)導熱系數小,線膨脹系數大,焊接時會產生較大的焊接內應力(一般是焊縫和熱影響區受拉應力)。
(3)奧氏體不銹鋼中的成分如C、S、P、Ni等,會在熔池中形成低熔點共晶。例如, S與Ni形成的Ni3S2熔點為645℃,而Ni- Ni3S2共晶體的熔點只有625℃。
2. 防止措施
(1)採用雙相組織的焊縫 盡量使焊縫金屬呈奧氏體和鐵素體雙相組織,鐵素體的含量控制在3~5%以下,可擾亂奧氏體柱狀晶的方向,細化晶粒。並且鐵素體可以比奧氏體溶解更多的雜質,從而減少了低熔點共晶物在奧氏體晶界的偏析。
(2)焊接工藝措施 在焊接工藝上盡量選用鹼性葯皮的優質焊條、採用小線能量,小電流、快速不擺動焊,收尾時盡量填滿弧坑及採用氬弧焊打底等,可減小焊接應力和弧坑裂。
(3)控制化學成分 嚴格限制焊縫中 S、P等雜質含量,以減少低熔點共晶。
(二)晶間腐蝕
產生在晶粒之間的腐蝕,其導致晶粒間的結合力喪失,強度幾乎完全消失,當受到應力作用時,即會沿晶界斷裂。
1.產生原因
根據貧鉻理論,焊縫和熱影響區在加熱到450~850℃敏化溫度(危險溫度區)時,由於 Cr原子半徑較大,擴散速度較小,過飽和的碳向奧氏體晶粒邊界擴散,並與晶界的鉻化合物在晶界形成Cr23C6,造成貧鉻的晶界,不足以抵抗腐蝕的程度。
2. 防止措施
(1)控制含碳量 採用低碳或超低碳(W(C)≤0.03%)不銹鋼焊接焊材。如A002等。
(2)添加穩定劑 在鋼材和焊接材料中加入Ti、Nb等與C親和力比Cr強的元素,能夠與C結合成穩定碳化物,從而避免在奧氏體晶界造成貧鉻。常用的不銹鋼材和焊接材料都含有Ti、Nb,如1Cr18Ni9Ti、1Cr18Ni12MO2Ti鋼材、E347-15焊條、H0Cr19Ni9Ti焊絲等。
(3) 採用雙向組織 由焊絲或焊條向焊縫中熔入一定量的鐵素體形成元素,如 Cr、Si、AL、 MO等,以使焊縫形成為奧氏體+鐵素體的雙相組織,因為Cr在鐵素體內擴散速度比在奧氏體中快,因此Cr在鐵素體內較快的向晶界擴散,減輕了奧氏體晶界的貧鉻現象。一般控制焊縫金屬中鐵素體含量為5%~10%,如鐵素體過多,會使焊縫變脆。
(4)快速冷卻 因為奧氏體不銹鋼不會產生淬硬現象,所以在焊接過程中,可以設法增加焊接接頭的冷卻速度,如焊件下面用銅墊板或直接澆水冷卻。在焊接工藝上,可以採用小電流、大焊速、短弧、多道焊等措施,縮短焊接接頭在危險溫度區停留的時間,以免形成貧鉻區。
(5)進行固溶處理或均勻化熱處理 焊後把焊接接頭加熱到1050~1100℃,使碳化物又重新溶解到奧氏體中,然後迅速冷卻,形成穩定的單相奧氏體組織。另外,也可以進行850~900℃保溫2h的均勻化熱處理,此時奧氏體晶粒內部的Cr擴散到晶界,晶界處Cr量又重新達到了大於12%,這樣就不會產生晶間腐蝕了。
(三)應力腐蝕開裂
金屬在應力和腐蝕性介質共同作用下,發生的腐蝕破壞。根據不銹鋼設備與製件的應力腐蝕斷裂事例和試驗研究,可以認為:在一定靜拉伸應力和在一定溫度條件下的特定電化學介質共同作用下,現有的不銹鋼均有產生應力腐蝕的可能。應力腐蝕最大特點之一是腐蝕介質與材料的組合上有選擇性。容易引起奧氏體不銹鋼應力腐蝕主要是鹽酸和氯化物含有氯離子的介質,還有硫酸、硝酸、氫氧化物(鹼)、海水、水蒸氣、H2S水溶液、濃NaHCO3+NH3+NaCl水溶液等介質等。
1.產生原因
