導航:首頁 > 焊接工藝 > 微束等離子焊接採用什麼等離子弧

微束等離子焊接採用什麼等離子弧

發布時間:2022-08-31 03:00:40

『壹』 微束等離子弧焊與微束TIG焊的區別;兩厚度為0.73mm的薄板焊接採用哪種焊接方法好

TIG(鎢惰性氣體)焊接是一種低熔化率的高質量焊接技術。電弧在鎢電極和工件之間燃燒; 電極並不熔化,它只作為電流導體和電弧載體。 MIG/TIG焊接都是採用氣體保護的電弧焊。
TIG 為交流鎢極氬弧焊,採用杜鎢棒作電極,使用高頻電,用氬氣作保護氣體。
MIG為直流反極性熔化極氣體保護焊,將填充金屬焊絲做電極,使用直流電,用二氧化碳作為保護氣體。
TIG的適用范圍廣,大部分為手工焊,焊接質量高,因使用氬氣,成本較高。

微束等離子弧:焊接電流在30A以下的等離子弧焊。噴嘴直徑很小(Φ0.5~Φ1.5毫米),得到針狀細小的等離子弧。主要用於焊接1毫米以下的超薄、超小、精密的焊件 。。微束等離子焊機能夠更好的解決這些問題,並且價格低廉,使用時間長,對工件污染程度極低等特點,是眾多的中小型企業能夠接受,並能更好的應用到生產中。

『貳』 等離子弧加工的焊接方法

焊縫成形原理,等離子弧有兩種基本焊接方法:小孔型等離子弧焊及熔透型等離子弧焊,其中30A以下的熔透型等離子弧焊又可稱為微束等離子弧焊。
(1)小孔型等離子弧焊利用小孔效應實現等離子弧焊的方法稱小孔型等離子弧焊,亦稱穿透性焊接法。
1)小孔法原理在對一定厚度范圍內的金屬進行焊接時,適當地配合電流、離子氣流及焊接速度三個工藝參數,等離子弧將會穿透整個工件厚度,形成一個貫穿工件的小孔,如圖5。小孔周圍的液體金屬在電弧吹力、液體金屬重力與表面張力作用下保持平衡。焊槍前進時,在小孔前沿的熔化金屬沿著等離子弧柱流到小孔後面並遂漸凝固成焊縫。 小孔法焊接的主要優點在於可以單道焊接厚板,板厚范圍:1.6~9mm。小孔法一般僅限於平焊;然而,對於某些種類的材料,採取必要的工藝措施,用小孔法可實現全位置焊接。
2)焊接特點 小孔法焊接所具有的優點是:
a、孔隙率低。
b、由於小孔法產生較為對稱的焊縫,焊接橫向變形小。
c、由於電弧穿透能力強,對厚板可實現單道焊接。
d、不開坡口實現對接焊,焊前對工件坡口加工量減少。
小孔法的缺點是:
a、焊接可變參數多,規范區間窄。
b、厚板焊接時,對操作者的技術水平要求較高,並且小孔法僅限於自動焊接。
c、焊槍對焊接質量影響大,噴嘴壽命短。
d、除鋁合金外,大多數小孔焊工藝仍限於平焊位置。
(2)熔透型等離子弧焊 焊接過程過程中,只熔透工件,但不產生小孔效應的等離子弧焊方法,又稱熔透型焊接法。
1)熔透法原理 當離子氣流量較小,弧柱受壓縮程度較弱時,這種等離子弧在焊接過程中只熔化工件而不產生小孔效應,焊縫成形原理與氬弧焊類似。主要用於薄板焊接及厚板多層焊。
2)微束等離子弧焊 微束等離子通常採用如圖3c所示的聯合弧。由於非轉移弧的存在,焊接電流小至1A以下電弧仍具有較好的穩定性,能夠焊接細絲及箔材。這時的非轉移弧又稱維弧,而用於焊接的轉移弧又稱主弧。
3)焊接特點與GTAW焊相比,熔透法等離子弧焊具有優點是:
a、電弧能量集中,因此焊接工藝具有焊接速度快;焊縫深寬比大,截面積小;薄板焊接變形小,厚板焊接縮孔傾向小及熱影響區窄等優點。
b、電弧穩定性好。由於微束等離子弧焊接採用聯合弧,電流小至0.1A時電弧仍能穩定燃燒,因此可焊超薄件,如厚度0.1mm不銹鋼片。
c、電弧挺直性好。以焊接電流10A為例,等離子弧焊噴嘴高度(噴嘴到工件表面的距離)達6.4mm時,弧柱仍較挺直,而鎢極氬弧焊的弧長僅能採用0.6mm(弧長大於0.6mm後穩定性變差)。鎢極氬弧的擴散角約450,呈圓錐形(見圖6a),工件上的加熱面積與弧長成平方關系,只要電弧長度有很小變化將引起單位面積上輸入熱量的較大變化。而等離子弧的擴散角僅50左右(見圖6b)基本上是圓柱形,弧長變化對工件上的加熱面積和電流密度影響比較小,所以等離子弧焊弧長變化對焊縫成形的影響不明顯。
d、由於等離子弧焊的鎢極內縮在噴嘴之內,電極不可能與工件相接觸,因而沒有焊縫夾鎢的問題。
與GTAW焊相比,熔縫法的主要缺點是:
a、由於電弧直徑小,要求焊槍噴嘴軸線更准確地對中焊縫。
b、焊槍結構復雜,加工精度高。焊槍噴嘴對焊接質量有著直接影響,必需定期檢查、維修,及時更換。

