Ⅰ 焊接质量的检查方法和要求
焊接质量检验不仅包括对焊接构件的检验,对其焊接过程的检验也由其重要。下面就从焊前检查,焊中检查,焊后检查这三方面详细说明。
一、焊前检查
焊接前的准备工作主要从人员的配置,机械装置,焊接材料,焊接方法,焊接环境,焊接过程的检验这六个方面进行控制。
(1)焊工资格审查
人员的配置主要从焊工资格检查这方面进行控制。主要检查焊工资格证书是否在有效期内,所具有的焊接资格证书工种是否与实际从事的工种相适应。
(2)焊接设备检查
焊接设备检查主要包括以下几个方面:焊接设备的型号,电源极性是否与焊接工艺相吻合,焊接过程中所用到的焊炬,电缆,气管,以及其他焊接辅助设备,安全防护设备等是否准备齐全。
(3)原材料检查
焊接材料的质量对焊接质量有着重要的影响。焊接材料的检查主要包括对焊接母材,焊条,焊剂,保护气体,电极等进行质量控制。检查这些原材料是否与合格证和国家标准相符合,检查期包装是否有损坏,质量是否过期等。
(4)焊接方法检查
常用的焊接方法有电弧焊,(其中电弧焊包括焊条电弧焊,埋弧焊,钨极气体保护焊等),电阻焊,钎焊等。焊接方法是直接影响焊接质量的重要因素,根据焊接工艺要求选择合适的焊接方法是保证焊接质量的重要手段。
(5)焊接环境检查
焊接环境对焊接质量的影响也不容小视,焊接场所可能会遭遇环境温度,湿度,风雨等不利因素。检查是否采取必要的防护措施。出现下列情况必须停止焊接作业:采用电弧焊焊接工件时,风速≥8m/s;气体保护焊焊接时风速不大于2m/s;相对湿度不超过90%;采用低氢焊条电弧焊时风速不大于5m/s;下雨或下雪。
(6)焊接过程检查
为了保证焊接能够正确按照焊接工艺指导书的焊接参数进行焊接,经常需要增加焊接过程的质量检查程序。焊接过程质量检查通常由专职或兼职质量检验员进行,从焊接准备工作开始,对人员配备,焊接设备,焊接材料,焊接环境,焊接方法,等各方面进行检查、监控。
二、焊接过程中检查
(1)焊接缺陷
尤其是采用多层焊焊接时,检查每层焊缝间是否存在裂纹,气孔,夹渣等缺陷,是否及时处理缺陷。
(2)焊接工艺
焊接过程是否严格按照焊接工艺指导书的要求进行操作,包括对焊接方法、焊接材料、焊接规范、焊接变形及温度控制等方面进行检查。
(3)焊接设备
在焊接过程中,焊接设备必须运行正常,例如焊接过程中的冷却装置,送丝机构等。
三、焊后质量检查
(1)外观检查
包含以下几个方面:1、对焊缝表面咬边、夹渣、气孔、裂纹等检查,这些缺陷采用肉眼或低倍放大镜就可以观察。2、尺寸缺陷检查,例如焊缝余高、焊瘤、凹陷、错口等,需采用焊接检验尺进行测量。3、焊件变形量检查。
(2)致密性试验检查
常用的致密性试验检验方法有液体盛装试漏、气密性实验、氨气试验、煤油试漏、氦气试验、真空箱试验。1、液体盛装试漏试验主要用于检查非承压容器、管道、设备。2、气密性试验原理是:在密闭容器内,利用远低于容器工作压力的压缩空气,在焊缝外侧涂上肥皂水,当通入压缩空气时,由于容器内外存在压力差,肥皂水处会有气泡出现。
(3)强度试验检查
强度试验检查分为液压强度试验和气压强度试验两种,其中液压强度试验常以水为介质进行,对试验压力也有一定的要求,通常试验压力为设计压力的1.25~1.5倍。
(1)焊接件如何追溯扩展阅读
常用的射线无损检测方法有:
1、射线探伤检验方法。射线探伤法的主要原理是利用射线源发出的射线穿透焊缝,在胶片上感光,焊缝的缺陷的影像便显示出来。
2、超声波探伤检验方法。超声波探伤与射线探伤相比较,具有一定优势,例如,灵敏度高、成本低、周期短、效率高等,最主要对人体无伤害。但是超声波探伤检验方法也存在一定缺陷,例如显示缺线不够直观,对探伤人员的技术和经验要求比较高。
3、渗透探伤检验方法。渗透探伤法的主要检验原理是借助颜料或荧光粉渗透液涂敷在被检焊缝表面,使其渗透到开口缺陷中,清理掉多余渗透液,干燥后施加显色剂,从而观察缺陷痕迹。
4、磁性探伤检验方法。磁性探伤检验方法和渗透探伤检验方法都是焊件表面质量检验方法的一种,主要用于检查表面及附近表面缺陷。以上所述的外观检查、致密性检查、无损探伤检查都属于对焊接构件非破坏性检验,其中焊接检验包括破坏性和非破坏性检验两种方式。针对于破坏性检验又可以划分为力学性能检验、化学分析及实验、金相检验、焊接性检验和其他检验等几种方式。
Ⅱ 了解焊接的进
(1)应尽量避免不同熔体流动速率的材料相焊接的情形。
(2) 若元法避免,则建议在实际操作中,依据规范要求熔体流动速率应在0.3~1.3g/10min(190℃,5kg)范围内,且MFR差别值不大于0.5g/10min(190℃,5000g),并且相互焊接的聚乙烯管材的MFR最好位于同一分组内。
(3)目前市场上的中密度PE80与PEl00管材存在焊接兼容问题,需引起重视,需加强材料的入库验收管理,应在PE材料的质保书中增加原料牌号和水含量检测报告,以便今后管网营运中做好质量跟踪,提高已使用工程材料追溯的准确性。
Ⅲ 焊接的发展历史
19世纪末之前,唯一的焊接工艺是铁匠沿用了数百年的金属锻焊。最早的现代焊接技术出现在19世纪末,先是弧焊和氧燃气焊,稍后出现了电阻焊。
20世纪早期,第一次世界大战和第二次世界大战中对军用设备的需求量很大,与之相应的廉价可靠的金属连接工艺受到重视,进而促进了焊接技术的发展。战后,先后出现了几种现代焊接技术,包括目前最流行的手工电弧焊、以及诸如熔化极气体保护电弧焊、埋弧焊(潜弧焊)、药芯焊丝电弧焊和电渣焊这样的自动或半自动焊接技术。
20世纪下半叶,焊接技术的发展日新月异,激光焊接和电子束焊接被开发出来。今天,焊接机器人在工业生产中得到了广泛的应用。研究人员仍在深入研究焊接的本质,继续开发新的焊接方法,并进一步提高焊接质量。
金属连接的历史可以追溯到数千年前,早期的焊接技术见于青铜时代和铁器时代的欧洲和中东。数千年前的古巴比伦两河文明已开始使用软钎焊技术。前340年,在制造重达5.4吨的古印度德里铁柱时,人们就采用了焊接技术 。
中世纪的铁匠通过不断锻打红热状态的金属使其连接,该工艺被称为锻焊。维纳重·比林格塞奥于1540年出版的《火焰学》一书记述了锻焊技术。欧洲文艺复兴时期的工匠已经很好地掌握了锻焊,接下来的几个世纪中,锻焊技术不断改进。到19世纪时,焊接技术的发展突飞猛进,其风貌大为改观。1800年,汉弗里·戴维爵士发现了电弧;稍后随着俄国科学家尼库莱·斯拉夫耶诺夫与美国科学家C·L·哥芬(C. L. Coffin)发明的金属电极推动了电弧焊工艺的成型。电弧焊与后来开发的采用碳质电极的碳弧焊,在工业生产上得到广泛应用。1900年左右,A·P·斯特罗加诺夫在英国开发出可以提供更稳定电弧的金属包敷层碳电极;1919年,C·J·霍尔斯拉格(C. J. Holslag)首次将交流电用于焊接,但这一技术直到十年后才得到广泛应用。