應力腐蝕開裂是焊接接頭在特定腐蝕環境下受拉伸應力作用時所產生的延遲開裂現象。奧氏體不銹鋼焊接接頭的應力腐蝕開裂是焊接接頭比較嚴重的失效形式,表現為無塑性變形的脆性破壞。
2.防止措施
(1)合理制定成形加工和組裝工藝 盡可能減小冷作變形度,避免強制組裝,防止組裝過程中造成各種傷痕(各種組裝傷痕及電弧灼痕都會成為SCC的裂源,易造成腐蝕坑。
(2)合理選擇焊材 焊縫與母材應有良好的匹配,不產生任何不良組織,如晶粒粗化及硬脆馬氏體。
(3)採取合適的焊接工藝 保證焊縫成形良好,不產生任何應力集中或點蝕的缺陷,如咬邊等採取合理的焊接順序,降低焊接殘余應力水平。例如,避免十字交叉焊縫,Y形坡口改為X形坡口、適當減小坡口角度、採用短焊焊道、採用小線能量。
(4)消除應力處理 焊後熱處理,如焊後完全退火或退火;在難以實施熱處理時採用焊後錘擊或噴丸等。
(5)生產管理措施 介質中雜質的控制,如液氨介質中的O2、N2、H2O等、液化石油氣中的H2S、氯化物溶液中的O2、Fe3+、Cr6+等、防蝕處理:如塗層、襯里或陰極保護等、添加緩蝕劑。
(四)焊接接頭的脆化
奧氏體不銹鋼的焊縫在高溫加熱一段時間後,就會出現沖擊韌度下降的現象,稱為脆化。
1.焊縫金屬的低溫脆化(475℃脆化)
(1) 產生原因
含有較多鐵素體的相(超過15%~20%)的雙相焊縫組織,經過350~500℃加熱後,塑性和韌性會顯著下降,由於475℃時脆化速度最快,故稱為475℃脆化。對於奧氏體不銹鋼焊接接頭,耐蝕性或抗氧化性並不總是最為關鍵的性能,在低溫使用時,焊縫金屬的塑韌性就成為關鍵性能。為了滿足低溫韌性的要求,焊縫組織通常希望獲得單一的奧氏體組織,避免δ鐵素體的存在。δ鐵素體的存在,總是惡化低溫韌性,而且含量越多,這種脆化越嚴重。
(2) 防治措施
① 在保證焊縫金屬抗裂性能和抗腐蝕性能的前提下,應將鐵素體相控制在較低的水平,約5%左右。
② 已產生475℃脆化的焊縫,可經900℃淬火消除。
2.焊接接頭的σ相脆化
(1)產生原因
奧氏體不銹鋼焊接接頭在375~875℃溫度范圍內長期使用,會產生一種FeCr間化合物,稱為σ相。σ相硬而脆(HRC>68)。由於σ相析出的結果,使焊縫沖擊韌度急劇下降,這種現象稱為σ相脆化。σ相一般僅在雙相組織焊縫內出現;當使用溫度超過800~850℃時,在單相奧氏體焊縫中也會析出σ相。
(2)防止措施
①限制焊縫金屬中的鐵素體含量(小於15%);採用超合金化焊接材料,即高鎳焊材,並嚴格控制Cr、Mo、Ti、Nb等元素的含量。
②採用小規范,以減小焊縫金屬在高溫下的停留時間。
③對已析出的σ相在條件允許時進行固溶處理,使σ相溶入奧氏體。
④把焊接接頭加熱到1000~1050℃,然後快速冷卻。σ相一般在1Cr18Ni9Ti鋼中一般不產生。
3.熔合線脆斷
(1)產生原因
奧氏體不銹鋼在高溫下長期使用,在沿熔合線外幾個晶粒的地方,會發生脆斷現象。
(2)防治措施
在鋼中加入 Mo能提高鋼材抗高溫脆斷的能力。
通過以上的分析,只有合理選擇以上的焊接工藝措施或焊接材料都可以避免以上焊接缺陷的產生。奧氏體不銹鋼具有優良的焊接性,幾乎所有的焊接方法都可用於奧氏體不銹鋼的焊接。在各種焊接方法中焊條電弧焊具有適應各種位置與不同板厚的優點、應用非常廣泛。
你可以根據以上的文章進行一下修改就可以了。