『叄』 等離子弧焊接有哪三種方法

等離子弧焊(PAW,Plasma Arc Welding)是利用等離子弧作為熱源的焊接方法。氣體由電弧加熱產生離解,在高速通過水冷噴嘴時受到壓縮,增大能量密度和離解度,形成等離子弧。它的穩定性、發熱量和溫度都高於一般電弧,因而具有較大的熔透力和焊接速度。形成等離子弧的氣體和它周圍的保護氣體一般用氬。根據各種工件的材料性質,也有使用氦、氮、氬或其中兩者混合的混合氣體的。
等離子弧有兩種工作方式。一種是「非轉移弧」,電弧在鎢極與噴嘴之間燃燒,主要用於等離子噴鍍或加熱非導電材料。
另一種是「轉移弧」,電弧由輔助電極高頻引弧後,電弧燃燒在鎢極與工件之間,用於焊接。形成焊縫的方式有熔透式和穿孔式兩種。前一種形式的等離子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;後一種形式的等離子弧只熔穿板材,形成鑰匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,還有小電流的微束等離子弧焊,特別適合於0.02~1.5毫米的薄板焊接。
等離子弧焊廣泛用於工業生產,特別是航空航天等軍工和尖端工業技術所用的銅及銅合金、鈦及鈦合金、合金鋼、不銹鋼、鉬等金屬的焊接,如鈦合金的導彈殼體,飛機上的一些薄壁容器等。

『肆』 等離子弧焊接有哪些方法有何特點焊接中要注意這些

等離子弧焊接有2種方法一種是非轉移弧,電弧在鎢極與噴嘴之間燃燒,主要用於等離子噴鍍或加熱非導電材料。

另一種是轉移弧,電弧由輔助電極高頻引弧後,電弧燃燒在鎢極與工件之間,用於焊接。形成焊縫的方式有熔透式和穿孔式兩種。

前一種形式的等離子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;後一種形式的等離子弧只熔穿板材,形成鑰匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,還有小電流的微束等離子弧焊,特別適合於0.02~1.5毫米的薄板焊接。

等離子弧焊特點

等離子弧焊接是利用特殊構造的等離子焊炬所產生的高溫等離子弧,並在保護氣體的保護下熔合金屬的一種焊接方法。電弧通過水冷噴嘴孔道,受到機械壓縮、熱收縮和磁收縮效應的作用,迫使弧柱截面縮小,電流密度增大,弧柱電離度提高。

從而獲得更為集中、溫度達10000-30000℃的等離子弧。等離子弧焊主要用於碳鋼、普低鋼、耐熱鋼、不銹鋼、銅及其合金、鎳及其合金、鈦及其合的焊接。



『伍』 等離子弧焊接有哪些方法有何特點焊接中要注意什麼

等離子弧焊接方法:穿透型焊接法,熔透型焊接法,微束等離子弧焊。特點是等離子弧的能量密度大,弧柱溫度高,穿透能力強,焊接電流小到0.1A時,電弧仍能穩定燃燒,並保持良好的挺度與方向性,電弧呈圓柱形,弧長變化時對焊件表面加熱點的能量密度影響較小。

焊前要加強對金剛石焊件、焊絲的清理,防止氫溶人產生氣孔,還應加強對焊縫和焊絲的維護。2交流等離子弧焊的許用等離子氣流量較小,流量稍大,等離子弧的吹力過大,鋁的液態金屬被向上吹起,形成凸凹不平或不連續的凸峰狀焊縫。

等離子弧焊接技巧

等離子切割機工作時,首先要引燃等離子弧,由高頻振盪器激發電極與噴嘴內壁之間的氣體,產生高頻放電,使氣體局部電離而形成小弧,這一小弧受壓縮空氣的作用,從噴嘴噴出以引燃等離子弧,這是火花發生器主要的任務。