电阻焊在19世纪的最后十年间被开发出来,第一份关于电阻焊的专利是伊莱休·汤姆森于1885年申请的,他在接下来的15年中不断地改进这一技术。铝热焊接和可燃气焊接发明于1893年。埃德蒙·戴维于1836年发现了乙炔,到1900年左右,由于一种新型气炬的出现,可燃气焊接开始得到广泛的应用。由于廉价和良好的移动性,可燃气焊接在一开始就成为最受欢迎的焊接技术之一。但是随着20世纪之中,工程师们对电极表面金属敷盖技术的持续改进(即助焊剂的发展),新型电极可以提供更加稳定的电弧,并能够有效地隔离基底金属与杂质,电弧焊因此能够逐渐取代可燃气焊接,成为使用最广泛的工业焊接技术。
第一次世界大战使得对焊接的需求激增,各国都在积极研究新型的焊接技术。英国主要采用弧焊,他们制造了第一艘全焊接船体的船舶弗拉戈号。大战期间,弧焊亦首次应用在飞机制造上,如许多德国飞机的机体就是通过这种方式制造的。 另外值得注意的是,世界上第一座全焊接公路桥于1929年在波兰沃夫其附近的Słudwia Maurzyce河上建成,该大桥是由华沙工业学院的斯特藩·布莱林(Stefan Bryła)于1927年设计的。
1920年代,焊接技术获得重大突破。1920年出现了自动焊接,通过自动送丝装置来保证电弧的连贯性。保护气体在这一时期得到了广泛的重视。因为在焊接过程中,处于高温状态下的金属会与大气中的氧气和氮气发生化学反应,因此产生的空泡和化合物将影响接头的强度。解决方法是,使用氢气、氩气、氦气来隔绝熔池和大气。接下来的10年中,焊接技术的进一步发展使得诸如铝和镁这样的活性金属也能焊接。1930年代至第二次世界大战期间,自动焊、交流电和活性剂的引入大大促进了弧焊的发展。
20世纪中叶,科学家及工程师们发明了多种新型焊接技术。 1930年发明的螺柱焊接(植钉焊),很快就在造船业和建筑业中广泛使用。同年发明的埋弧焊,直到今天还很流行。钨极气体保护电弧焊在经过几十年的发展后,终于在1941年得以最终完善。随后在1948年,熔化极气体保护电弧焊使得有色金属的快速焊接成为可能,但这一技术需要消耗大量昂贵的保护气体。采用消耗性焊条作为电极的手工电弧焊是在1950年代发展起来的,并迅速成为最流行的金属弧焊技术。 1957年,药芯焊丝电弧焊首次出现,它采用的自保护焊丝电极可用于自动化焊接,大大提高了焊接速度。同一年,等离子弧焊发明。电渣焊发明于1958年,气电焊则于1961年发明。
焊接技术在近年来的发展包括:1958年的电子束焊接能够加热面积很小的区域,使得深处和狭长形工件的焊接成为可能。其后激光焊接于1960年发明,在其后的几十年岁月中,它被证明是最有效的高速自动焊接技术。不过,电子束焊与激光焊两种技术由于其所需配备价格高昂,其应用范围受到限制。
Ⅳ 什么叫做焊接件,什么叫做补焊件
工件需要进行焊接,焊接的工件就是焊接件。
焊接件焊接后经过检验发现有不符合焊接质量要求的,需要重新焊接缺陷处的,也叫补焊件。
Ⅳ 对特种设备焊接材料应从哪几方面进行控制
特种设备焊材管理控制环节
在焊接材料管理这一控制环节中,有焊材采购、验收及复验、保管、烘干及恒温存放、发放与回收等控制点。
1 焊材采购