❽ 焊接性的分析方法有哪些
(1)利用材料特性來分析
a 化學成分(碳當量)
b 材料的物理特性 線膨脹系數 導熱率等
c 材料的化學性能 冶金性能
d 相圖 CCT曲線 SHCCT曲線
(2)從焊接工藝條件分析
a 熱源的特點
b 保護措施
c 熱循環
d 其他:除油,除銹等
❾ 如何編制焊接工藝
不同的焊接方法有不同的焊接工藝。焊接工藝主要根據被焊工件的材質、牌號、化學成分,焊件結構類型,焊接性能要求來確定。首先要確定焊接方法,如手弧焊、埋弧焊、鎢極氬弧焊、熔化極氣體保護焊等等,焊接方法的種類非常多,只能根據具體情況選擇。確定焊接方法後,再制定焊接工藝參數,焊接工藝參數的種類各不相同,如手弧焊主要包括:焊條型號(或牌號)、直徑、電流、電壓、焊接電源種類、極性接法、焊接層數、道數、檢驗方法等等。
1 總則
本通用工藝適用於我公司採用手工電弧焊、埋弧自動焊,鎢極氬弧焊及熔化極CO2氣體保護焊工藝的各類鋼制壓力容器的焊接。
2 焊工
2.1 焊工必須按《鍋爐壓力容器焊工考試規則》進行考試,並取得焊工合格證,方能在有效期內從事合格項目的焊接工作。
2.2 焊接前焊工必須了解所焊焊件的鋼種、焊接材料、焊接工藝要點。
3 焊接方法
3.1 下列焊縫一般採用埋弧焊
3.1.1 10≤δ≤60的拼接焊縫;
3.1.2 直徑φ≥1000mm且δ≥10mm的A、B縫內、外口;600mm≤直徑φ<1000mm的A、B縫外口。
3.2 下列焊縫一般採用手工焊:
3.2.1 直徑φ≥1000mm且δ<10mm的A、B縫內、外口;
3.2.2 600mm≤直徑φ<1000mm的A、B縫內口
3.2.3 直徑φ≥89mm接管與法蘭B類縫外口;
3.2.4 C、D 類焊縫。
3.3 下列焊縫一般採用鎢極氬弧焊:
3.3.1 直徑φ≥1000mm 且δ≤8mm的A、B類縫打底焊;
3.3.2 600mm≤直徑φ<1000mm的A、B類縫打底焊;
3.3.3 直徑φ≥89mm接管與法蘭B類縫打底焊;
3.3.4 φ<89mm的接管與法蘭B縫焊接;
3.3.5 圖樣要求採用氬弧焊的C、D類焊縫焊接。
3.4 下列焊縫一般採用熔化極CO2氣體保護焊:
3.4.1 塔器的裙座和底座環的焊接;
3.4.2 容器和換熱器等設備的鞍座和支座的焊接。
4 焊接材料
4.1 根據產品圖紙或JB/T4709《鋼制壓力容器焊接規程》的規定選用相應的焊接材料。
4.2 焊條、焊絲、焊劑必須具有產品質量證明書,並符合相應的標准規定,經驗收或復驗合格後方可使用。
4.3 焊條存放處必須乾燥,焊條應堆放整齊,分類、分牌號存放,避免混亂。
4.4 焊條、焊劑使用前應按說明書規定進行烘烤,焊條領用時須用焊條筒存放,隨取隨用。連續使用的焊劑應過篩,除去其中的塵土和粉末。
4.5 焊絲表面應無鐵銹、氧化皮、油污等污物。
4.6 焊接用保護氣體的純度必須達到規定的標准要求,有含水量要求的要嚴格控制其含水量。
5 焊縫坡口形式與基本尺寸
5.1 採用手工焊的坡口形式和基本尺寸規定如下:
5.1.1 單面V 型坡口見圖5.1.1。
5.1.2 不對稱X 型坡口見圖5.1.2。
5.1.3 當直徑≤600mm,採用單面焊雙面成形工藝時可採用單面V 型外坡口。
5.1.4 當直徑>600mm選用V型和X型坡口,先焊大坡口側,背面清根,再焊小坡口側。
