㈠ 什么是焊接接头热影响区软化主要这个“软化”我不太懂,能否给我详细解释一下怎样就叫软化
焊接热影响区:简称HZA(heat affect zone )在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能变化的区域,称为焊接热影响区,也称为过热区或粗晶区。
该区域宽度约1~3mm。焊接时,该区域内奥氏体晶粒严重长大,冷却后得到晶粒粗大的过热组织,塑性和韧度下降(简称软化,可能说软化不太专业,标准术语是塑性和韧度下降)
㈡ 铝质材料在机械加工后有没有做热处理例子
现在国内也有铝热处理工艺..,但是通常来说对铝的热处理都是在加工前, 比如航空铝合金7075就是有做过预热处理的...对性能的影响就是加工时比较不容易发生变形,改善切削性~ 然后做出来的零件结构性能会比较稳定..如果你只是一般应用,完全不需要考虑铝的热处理问题~如果零件要求比较高就直接选用7075航空铝,一般来说就足以满足使用要求了~
参考资料如下:
铝合金热处理工艺
铝合金热处理原理
铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。
3.1.1铝合金热处理特点
众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
3.1.2铝合金时效强化原理
铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G•P(Ⅰ)区
在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G•P(Ⅰ)区。G•P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。
3.1.2.2 G•P区有序化-形成G•P(Ⅱ)区
随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G•P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G•P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G•P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。
3.1.2.3形成过渡相θ′
随着时效过程的进一步发展,铜原子在G•P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时
效强化的重要因素。
3.1.2.4 形成稳定的θ相
过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。
铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G•P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G•P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时间不同,亦不完全依次经历时效全过程,例如有的合金在自然时效时只进行到G•P(Ⅰ)区至G•P(Ⅱ)区即告终了。在人工时效,若时效温度过高,则可以不经过G•P区,而直接从过饱和固溶体中析出过渡相,合计时效进行的程度,直接关系到时效后合金的结构和性能。
表3-1几种铝合金系的时效过程及其析出稳定的强化相 3.1.3影响时效的因素
3.1.3.1从淬火到人工时效之间停留时间的影响
研究发现,某些铝合金如Al-Mg-Si系合金在室温停留后再进行人工时效,合金的强度指标达不到最大值,而塑性有所上升。如ZL101铸造铝合金,淬火后在室温下停留一天后再进行人工时效,强度极限较淬火后立即时效的要低10~20Mpa,但塑性要比立刻进行时效的铝合金有所提高。
3.1.3.2合金化学成分的影响 一种合金能否通过时效强化,首先取决于组成合金的元素能否溶解于固溶体以及固溶度随温度变化的程度。如硅、锰在铝中的固溶度比较小,且随温度变化不大,而镁、锌虽然在铝基固溶体中有较大的固溶度,但它们与铝形成的化合物的结构与基体差异不大,强化效果甚微。因此,二元铝-硅、铝-锰、铝-镁、铝-锌通常都不采用时效强化处理。而有些二元合金,如铝-铜合金,及三元合金或多元合金,如铝-镁-硅、铝-铜-镁-硅合金等,它们在热处理过程中有溶解度和固态相变,则可通过热处理进行强化。 3.1.3.3合金的固溶处理工艺影响 为获得良好的时效强化效果,在不发生过热、过烧及晶粒长大的条件下,淬火加热温度高些,保温时间长些,有利于获得最大过饱和度的均匀固溶体。另外在淬火冷却过程不析出第二相,否则在随后时效处理时,已析出相将起晶核作用,造成局部不均匀析出而降低时效强化效果。
