A. 激光焊接是利用激光的什麼特性
激光焊接原理:激光焊接是將高強度的激光束輻射至金屬表面,通過激光與金屬的相互作用,金屬吸收激光轉化為熱能使金屬熔化後冷卻結晶形成焊接。圖1顯示在不同的輻射功率密度下熔化過程的演變階段[2],激光焊接的機理有兩種:
1、熱傳導焊接
當激光照射在材料表面時,一部分激光被反射,一部分被材料吸收,將光能轉化為熱能而加熱熔化,材料表面層的熱以熱傳導的方式繼續向材料深處傳遞,最後將兩焊件熔接在一起。
2、激光深熔焊
當功率密度比較大的激光束照射到材料表面時,材料吸收光能轉化為熱能,材料被加熱熔化至汽化,產生大量的金屬蒸汽,在蒸汽退出表面時產生的反作用力下,使熔化的金屬液體向四周排擠,形成凹坑,隨著激光的繼續照射,凹坑穿人更深,當激光停止照射後,凹坑周邊的熔液迴流,冷卻凝固後將兩焊件焊接在―起。
這兩種焊接機理根據實際的材料性質和焊接需要來選擇,通過調節激光的各焊接工藝參數得到不同的焊接機理。這兩種方式最基本的區別在於:前者熔池表面保持封閉,而後者熔池則被激光束穿透成孔。傳導焊對系統的擾動較小,因為激光束的輻射沒有穿透被焊材料,所以,在傳導焊過程中焊縫不易被氣體侵入;而深熔焊時,小孔的不斷關閉能導致氣孔。傳導焊和深熔焊方式也可以在同一焊接過程中相互轉換,由傳導方式向小孔方式的轉變取決於施加於工件的峰值激光能量密度和激光脈沖持續時間。激光„‰沖能量密度的時間依賴性能夠使激光焊接在激光與材料相互作用期間由一種焊接方式向另一種方式轉變,即在相互作用過程中焊縫可以先在傳導方式下形成,然後再轉變為小孔方式。
B. 激光焊接機焦距上抬是正離焦還是負離焦
正離焦。
正離焦與負離焦。焦平面位於工件上方為正離焦,反之為負離焦。按幾何光學理論,當正負離焦平面與焊接平面距離相等時,所對應平面上功率密度近似相同,但實際上所獲得的熔池形狀不同。負離焦時,可獲得更大的熔深,這與熔池的形成過程有關。
C. 激光切割的原理及應用
激光切割是由激光器所發出的水平激光束經45°全反射鏡變為垂直向下的激光束,後經透鏡聚焦,在焦點處聚成一極小的光斑,光斑照射在材料上時,使材料很快被加熱至汽化溫度,蒸發形成孔洞,隨著光束對材料的移動,並配合輔助氣體(有二氧化碳氣體,氧氣,氮氣等)吹走熔化的廢渣,使孔洞連續形成寬度很窄的(如0.1mm左右)切縫,完成對材料的切割。
(1)激光切割的原理
激光切割是利用經聚焦的高功率密度激光束照射工件,使被照射的材料迅速熔化、汽化、燒蝕或達到燃點,同時藉助與光束同軸的高速氣流吹除熔融物質,從而實現將工件割開。激光切割屬於熱切割方法之一。激光切割的原理見下圖。
(2)激光切割的分類
1)汽化切割
利用高能量密度的激光束加熱工件。在短的時間內汽化,形成蒸氣。在材料上形成切口。材料的汽化熱一般很大,所以激光汽化切割時需要大的功率和功率密度。
激光汽化切割多用於極薄金屬材料和非金屬材料(如紙、布、木材、塑料和橡皮等)的切割。
2)熔化切割
激光熔化切割時,用激光加熱使金屬材料熔化,噴嘴噴吹薯茄洞非氧化性氣體(Ar、He、N等),依靠氣體的強大壓力使液態金屬排出,形成切口。所需能量只有汽化切割的1/10。
激光熔化切割主要用於一些不易氧化的材料或活性金屬的切割,如不銹鋼、鈦、鋁及其合金等。
3)氧氣切割
它是用激光作為預熱熱源,用氧氣等活性氣體作為切割氣體。噴吹出的氣數枯體一方面與切割金屬作用,發生氧化反應,放出大量的氧化熱;另一方面把熔融的氧化物和熔化物從反應區吹出,而切割速度遠遠大於激光汽化切割和熔化切割。