正常情況下,火花發生器的工作時間只有0.2~0.5s,不能自動斷弧的原因一般是控制線路板元件失調,火花發生器的放電電極間隙不合適。

解決措施:應經常檢查火花發生器放電電極,使其表面保持平整,適時調整火花發生器的放電電極間隙與割炬電極噴嘴之間的間隙相適應,必要時更換控制板或更換電極噴嘴。

『陸』 等離子弧焊的組成結構

和鎢極氫弧焊一樣,按操作方式,等離子弧焊設備可分為手工焊和自動焊兩類。手工焊設備由焊接電源、焊槍、控制電路、氣路和水路等部分組成。自動焊設備則由焊接電源、焊槍、焊接小車(或轉動夾具)、控制電路、氣路及水路等部分組成。
焊接電源
下降或垂直下降特性的整流電源或弧焊發電機均可作為等離子弧焊接電源。用純氫作為離子氣時,電源空載電壓只需65-80V;用氫、氫混合氣時,空載電壓需110-120 0
大電流等離子弧都採用等離子弧,用高頻引燃非轉移弧,然後轉移成轉移弧。
30A以下的小電流微束等離子弧焊接採用混合型弧,用高頻或接觸短路回抽引弧。由於非轉移弧在非常焊接過程中不能切除因此一般要用兩個獨立的電源。
氣路系統
等離子弧焊機供氣系統應能分別供給可調節離子氣、保護氣、背面保護氣。為保證引弧和熄弧處的焊接質量,離子氣可分兩路供給,其中一路可經氣閥放空,以實現離子氣流衰減控制。
控制系統
手工等離子弧焊機的控制系統比較簡單,只要能保證先通離子氣和保護氣,然後引弧即可。自動化等離子弧焊機控制系統通常由高頻發生器,小車行走。填充焊口逆進拖動電路及程式控制電路組成。程式控制電路應能滿足提前送氣、高頻引弧和轉弧、離子氣遞增、延遲行走、電流和氣流衰減熄弧。延遲停氣等控制要求。
一種新開發的用於等離子弧焊的焊矩系統,採用反極性電極和選用100~200A焊接電流可以經濟有效地焊接鋁制零件,焊接質量很好。經對各種鋁鎂合金的焊接試驗表明:在焊接2~8mm的板材時,可以使用熔入和鎖孔式焊接技術。
使用電極極性可變的鎖孔技術進行等離子弧焊,可用來焊圓周焊縫,如AlMg3管道、法蘭盤以及GK-AlSi7Mg冷鑄合金製造的形狀各異的零件,能夠進行8mm壁厚材料的無坡口對焊連接。使用新開發的特殊氣體控制系統可以無缺陷地完成圓周焊縫的收尾焊接。由於只在鑄件一側才會產生氣孔,因此要確定鑄件熔化金屬的原子氫含量。如果鑄件熔化金屬中的氫含量低於0.3mL/100g,焊縫產生的氣孔就很少。採用此方法要修復的焊縫總長度可達39m,占整個焊縫長度的27.2%。
在研究開發最現代化的電源和控制技術條件下,採用等離子弧焊技術是一種質量最佳、經濟有效、重復性好的連接工藝。另外,通過調節電流,確保厚板等離子弧對接接頭焊接時產生鎖孔的感測器系統、導電的熔池支撐與被焊板材絕緣,並通過帶電的車架在等離子弧穿透時測量電流,並隨之移動。
這種新的工藝與TIG焊接相比具有如下特點:
(1)採用等離子弧焊時的特定工藝優點,不僅主要表現在微型等離子弧焊的板材厚度范圍方面,而且涉及使用鎖孔技術。
應用范圍包括:表面堆焊、噴塗和焊接。通過可調頻率使用低脈沖焊接電流,等離子弧焊可以更好的方式控制電弧能量的大小,能夠通過現代控制系統可靠地同步監測各種設定值的執行情況。晶體管的焊接電源,如 AUTOTIG系列,可以精確地按照技術規格的規定運行。
(2)用粉末等離子弧焊焊接薄板和管道時,具有焊接速度快、熱輸入小和變形小等優點。
(3)等離子弧焊接時,鎖孔技術的優點還清楚地在板厚達10mm的材料焊接方面體現。在應用技術中,粉末等離子弧焊接具有穩固的市場地位。這種新的工藝也將會在機器人上得到應用。
楊懷文
索引:等離子弧焊的幾個工藝參數
關鍵詞:焊接電流,焊接速度,噴嘴離工件的距離,等離於氣及流量,引弧及收弧,接頭形式和裝配要求,
(1)焊接電流
焊接電流是根據板厚或熔透要求來選定。焊接電流過小,難於形成小孔效應:焊接電流增大,等離子弧穿透能力增大,但電流過大會造成熔池金屬因小孔直徑過大而墜落,難以形成合格焊縫,甚至引起雙弧,損傷噴嘴並破壞焊接過程的穩定性。因此,在噴嘴結構確定後,為了獲得穩定的小孔焊接過程,焊接電流只能在某一個合適的范圍內選擇,而且這個范圍與離子氣的流量有關。
(2)焊接速度