㈢ 一般的铝合金压铸件表面磨砂处理都是用喷砂的,为什么
喷砂工艺之所以被广泛应用于铝合金压铸件的表面处理,是因为它能够显著改善工件表面的机械性能。喷砂过程利用压缩空气作为动力源,形成高速喷射流,将磨料高速喷射到需处理的工件表面。这种喷射作用不仅清洁了工件表面,还通过磨料对工件表面的冲击和切削作用,使工件表面获得适当的粗糙度。这种粗糙度的增加,使得压铸件表面的微观结构变得更加复杂,从而提高了表面的机械性能,如耐磨性和抗腐蚀性。
喷砂工艺的质量直接影响到后续涂层的附着力和涂层的耐久性。高质量的喷砂处理可以显著提高涂层的附着力,确保涂层牢固地附着在工件表面上。此外,良好的喷砂处理还能改善涂层的外观,使其更加均匀和美观。更重要的是,经过认真处理的表面可以显著提高涂层的耐潮湿和耐腐蚀性能,从而延长涂层的使用寿命。
与未经充分喷砂处理的表面相比,经过严格喷砂处理的表面在涂层寿命上有着明显的优势。例如,通过暴晒法进行涂层试验,可以观察到经过认真清理的表面和简单清理的工件,其涂层寿命可以相差4到5倍。这表明,喷砂处理不仅提高了涂层的初始附着力,还增强了涂层的长期稳定性。
磨砂处理是一种常见的表面处理技术,它不仅适用于铝合金压铸件,还广泛应用于其他材料。对于玻璃等物体,可以通过机械研磨或手动研磨,制得均匀粗糙的表面,甚至可以使用氢氟酸溶液进行加工,得到磨砂玻璃等产品。磨砂处理后的玻璃表面具有更好的密闭性能,适用于需要高密封性的场合。
在磨砂处理过程中,去除残留物是一个重要步骤。完成磨砂处理后,淋掉残液,磨砂玻璃表面会附着一层残留物。这些残留物需要通过软化箱中的软化处理去除。软化处理通常采用常规软化液浸没玻璃,软化时间一般为1到2分钟。去除残留物后,磨砂玻璃表面的清洁度和质量会得到进一步提高,从而确保最终产品的性能和外观。
㈣ 铝合金铸件T6热处理有哪些方法
固溶处理是把铸件加热到尽可能高的温度,接近于共晶体的熔点,温度越高,强化元素溶解速度越快,强化效果越好。一般加热温度的上限低于合金开始过烧温度,下限应使强化组元尽可能多地溶入固溶体中。在该温度下保持足够长的时间,使强化组元最大限度的溶解,这种高温状态被固定保存到室温,保温时间是由强化元素的溶解速度来决定,这取决于合金的种类、成分、组织、铸造方法和铸件的形状及壁厚。快速冷却,淬火时给予铸件的冷却速度越大,使固溶体自高温状态保存下来的过饱温度也越高,从而使铸件获得高的力学性能,但同时所形成的内应力也越大,使铸件变形的可能性也越大,所以对冷却介质温度关系很大。该过程称为固溶处理。固溶处理可以提高铸件的强度和塑性,改善合金的耐腐蚀性能。固溶热处理的淬火转移时间应尽可能地短,一般应不大于15s,以免合金元素的扩散析出而降低合金的性能。时效处理:(设备:铝合金时效炉)时效处理是将固溶处理后的铝合金铸件加热到某一温度,保温一定时间后出炉,在空气中缓慢冷却到室温的工艺称为时效。如果时效强化是在室温下进行的称为自然时效,如果时效强化是在高于室温并保温一段时间后进行称为人工时效。时效处理进行着过饱和固溶体分解的自发过程,从而使合金基体的点阵恢复到比较稳定的状态。 时效温度和时间的选择取决于对合金性能的要求、合金的特性、固溶体的过饱和程度以及铸造方法等。人工时效可分为三类:不完全人工时效,完全人工时效和过时效。不完全人工时效是采用比较低的时效温度或较短的保温时间,获得优良的综合力学性能,即获得比较高的强度,良好的塑性和韧性,但耐腐蚀性能可能比较低。完全人工时效是采用较高的时效温度和较长的保温时间,获得最大的硬度和最高的抗拉强度,但伸长率较低。过时效是在更高的温度下进行,这时合金保持较高的强度,同时塑性有所提高,主要是为了得到好的抗应力腐蚀性能。为了得到稳定的组织和几何尺寸,时效应该在更高的温度下进行。过时效根据使用要求通常也分为稳定化处理和软化处理。铝合金铸件T6热处理一般分为二个阶段,固溶处理(淬火)加时效铝合金压铸。固溶处理:是指将铝合金铸件加热到一定的温度恒温保持一段时间,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体,提高力学性能,增强耐腐蚀性能的热处理工艺。时效处理:时效是铝合金铸件经过固溶处理后完成T6工艺的热处理。时效处理是采用较高的时效温度和较长的保温时间,获得最大的硬度和最高的抗拉强度,达到尺寸的稳定性铝合金压铸。