5.2 採用埋弧自動焊工藝時,焊縫坡口型式和基本尺寸規定如下:
5.2.1 I 型坡口見圖5.2.1(適用於?=10-14mm鋼板)。
5.2.2 單面V型坡口見圖5.2.2
5.2.3 不對稱X型坡口見圖5.2.3。
5.3 採用氬弧焊工藝時,一般採用單面V型外坡口見圖5.3。
5.4 除5.1條、5.2條、5.3條規定外,可根據產品圖紙和相關標准選擇焊縫坡口形式和基本尺寸。
6 焊前准備
6.1 全面檢查電源、焊機、焊槍、供氣系統、工裝等設備是否正常。
6.2 確認焊條、焊劑、焊絲牌號、規格及質量是否符合要求。
6.3 檢查焊件的裝配質量和坡口情況。
6.3.1 焊接的坡口形式和基本尺寸以及裝配公差必須符合產品圖紙要求及技術工藝文件的規定,坡口應保持平整,不得有裂紋、分層、夾渣等缺陷。
6.3.2 坡口表面及兩側20mm范圍內的水分、鐵銹、油污等有害雜質應清理干凈。
6.4 不銹鋼及其復合鋼板復層坡口兩側各100mm范圍塗白堊粉,以防止沾附焊接飛濺。
6.5 採用埋弧自動焊焊平板拼縫、筒體縱縫時,必須有引弧板和熄弧板各一塊,長150mm,寬100mm,厚度、材質與筒體相同。
6.6 氬氣的純度不低於99.99%(體積比),含水量不超過20×10-6,當瓶內氣體壓力低於1Mpa時應停止使用。
6.7 按工藝文件要求實施預熱,要保持預熱的均勻性,確認達到預熱溫度後才能施焊。
7 焊接要求
7.1 焊接環境出現下列任一情況時,須採取有效防護措施,否則禁止施焊。
7.1.1 風速大於10m/s;
7.1.2 相對濕度大於90%;
7.1.3 雨、雪環境;
7.1.4 焊件溫度低於-20℃。
7.2 不銹鋼、有色金屬容器應有與鋼制產品隔離的專用的焊接場地,地面應鋪設橡膠等軟墊,保持環境清潔。
7.3 焊接環境必須符合安全衛生要求。
7.4 焊工的工作環境應有足夠的光線。
7.5 當焊件溫度為0℃時,應在施焊處100mm 范圍內預熱到15℃左右。有預熱要求時,應不低於預熱溫度。
7.6 應在引弧板或坡口內引弧,禁止在非焊接部位引弧。應防止地線、電纜線、焊鉗與焊件打弧。
7.7 定位縫若存在裂紋必須清除定位焊重焊;如存在氣孔、夾渣時應去除氣孔、夾渣。
7.8 熔入永久焊縫內的定位焊兩端應修磨至便於接弧。
7.9 受壓元件的角焊縫根部應保證焊透。
7.10 雙面焊需清理焊根,顯露出正面打底的焊縫金屬,接弧處應保證焊透與熔合。
7.11 每條焊縫應盡可能一次焊完,當中斷焊接時,對冷裂紋敏感的焊件應及時採取後熱、緩冷措施,重新施焊時,仍需按規定進行預熱。
7.12 按焊接工藝卡執行焊接規范,並注意及時調整電流、電壓和焊速,以確保焊接質量。
7.13 採用控制線能量,選擇合理焊接次序等措施,防止和減少焊接變形。
7.14 當焊縫出現大量氣孔、裂紋及成型不良時,應立即停止焊接,分析原因,進行修補和調整後方可繼續施焊。
8 焊接工藝參數的選擇
8.1 手工電弧焊工藝
8.1.1 一般根據焊件厚度選擇焊條直徑,見表8.1.1。
表8.1.1焊條直徑的選擇
材料厚度(mm)
<4
4-12
12
焊條直徑(mm)
2.5-3.2
3.2-4
≥4
8.1.2 鹼性焊條採用直流電源且反極性焊接,酸性焊條採用交流或直流電源,正或反極性焊接。