焊接速度應根據等離子氣流量及焊接電流來選擇。其他條件一定時,如果焊接速度增大,焊接熱輸入減小,小孔直徑隨之減小,直至消失,失去小孔效應。如果焊接速度太低,母材過熱,小孔擴大,熔池金屬容易墜落,甚至造成焊縫凹陷、熔池泄漏現象。因此,焊接速度、離子氣流量及焊接電流等這三個工藝參數應相互匹配。
(3)噴嘴離工件的距離
噴嘴離工件的距離過大,熔透能力降低:距離過小,易造成噴嘴被飛濺物堵塞,破壞噴嘴正常工作。噴嘴離工件的距離一般取3~8mm。與鎢極氬弧焊相比,噴嘴距離變化對焊接質量的影響不太敏感。
(4)等離於氣及流量
等離子氣及保護氣體通常根據被焊金屬及電流大小來選擇。大電流等離子弧焊接時,等離子氣及保護氣體通常採取相同的氣體,否則電弧的穩定性將變差。小電流等離子弧焊接通常採用純氬氣作等離子氣。這是因為氧氣的電離電壓較低,可保證電弧引燃容易。
離子氣流量決定了等離子流力和熔透能力。等離子氣的流量越大,熔透能力越大。但等離子氣流量過大會使小孔直徑過大而不能保證焊縫成形。因此,應根據噴嘴直徑、等離子氣的種類、焊接電流及焊接速度選擇適當的離子氣流量。利用熔人法焊接時,應適當降低等離子氣流量,以減小等離子流力。
保護氣體流量應根據焊接電流及等離子氣流量來選擇。在一定的離子氣流量下,保護氣體流量太大,會導致氣流的紊亂,影響電弧穩定性和保護效果。而保護氣體流量太小,保護效果也不好,因此,保護氣體流量應與等離子氣流量保持適當的比例。
小孔型焊接保護氣體流量一般在15~30L/min范圍內。採用較小的等離子氣流量焊接時,電弧的等離子流力減小,電弧的穿透能力降低,只能熔化工件,形不成小孔,焊縫成形過程與TIG焊相似。這種方法稱為熔入型等離子弧焊接,適用於薄板、多層焊的蓋面焊及角焊縫的焊接。
(5)引弧及收弧
板厚小於3mm時,可直接在工件上引弧和收弧。利用穿孔法焊接厚板時,引弧及熄弧處容易產生氣孔、下凹等缺陷。對於直縫,可採用引弧板及熄弧板來解決這個問題。先在引弧板上形成小孔,然後再過渡到工件上去,最後將小孔閉合在熄弧板上。
大厚度的環縫,不便加引弧板和收弧板時,應採取焊接電流和離子氣遞增和遞減的辦法在工件上起弧,完成引弧建立小孔並利用電流和離子氣流量衰減法來收弧閉合小孔。
(6)接頭形式和裝配要求
工件厚度大於1.6mm時,小於表1-1列舉的厚度時,採用I形坡口,用穿孔法單面焊雙面成形一次焊透。工件厚度大於表1-1列舉的數值時,根據厚度不同,可開V形、U形或雙V形、雙U形坡口。
工件厚度小於1.6mm,採用微束等離子弧焊時,接頭形式有對接、卷邊對接、卷邊角接、端面接頭。當厚度小於0.8mm時,接頭裝配要求見表1-2。
摘要:提出了一種基於等離子弧焊的直接金屬成形新方法,通過對成形工藝的試驗研究,確定了焊接電流、成形速度與成形軌跡寬度之間的對應關系;針對成形輪廓的表面質量問題,實施了根據輪廓矢量進行切向送絲的填充方案;並採用循環水冷的溫控措施解決了成形過程的過熱問題。
送絲角度對成形軌跡的影響
本文在實驗中發現,對零件外輪廓進行掃描時,填充絲材送入的方向同外輪廓切向的夾角對輪廓成形的質量有顯著的影響。在直接金屬成形系統運動機構的早期設計中, 焊炬和送絲機構固定不動,保持送絲方向在空間上不變, 這樣當XY 二維工作台沿著成形輪廓插補運動時, 送絲方向與成形輪廓的運動方向就會形成一定的夾角α,如圖3。當夾角α較小時,軌跡成形所受影響不大,但是, 當α增加到一定程度後成形軌跡的表面波紋度開始增大,表面質量明顯變差。
圖4是不同送絲角度下成形軌跡的形貌。可以看出,送絲角度保持在小角度范圍內時,成形軌跡表面質量較好;而隨著送絲角度的增加,成形軌跡表面的波浪度增大;當送絲角度進一步增大時,熔化的焊絲不能進入熔池,團成球狀凝結於掃描路徑外側,不能形成完整的軌跡。
成形過程不均勻的熱場和力場分布,是造成這種現象的主要原因。小角度,特別是切向送絲時,焊絲送入的方向與焊接熱場移動的方向相符,焊絲能夠得到足夠的熱量迅速熔化,並與熔池形成搭橋過渡,順利進入熔池,如圖5。固定送絲方向時,隨著焊絲與軌跡切向夾角的增大,焊絲吸收的熱量減少,難以形成順利的搭橋過渡,焊絲熔化後團聚成球狀,難以送入熔池中心,在自重作用下落於熔池邊緣,如圖6。