激光氧氣切割主要用於碳鋼、鈦鋼以及熱處理鋼等易氧化的金屬材料。
4)劃片與控制斷裂
激光劃片是利用高能量密度的激光在脆性材料的表面進行掃描,使材料受熱蒸發出一條小槽,然後施加一定的壓力,脆性材料就會沿小槽處裂開。激光劃片用的激光器一般為Q開關激光器和CO2激光器。
控制斷裂是利用激光刻槽時所產生的陡峭的溫度分布,在脆納銷性材料中產生局部熱應力,使材料沿小槽斷開。
激光切割的應用范圍
大多數激光切割機都由數控程序進行控制操作或做成切割機器人。激光切割作為一種精密的加工方法,幾乎可以切割所有的材料,包括薄金屬板的二維切割或三維切割。
在汽車製造領域,小汽車頂窗等空間曲線的切割技術都已經獲得廣泛應用。德國大眾汽車公司用功率為500W的激光器切割形狀復雜的車身薄板及各種曲面件。在航空航天領域,用激光切割加工的航空航天零部件有發動機火焰筒、鈦合金薄壁機匣、飛機框架、鈦合金蒙皮、機翼長桁、尾翼壁板、直升機主旋翼、太空梭陶瓷隔熱瓦等。
激光切割成形技術在非金屬材料領域也有著較為廣泛的應用。如氮化硅、陶瓷、石英等;柔性材料,如布料、紙張、塑料板、橡膠等。
D. 激光切割板厚與焦距的參數
焦點離板材表面的距離板上面2~3mm的位置;切割頭選用 透鏡焦距7.5英寸。
一般的激光切割機都不能切,因為激光切小於板厚的孔,能量會聚集在板材的斷面層,廢料難以掉落。
激光切割焦距與厚度的關系:這要根據切割材料來決定的,具體說明如下:
1、負焦距(切割焦點位於切割材料上面)主要是在切割厚度高的金屬板時用到。負焦距切割厚板需要的切幅大,導至噴嘴輸送的氧氣不足而使得切割的溫度下降,切割的表面相對粗糙,不適合於高精度的精密切割。
2、0焦距(切割焦點位於切割材料的表面)通常是在切割SS41、SPH、SPC等材料時候適用的一種焦點定位方式。0焦距切割的焦點是貼近工件表面的,由於切割表面上下的光滑度不一樣,所以在切割時候切割上表面相對光滑,而下表面就顯得相對粗糙。這種切割焦點定位的方式需要根據實際情況中的上下表面的工藝要求而定。
3、內負焦距(切割焦點位於切割材料的裡面)通常應用到光纖激光切割機在切割鋁、鋁合金和不銹鋼等材料中。根據焦點原理切割表面,切幅相對切割點在工件表面大,且這種模式下利用光纖激光切割機切割的氣流大,溫度要高,切割穿孔的時間要稍長。所以這種切割方式主要在切割鋁或不銹鋼等硬度大的材料中使用。
基本信息:
根據實際的情況確定光纖激光切割機的焦點位置非常的重要,合理的焦點位置才可以讓光纖激光切割機能夠更加合理的進行工作。
E. 激光焊焊內膽怎麼調焊縫不發白,0.5/0.4的料用正離焦還是負離焦
焊接咬邊的產生原因:焊接電流太大,焊接速度過快,在角焊時,因為焊條角度或運條不當造成。
解決措施:選擇合適的電流和焊接速度,採用正確的運條方式和運條角度。
激光焊接機的光斑直徑是可以調整的,以下兩種方法供參考:
1、更換聚焦鏡、準直鏡(激光焊接頭)
2、離焦。
F. 氮氣切割碳鋼用正焦還是負焦
氮氣切割是一種常用的金屬切割方法,可以利用高溫氧化反應將金屬材料切割成所需形狀。在氮氣切割中,使用察掘的焦嘴通常分為臘模正焦和負焦兩種。
對於碳鋼材料,推薦使用正焦焦嘴進行氮氣切割。這是因為在氮氣切割過程中輪沒緩,使用正焦焦嘴可以提供足夠的熱量,從而使碳鋼材料完全被加熱到氧化溫度,達到更好的切割效果。而使用負焦焦嘴則會導致加熱不足,影響切割效果。
需要注意的是,氮氣切割時選用的切割條件應根據具體材料種類、厚度等情況進行調整,以取得最佳切割效果。