在采购订货焊材时,要注意根据压力空器焊接的需要,对通用标准附加更高的要求。2002年8月发布了JB/T4747《压力容器用钢焊条订货技术条件》在GB/T983、GB/T5117、GB/T5118的基础上,增加、提高和变更了若干技术要求。
2 验收与复验
(1) 质量证明书检验;
(2) 包装及外观检验;
(3) 焊材复验。
3 焊材保管
(1) 分区保管
焊材库应根据需要划分为“待检”、“合格”及“不合格”三个区域。若企业同时生产压力容器与一般钢结构产品,还应分划压力容器焊材及非压力容器焊材区,各区域要有明显的标记和分界。
(2) 入库登记
焊材库管理员应将验收合格的焊材进行入库登记。登记的内容包括:焊材的名标、牌号、规格、批号或炉号、内部移植代号、数量或重量、生产日期、入库日期、有效期、生产厂。
入库后管理员应建立相应的库存档案,应包括入库登记、质量证明书、验收检验报告、检查记录、发放记录等。
(3) 焊材库的焊材保管
焊材库室内温度应在5℃以上。室内应有温度计、相对湿度计、去湿机,当相对湿度较高时,应开机除湿,保持相对湿度不超过60%,库房管理人员应每天两次测量并记录焊材库的相对湿度。
库房内不得存放焊材以外的物品。焊材应存放在货架上,离墙离地的距离不少于300mm,并应分类码垛,每垛的种类牌号、规格、炉批号应一致。库存期间不得损坏原包装。
库房管理人员应定期对库存焊材进行检查,并将检查结果作书面记录,做到帐物相符,发现由于保存不当而出现可能影响焊接质量的缺陷时,应向材料责任工程师和有关职能部门反映并及时处理。
4 焊条、焊剂的烘干及恒温保存
焊材库应有足够的焊条、焊剂烘干及恒温存放的烘干箱、电热恒温箱,箱上均应有可靠而且经检定的温度控制、保温时间控制及显示装置。
焊材库管理员应根据车间预先提出的施工计划烘干焊条、焊剂,其品种、牌号、规格、数量应与计划一致。
焊材库管理员应严格按技术要求烘干和恒温存放条、焊剂,并如实做好焊材烘干记录。焊材烘干温度、烘干时间、恒温存放温度都应符合规定。烘干焊条时应防止骤冷聚骤热而导致焊条皮开裂脱落。不允许烘干温度、保温时间要求不同的焊材同炉烘干。焊材在烘干箱内或恒温箱内应有牌号、规格、炉批号或标记移植号的标志,以免混淆。
焊材管理中应特别重视防止焊材吸潮的问题。尽管出厂的焊材一般都严格包装,减少空气中水分的侵入,但除了密封的罐式包装以外,贮存中仍会有不同程度的吸潮,在使用前应时行烘焙。
不同品种的焊接材料要求不同的烘干温度和烘干时间,一般都在焊材说明书中有明确的规定,应按规定烘干。重复烘烤焊条的次数不宜超过2次,并作好“焊条、焊剂烘干记录”。
5 焊材的发放与回收
焊工凭焊材领用单到焊材库领取焊材,领用单应注明领用的焊材牌号、规格、数量及用于焊接的产品名称、工件号及焊接接头编号、领用人、领用日期。焊材库管理员应按计划核对领料单发放,并同时在领料单上填写焊材批号、领用时间及发放人签字,填写焊材领退记录。焊材领用情况要能跟踪追溯。领出的焊条超过4小时后,应退回重新烘干,用剩的焊条及焊条头亦应退回焊材库,不得留在焊接现场或放在焊工休息室、更衣箱、工具箱,焊条退回时,焊材库管理员应在焊材领用单和焊材领退记录中如实填写退回的焊材数量。回收后仍按原牌号、规格、批号存放保管,不得混淆。回收的焊条有药皮剥落或其它缺陷者,应剔除。回收的焊剂应筛分清除其中的渣壳、杂质及粉尘。烘干后重新使用时要加入不少于50%的新焊剂,并混合均匀。
焊材库保管员应作好“焊接材料发放台帐”的记录。