成形件的外輪廓總是由各種形式的曲線構成的,如果在成形曲線的過程中保持送絲的角度不變,勢必會引起熔滴過渡的條件時好時壞,容易在曲線軌跡表面形成圖7中所示的積瘤、夾絲等缺陷。因此,成形過程中,為了保證成形軌跡輪廓的一致均勻性,應根據成形輪廓切向的變化,不斷調整送絲角度,使二者保持一致,如圖8。
為了方便送絲角度的動態調整,本文對直接金屬成形系統的機構部分進行了改進,將先前固定的焊炬和送絲機構置於回轉工作台上,回轉工作台通過步進電機在計算機系統的控制下可以隨掃描軌跡的走向自適應旋轉,以保證送絲機構沿掃描輪廓的切向均勻連續地送絲。圖9即為改進後的直接金屬成形系統部分實物照片,圖10是採用送絲角度調整後成形輪廓的外觀情況,通過送絲角度的調整,成形件的外觀質量得到了改善。
冷卻措施
在成形過程中,成形件要承受電弧熱量的連續輸入,從而造成其整體溫度升高,成形軌跡熱影響區變大,熔池金屬流動性增強等熱效應,這對於控製成形件表面質量極為不利。而焊後引起的整體熱變形對成形件的尺寸及形狀都有很大的影響。對於具有薄壁特徵的成形件,其傳熱途徑更為局限,因此,這種熱效應就更為嚴重(如圖11) 。因此,有必要採取可靠的傳熱措施,控製成形過程中成形件的熱量傳遞。
針對這種現象,本文在實驗中採用循環水冷的方法,增強成形過程中成形件的熱量傳遞。具體實施方法如圖12所示,將基底放入水槽中進行焊接成形;當成形過程中出現過熱效應時,開始通入循環冷卻水;並使冷卻水的液面始終與當前熔焊層保持3 mm~5 mm的距離,以保持良好的散熱效果。這樣可以大大改善成形件的熱傳遞過程,同時也可在一定程度上增強保護氣體的保護效果。
等離子是指在標准大氣壓下溫度超過3000℃的氣體,在溫度譜上可以把其看作為繼固態、液態、氣態之後的第四種物質狀態。等離子是由被激活的高子、電子、原子或分子組成。例如:它可通過自然界中的閃電產生。從1960年以後,等離子這個詞獲得了新的含義,那就是電弧通過渦流環或噴嘴壓縮而形成的高能量狀態,此原理被廣泛用於鋼鐵、化工及機械工程工業。
等離子弧焊是在鎢極氬弧焊的基礎上發展起來的一種焊接方法。鎢極氬弧焊使用的熱源是常壓狀態下的自由電弧,簡稱自由鎢弧。等離子弧焊用的熱源則是將自由鎢弧壓縮強化之後而獲得電離度更高的電弧等離子體,稱等離子弧,又稱壓縮電弧。兩者在物理本質上沒有區別,僅是弧柱中電離程度上的不同。經壓縮的電弧其能量密度更為集中,溫度更高。
等離子弧的最大電壓降是在弧柱區里,這是由於弧柱被強烈壓縮,使電場強度明顯增大的緣故。因此,等離子弧焊主要是利用弧柱等離子體熱來加熱金屬,而自由鎢弧是利用兩電極區產生的熱來加熱母材和電極金屬。
等離子弧的靜特性曲線接近U形(圖1-2)。與自由鎢弧比較最大區別是電弧電壓比自由鎢弧高。此外,在小電流時,自由鎢弧靜特性為陡降(負阻特性)的,易與電源外特性曲線相切,使電弧失穩。而等離子弧則為緩降或平的,易與電源外特性相交建立穩定工作。
表示了等離子弧與自由鎢弧的形態區別。等離子弧呈圓柱形,擴散角約5度左右,焊接時,當弧長發生波動時,母材的加熱面積不會發生明顯變化,而自由鎢弧呈圓錐形,其擴散角約45度,對工作距離變化敏感性大。
等離子弧的挺直度非常好。由於等離子弧是自由鎢弧經壓縮而成,故其挺度比自由鎢弧好,焰流速度大,可達300m/s以上,因而指向性好,噴射有力,其熔透能力強。
綜述
穿孔型等離子弧焊接最適於焊接厚度3~8mm不銹鋼、厚度12mm以下鈦合金、板厚2~6mm低碳或低合金結構鋼以及銅、黃銅、鎳及鎳合金的對接焊縫。這一厚度范圍內可不開坡口,不加填充金屬,不用襯墊的條件下實現單面焊雙面成形。厚度大於上述范圍時可採用V形坡口多層焊。
高溫合金焊接
用等離子弧焊焊接固溶強化和Al、Ti含量較低的時效強化高溫合金時,可以填充焊絲也可以不加焊絲,均可以獲得良好質量的焊縫。一般厚板採用小孔型等離子弧焊,薄板採用熔透型等離子弧焊,箔材用微束等離子弧焊。焊接電源採用陡降外特性的直流正極性,高頻引弧,焊槍的加工和裝配要求精度較高,並有很高的同心度。等離子氣流和焊接電流均要求能遞增和衰減控制。
焊接時,採用氬和氬中加適量氫氣作為保護氣體和等離子氣體,加入氫氣可以使電弧功率增加,提高焊接速度。氫氣加入量一般在5%左右,要求不大於15%。焊接時是否採用填充焊絲根據需要確定。選用填充焊絲的牌號與鎢極惰性氣體保護焊的選用原則相同。