G. 氮氣切割碳鋼用正焦還是負焦
正焦。切割低碳鋼板氧氣純度至少99.6%以上。切割不銹鋼板時,若採用氮氣做輔助氣體,氮氣純度應達到99.6%以上,純度越高,切割斷面質量越好。如果切割氣體純度不高,不但影響切割的質量而且會造成鏡片的污染。
H. 激光內雕採用的離焦方式
正離焦和負離焦。
1、激光內雕主要用於在玻璃體內部雕刻立拿沒體圖象,設備悶計大自然美麗的風景及其它各種動植物的操消滾納作,其離焦的方式平面位於工件上方為正離焦,可以清晰的雕刻上方事物。
2、在下方雕刻為負離焦,有助於將其雕刻的更全全面。
I. 激光切割機怎麼定點切割
一、零焦距:焦點在工件表面
一般適用於5毫米以下簿碳鋼等祥運工件切割時使用,使用的時候切割機的焦點選在貼近工件表面,這種模式下的工件上下表面光滑度不一樣,一般而言貼近焦點的切割面相對很光滑,而遠離切割焦點的下表面顯得粗糙。這種模式應根悶宴檔據實際應用中上表面和螞亂下表面的工藝要求而定。
二、正焦距:焦點在工件表面上
當你需要切割的工件為不銹鋼或者鋁材鋼板時常用切割點在工件裡面的模式。但這種方式的一個缺點是,由於焦點原理切割表面,切幅相對比切割點在工件表面大,同時這種模式下需要的切割氣流要大,溫度要足,切割穿孔時間稍長點。所以當你選工件的材質主要為不銹鋼或者鋁材燈硬度大的材質時候選用。
三、負焦距:焦點在工件表面下
因為切割點不是位於切割材料的表面也不是位於切割材料的裡面,而是定位在切割材料的上方。這種方式主要使用於切割厚度高的材質。這種方式之所以將焦點定位在切割材質的上方,主要是因為厚板需要的切幅大,否則噴嘴輸送的氧氣極容易出現導致不足而致使切割溫度下降。但這種方式的一個缺點是,切割面比較粗糙,不太實用於精密度高的切割。在激光切割加工過程中保持激光焦點和加工對象之間的相對位置為一合理而恆定的值,就成為激光切割加工中的一項關鍵技術。
激光切割焦點位置自動跟蹤系統可從以下兩個方面來考慮:
(1)怎樣穩定、可靠而又方便地檢測出激光焦點和加工對象之間的相對位置
激光加工屬於非接觸加工,無法直接檢測焦點位置,而焦點位置由聚焦鏡和加工對象表面的距離決定。因此,常用的辦法是檢測聚焦鏡和加工對象表面的距離,從而間接檢測激光焦點和加工對象表面的相對位置。
(2)在檢測出激光焦點和加工對象的位置變化以後,怎樣快速地補償掉偏差即位置隨動系統的設計問題
通常的分離式焦點跟蹤系統是利用單片機的最小系統控制步進電機實現的。由於單片機性能比較簡單,難以實現較為復雜的控制策略,而普通步進電機的動態特性比較差,很難滿足激光焦點跟蹤的快速要求。為了克服上述缺點,一種基於運動控制器的激光焦點自動跟蹤系統,採用光碼盤作為位移感測器,利用運動控制器的主從跟蹤(電子齒輪)功能實現焦點位置誤差的快速補償。
J. 激光焊接工藝方法有哪些
一、激光焊接工藝參數:
1、功率密度。 功率密度是激光加工中最關鍵的參數之一。採用較高的功率密度,在微秒時間范圍內,表層即可加熱至沸點,產生大量汽化。因此,高功率密度對於材料去除加工,如打孔、切割、雕刻有利。對於較低功率密度,表層溫度達到沸點需要經歷數毫秒,在表層汽化前,底層達到熔點,易形成良好的熔融焊接。因此,在傳導型激光焊接中,功率密度在范圍在104~106W/cm2。
2、激光脈沖波形。 激光脈沖波形在激光焊接中是一個重要問題,尤其對於薄片焊接更為重要。當高強度激光束射至材料表面,金屬表面將會有60~98%的激光能量反射而損失掉,且反射率隨表面溫度變化。在一個激光脈沖作用期間內,金屬反射率的變化很大。