8.1.3 焊接電流的選擇一般根據焊條直徑來確定。在採用同樣直徑的焊條焊接時,當焊件較厚,可選擇電流上限,立、橫、仰焊一般應比平焊時小10%左右。焊接奧氏不銹鋼時,電流應比焊接碳鋼、低合金鋼等材料的電流小。
8.1.4 應盡量採用低電壓短弧焊,焊接速度應保證焊縫成型良好。
8.1.5 焊接電流、電壓匹配關系見表8.1.5。
表8.1.5焊接電流、電壓匹配關系
焊條直徑(mm)
2.5
3.2
4.0
5.0
電流(A)
50-80
100-130
160-200
200-250
電壓(V)
16-18
18-20
21-23
23-25
❿ 18-8不銹鋼的焊接工藝分析
鉻鎳奧氏體不銹鋼焊接質量的改進途徑1.接頭耐蝕性的控制及防止措施
(1)晶間腐蝕的控制
①冶金措施。從控制焊縫成分入手,如選用超低碳奧氏體不銹釧焊接材料;添加Nb、Ti等穩定化元素,以形成飽定碳化物NbC、TiC;形成γ+δ雙相組織(3%~5%δ)等。②工藝措施。採用小熱輸入量、快速冷卻工藝等。必要時還可以採用焊後熱處理丁藝,如固溶處理或穩定化處理。
(2)應力腐蝕的防止
①往結構發計方面,要合理選擇耐蝕材料,同時要最大限度減少庖力集中和減少高應力區。②在施工製造方面,首先要合理選用焊接材料,如選用具有γ+δ雙相組織的焊材等。其次要合理制定裝焊工藝,盡量避免應力集中或焊接缺陷。最後要進行消除應力處理,可以採用殘余變形和錘擊法鬆弛殘余應力,或者通過低溫(低於300~350℃)退火處理,也可以實施大於850℃熱處理消除踐余應力。必須通過試驗確定最佳規范參數。③在生產管理方面,要實施介質中雜質的控制,開展防蝕處理及監控分析等工作。
2.接頭熱裂紋的防止措施
(1)冶金措施首先選用具有γ+δ雙相組織的焊接材料,必須控制鉻鎳當量比Creq/Nieq以保證獲得「先δ鐵素體」凝固模式。其次要限制焊縫中的有害雜質,如S、P等的含量。
(2)工藝措施
①限制過熱。可以採用小的焊接電流和小的焊接速度,降低焊接熱輸入量。②控製成形系數。成形系數的控制與焊接參數相關,合理的成形系數(在不提高焊接速度前提下,採用減小焊接電流工藝所獲的)對控制熱裂紋有一定作用。③減小熔合比。在減小母材對焊縫稀釋率時,同樣要求降低焊接電流。④降低拘束度。⑤控制裝配間隙、改進裝配質量等。
3.接頭低溫和高溫韌性的控制措施
(1)焊縫成分的調整調整焊縫中γ相和δ相形成元素含量及其比值,扶得單相γ組織焊縫(盡量不出現δ相),添加適量稀土元素,以改善接頭低溫韌性。對於高溫丁作的奧氏體接頭,防止γ→σ轉變是前提,添加抑制該項轉變的元素(含稀土元素)並控制含量,以抑制接頭的高溫脆化。
(2)焊接工藝措施
採用不預熱,限制熱輸入量,盡可能快速冷卻的工藝,有利控制接頭晚化。
4.焊縫中氣孔的防止措施
(1)消除氣體來源首先焊前對工件及焊絲表面的鐵銹、油污以及氧化膜進行清理,以防有害氣體進入電弧區。同時對焊接材料必須防潮,使用前按照說明書要求進行烘乾並保溫,隨用隨取;其次還要加強焊接過程中的防護措施,如氣保護焊接時必須防風,保護氣流量及純度也需控制等。
(2)正確選用焊接材料
著重考慮焊接時帶進熔池的水氣數量以及熔池中氣體逸出難易程度。
(3)控制焊接工藝條件
選擇焊接方法和焊接工藝參數時,總體原則是使電弧中帶進的氣體總量較少,而熔池中氣體的逸出條件較好;同時要兼顧奧氏體不銹鋼接頭其他性能要求,如耐蝕性、抗裂性等。