高溫合金等離子弧焊的工藝參數與焊接奧氏體不銹鋼的基本相同,應注意控制焊接熱輸入。鎳基高溫合金小孔法自動等離子弧焊的工藝參數見表1-1。在焊接過程中應控制焊接速度,速度過快會產生氣孔,還應注意電極與壓縮噴嘴的同心度。高溫合金等離子弧焊接接頭力學性能較高,接頭強度系數一般大於90%。
鋁及鋁合金
等離子弧是以鎢極作為電極,等離子弧為熱源的熔焊方法。焊接鋁合金時,採用直流反接或交流。鋁及鋁合金交流等離子弧焊接多採用矩形波交流焊接電源,用氬氣作為等離子氣和保護氣體。對於純鋁、防銹鋁,採用等離子弧焊,焊接性良好;硬鋁的等離子弧焊接性尚可。
為了獲得高質量的焊縫應注意以下幾點。
a.焊前要加強對焊件、焊絲的清理,防止氫溶人產生氣孔,還應加強對焊縫和焊絲的保護。
b.交流等離子弧焊的許用等離子氣流量較小,流量稍大,等離子弧的吹力過大,鋁的液態金屬被向上吹起,形成凸凹不平或不連續的凸峰狀焊縫。為了加強鎢極的冷卻效果,可以適當加大噴嘴孔徑或選用多孔型噴嘴。
c.當板厚大於6mm時,要求焊前預熱100--200℃。板厚較大時用氦作等離子氣或保護氣,可增加熔深或提高效率。
d.需用的墊板和壓板最好用導熱性不好的材料製造(如不銹鋼)。墊板上加工出深度lmm、寬度20~40mm的凹槽,以使待焊鋁板坡口近處不與墊板接觸,防止散熱過快。
e.板厚不大於lOmm時,在對接的坡口上海間隔150mm點固焊一點;板厚大於l0mm時,每間隔300mm點固焊一點。點固焊採用與正常焊接相同的電流。
f.進行多道焊時,焊完前一道焊道後應用鋼絲或銅絲刷清理焊道表面至露出純凈的鋁表面為止。
表1-2列出純鋁自動交流等離子弧焊接的工藝參數。表1-3列出鋁合金直流等離子弧焊接的工藝參數。
鈦、鈦合金
等離子弧焊能量密度高、線能量大、效率高。厚度2.5~15mm的鈦及鈦合金板材採用小孔型方法可一次焊透,並可有效地防止產生氣孔,熔透型方法適於各種板厚,但一次焊透的厚度較小,3mm以上一般需開坡口。
鈦的彈性模量僅相當於鐵的1/2,因此在應力相同的條件下,鈦及鈦合金焊接接頭將發生比較顯著的變形。等離子弧的能量密度介於鎢極氬弧和電子束之間,用等離子弧焊接鈦及鈦合金時,熱影響區較窄,焊接變形也較易控制。微束等離子弧焊已經成功地應用於薄板的焊接。採用3~10A的焊接電流可以焊接厚度為0.08~0.6mm的板材。
由於液態鈦的密度較小,表面張力較大,利用等離子弧的小孔效應可以單道焊接厚度較大的鈦和鈦合金,保證不致發生熔池坍塌,焊縫成形良好。通常單道鎢極氬弧焊時工件的最大厚度不超過3mm,並且因為鎢極距離熔池較近,可能發生鎢極熔蝕,使焊縫滲入鎢夾雜物。等離子弧焊接時,不開坡口就可焊透厚度達15mm的接頭,不可能出現焊縫滲鎢現象。
鈦板等離子弧焊接的工藝參數見表1-4。TC4鈦合金等離子弧焊和TIG焊接接頭的力學性能見表1-5。
焊接航天工程中應用的TC4鈦合金高壓氣瓶的研究結果表明,等離子弧焊接頭強度與氬弧焊相當,強度系數均為90%,但塑性指標比氬弧焊接頭高,可達到母材的75%。根據30萬噸合成氨成套設備的生產經驗,用等離子弧焊接厚度10mm的TAl工業純鈦板材,生產率可比鎢極氬弧焊提高5~6倍,對操作的熟練程度要求也較低。
純鈦等離子弧焊的氣體保護方式與鎢極氬弧焊相似,可採用氬弧焊拖罩,但隨著板厚的增加、焊速的提高,拖罩要加長,使處於350℃以上的金屬得到良好保護。背面墊板上的溝槽尺寸一般寬度和深度各為2.0~3.0mm,同時背面保護氣體的流量也要增加。厚度15mm以上的鈦板焊接時,開6~8mm鈍邊的V形或U形坡口,用小孔型等離子弧焊封底,然後用熔透型等離子弧填滿坡口。用等離子弧封底可以減少焊道層數,減少填絲量和焊接角變形,提高生產率。熔透型多用於厚度3mm以下薄件的焊接,比鎢極氬弧焊容易保證焊接質量。
銀與鉑
銀與鉑都屬於貴金屬,價格昂貴。銀與鉑可製成板材、帶材、線材等常用於微電子,儀器儀表、醫葯等特殊產品或軍工產品。
銀與鉑電子器件的微束等離子弧接的工藝要點如下:
a.焊前將銀與鉑的接頭處清理干凈;
b.將兩種金屬預熱到400~500℃,
c.採用微束脈沖等離子弧,維弧電流為24A;
d.保護氣體流量為6L/min,離子氣流量為0.5L/min。
銀與鉑電子器件微束等離子弧焊接的工藝參數見表1-6