3、激光脈沖寬度。 脈寬是脈沖激光焊接的重要參數之一,它既是區別於材料去除和材料熔化的重要參數,也是決定加工設備造價及體積的關鍵參數。
4、離焦量對焊接質量的影響。 激光焊接通常需要一定的離焦,因為激光焦點處光斑中心的功率密度過高,容易蒸發成孔。離開激光焦點的各平面上,功率密度分布相對均勻。 離焦方式有兩種:正離焦與負離焦。焦平面位於工件上方為正離焦,反之為負離焦。按幾何光學理論,當正負離做文章一相等時,所對應平面上功率密度近似相同,但實際上所獲得的熔池形狀不同。負離焦時,可獲得更大的熔深,這與熔池的形成過程有關。實驗表明,激光加熱50~200us材料開始熔化,形成液相金屬並出現問分汽化,形成市壓蒸汽,並以極高的速度噴射,發出耀眼的白光。與此同時,高濃度汽體使液相金屬運動至熔池邊緣,在熔池中心形成凹陷。當負離焦時,材料內部功率密度比表面還高,易形成更強的熔化、汽化,使光能向材料更深處傳遞。所以在實際應用中,當要求熔深較大時,採用負離焦;焊接薄材料時,宜用正離焦。
二、激光焊接工藝方法:
1、片與片間的焊接。包括對焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4種工藝方法。
2、絲與絲的焊接。包括絲與絲對焊、交叉焊、平行搭接焊、T型焊等4種工藝方法。
3、金屬絲與塊狀元件的焊接。採用激光焊接可以成功的實現金屬絲與塊狀元件的連接,塊狀元件的尺寸可以任意。在焊接中應注意絲狀元件的幾何尺寸。
4、不同金屬的焊接。焊接不同類型的金屬要解決可焊性與可焊參數范圍。不同材料之間的激光焊接只有某些特定的材料組合才有可能。 激光釺焊 有些元件的連接不宜採用激光熔焊,但可利用激光作為熱源,施行軟釺焊與硬釺焊,同樣具有激光熔焊的優點。採用釺焊的方式有多種,其中,激光軟釺焊主要用於印刷電路板的焊接,尤其實用於片狀元件組裝技術。
三、採用激光軟釺焊與其它方式相比有以下優點:
1、由於是局部加熱,元件不易產生熱損傷,熱影響區小,因此可在熱敏元件附近施行軟釺焊。
2、用非接觸加熱,熔化帶寬,不需要任何輔助工具,可在雙面印刷電路板上雙面元件裝備後加工。
3、重復操作穩定性好。焊劑對焊接工具污染小,且激光照射時間和輸出功率易於控制,激光釺焊成品率高。
4、激光束易於實現分光,可用半透鏡、反射鏡、棱鏡、掃描鏡等光學元件進行時間與空間分割,能實現多點同時對稱焊。
5、激光釺焊多用波長1.06um的激光作為熱源,可用光纖傳輸,因此可在常規方式不易焊接的部位進行加工,靈活性好。
6、聚焦性好,易於實現多工位裝置的自動化。
四、激光深熔焊:
1、冶金過程及工藝理論。 激光深熔焊冶金物理過程與電子束焊極為相似,即能量轉換機制是通過「小孔」結構來完成的。在足夠高的功率密度光束照射下,材料產生蒸發形成小孔。這個充滿蒸汽的小孔猶如一個黑體,幾乎全部吸收入射光線的能量,孔腔內平衡溫度達25000度左右。熱量從這個高溫孔腔外壁傳遞出來,使包圍著這個孔腔的金屬熔化。小孔內充滿在光束照射下壁體材料連續蒸發產生的高溫蒸汽,小孔四壁包圍著熔融金屬,液態金屬四周即圍著固體材料。孔壁外液體流動和壁層表面張力與孔腔內連續產生的蒸汽壓力相持並保持著動態平衡。光束不斷進入小孔,小孔外材料在連續流動,隨著光束移動,小孔始終處於流動的穩定態。就是說,小孔和圍著孔壁的熔融金屬隨著前導光束前進速度向前移動,熔融金屬填充著小孔移開後留下的空隙並隨之冷凝,焊縫於是形成。