『柒』 等離子焊接的原理及特點

原理:等離子弧切割是一種常用的金屬和非金屬材料切割工藝方法。它利用高速、高溫和高能的等離子氣流來加熱和熔化被切割材料,並藉助內部的或者外部的高速氣流或水流將熔化材料排開直至等離子氣流束穿透背面而形成割口。

等離子弧的特點:

(1)能貴高度集中由於等離子弧有很高的導電性,能承受很大的電流密度,因而可以通過極大的電流,故具有極高的溫度;又因其截面很小,能量高度集中,所以一般等離子弧在噴嘴出口中心溫度達20000℃左右,而用於切割的等離子弧在噴嘴附近溫度可達30000℃左右。

(2)極大的溫度梯度由於等離子弧橫截面積很小(直徑一般小於3mm),從溫度最高的中心到溫度低的邊沿,溫度變化非常大,所以說其溫度梯度極大。

(3)具有很強的吹力等離子發生裝置內通入的常溫壓縮氣體,由於受到電弧的高溫而膨脹,使氣體壓力增高,能過噴嘴細孔的氣體流速甚至可超過聲速,故等離子體具有較強的沖擊力。

(4)良好的電弧穩定性由於等離子弧電離程度很高,所以放電過程穩定,弧柱呈圖柱形,挺直度好,使焊件受熱面積幾乎不變,當弧長變化時,電弧電壓和焊接電流變化都非常小。

(7)微束等離子焊接採用什麼等離子弧擴展閱讀

1、優點

由於等離子弧能量集中、溫度高、具有很大的機械沖擊力,並且電弧穩定,因而等離子弧切割具有以下優點:

(1)可以切割任何黑色和有色金屬等離子弧可以切割各種高熔點金屬及其他切割方法不能切割的金屬,如不銹鋼、耐熱鋼、鈦、鉬、鎢、鑄造鐵、銅、鋁及其合金。切割不銹鋼、鋁等厚度可達200mm以上。

(2)可切割各種非金屬材料採用非轉移型電弧時,由於工件不接電,所以在這種情況下能切割各種非導電材料,如耐火磚、混凝土、花崗石、碳化硅等。

(3)切割速度快、生產率高在目前採用的各種切割方法中,等離子切割的速度比較快,生產率也比較高。例如,切lOmm的鋁板,速度可達(200~300)m/h;切12mm厚的不銹鋼,割速可達(100-130)m/h。

(4)切割質量高等離子弧切割時,能得到比較狹窄、光潔、整齊、無粘渣、接近於垂直的切口,而且切口的變形和熱影響區較小,其硬度變化也不大。

2、缺點

(1)設備比氧一乙炔切割復雜、投資較大。

(2)電源的空載電壓較高,要注意安全。

(3)切割時產生的氣體會影響人體健康,所以操作時應注意通風。

『捌』 等離子弧焊的種類

等離子弧有兩種工作方式。一種是「非轉移弧」,電弧在鎢極與噴嘴之間燃燒,主要用於等離子噴鍍或加熱非導電材料。
另一種是「轉移弧」,電弧由輔助電極高頻引弧後,電弧燃燒在鎢極與工件之間,用於焊接。形成焊縫的方式有熔透式和穿孔式兩種。前一種形式的等離子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;後一種形式的等離子弧只熔穿板材,形成鑰匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,還有小電流的微束等離子弧焊,特別適合於0.02~1.5毫米的薄板焊接。
等離子弧焊接屬於高質量焊接方法。焊縫的深/寬比大,熱影響區窄,工件變形小,可焊材料種類多。特別是脈沖電流等離子弧焊和熔化極等離子弧焊的發展,更擴大了等離子弧焊的使用范圍。
等離子弧焊與TIG焊十分相似,它們的電弧都是在尖頭的鎢電極和工件之間形成的。但是,通過在焊炬中安置電極,能將等離子弧從保護氣體的氣囊中分離出來,隨後推動等離子通過孔型良好的銅噴管將弧壓縮。通過改變孔的直徑和等離子氣流速度,可以實現三種操作方式:
1、微束等離子弧焊:30A以下的熔透型等離子弧焊
是指電流在30A以下的熔透型等離子弧焊,通常稱為微束等離子弧焊。為了保證小電流等離子弧的穩定,一般採用混合型等離子弧。主要用於超薄件的焊接。
2、熔透型等離子弧焊:15~200A
它是採用較小的焊接電流和較小的離子氣流量,等離子弧在焊接過程中只熔化焊件不產生小孔效應,焊接方法與鎢極氬弧焊很相似,焊接時可以不添加金屬,主要用於薄板(0.5~2.5mm)的焊接。
3、穿透型等離子弧焊:100~300A
又稱穿孔型焊接法,通過增加焊接電流和等離子氣流速度,可產生強有力的等離子束,利用它溫度高、能量密度強、穿透力強的特點,焊接時等離子弧把焊件完全熔透並在等離子流量的作用下形成一個穿透焊件的小孔(小孔背面露出等離子弧),形成了正反面都有波紋的焊縫,即所謂的「小孔效應」,焊接時一般不加金屬。適用於3~8mm的不銹鋼、12mm以下的鈦合金、2~6mm低碳鋼低合金鋼以及銅、黃銅和鎳及鎳合金的焊接。
電源
使用等離子弧焊時,通常採用直流電流和垂降特性電源。由於從特別的焊炬排列方式和各自分離的等離子、保護氣流中獲得了獨特的操作特性,可在等離子控制台上增加一個普通的TIG電源,還可以使用特別組建的等離子系統。採用正弦波交流電時,不容易使等離子弧穩定。當電極和工件間距較長且等離子被壓縮時,等離子弧很難發揮作用,而且,在正半周期內,過熱的電極會使導電嘴變成球形,從而干擾弧的穩定。
可使用專用的直流開關電源。通過調節波形的平衡來減少電極正極的持續時間,使電極得到充分冷卻,以維護尖頭導電嘴形狀,並形成穩定的弧。
起弧
雖然等離子弧是通過採用高頻產生的,但它首先是在電極和等離子噴嘴之間形成的。該維弧被裝在焊炬中,需要焊接時,再將它轉移到工件上。與在焊縫間保持的維弧相同,維弧系統能確保穩定的起弧,這避免了對產生電子干涉的高頻的需要。
電極
用於等離子過程使用的是含2%氧化釷的鎢電極和銅的等離子噴嘴。與TIG焊使用的導電嘴不同,在等離子過程中,對電極導電嘴的直徑要求不那麼嚴格,但壓縮角須保持在30°~60°左右。等離子噴嘴孔的直徑是很重要的,在相同的電流強度和等離子氣流速度下,孔直徑太小會導致噴嘴被過度腐蝕甚至熔化。在工作電流下,需要謹慎使用直徑過大的等離子噴嘴。
註:孔的直徑過大,可能會對弧的穩定及孔的維護造成困難。
氣體
通常等離子氣體的組合氣體是氬氣,並含有2%~5%的氬氣作為保護氣體。氦氣也能用做等離子氣體,但由於它溫度較高,會降低噴嘴的電流上升率。氫氣含量越少,進行小孔型等離子焊接就越困難。

閱讀全文

與微束等離子焊接採用什麼等離子弧相關的資料

熱點內容
不銹鋼鍋熏黑了怎麼弄 瀏覽:571
如何認可供應商的模具 瀏覽:494
不銹鋼316l耐多少氯離子 瀏覽:384
高頻焊管的原材料是什麼 瀏覽:588
九米長陽台怎麼裝防護欄 瀏覽:519
重慶哪裡有做磚機模具 瀏覽:697
蘇州樹脂模具哪裡有賣 瀏覽:863
如何加強焊接管控 瀏覽:681
不銹鋼氮化有什麼要求 瀏覽:660
撞到高速公路護欄怎麼處罰 瀏覽:165
鋅鋁合金和熟鐵哪個貴點 瀏覽:639
鋁合金窗扇怎麼裝上去視頻 瀏覽:163
鋼鐵是怎樣煉成的中保爾奪槍的目的是什麼 瀏覽:18
鋁合金鐵鍋破了怎麼辦 瀏覽:460
熱鍍鋅方管一米多重 瀏覽:978
鋼管的彎扁厚度是指什麼 瀏覽:673
定額內含什麼鋼筋連接 瀏覽:469
圍擋的鋼管套什麼定額 瀏覽:576
韶關鋼鐵集團怎麼樣 瀏覽:574
自己如何做工藝品模具 瀏覽:548