『壹』 什么叫直流正接,什么直流反接,焊接时怎么选择
一、直流正接(即正接法):正接法是指西林电桥回路试验中中用于测量介质损耗因数的一种接线方法。正接法测量介质损耗因数值小,反接法测量介质损耗因数值偏大。与反接法相比,正接法测试可以有效的减少防晕层表面电阻对介质损耗因数测试值的影响。
二、直流反接(即反接法):指在焊接时的一种电路接法。在钨极氩弧焊中,直流反接有去除氧化膜的作用,称为“阴极破碎”或“阴极雾化”现象。去除氧化膜的作用,在交流焊的反极性半波也同样存在,它是成功地焊接铝、镁及其合金的重要因素。
三、在焊接时,需要根据焊接材料的需要,具体地选择直流正接或者直流反接。实践证明,直流反接时,工件表面的氧化膜在电弧的作用下可以被清除掉而获得外表光亮美观、成形良好的焊缝。若线棒可与地分离,现场试验应尽量采用正接法的测试方式。
(1)为什么阴极斑点对焊接是不利的扩展阅读:
直流反接的原理:
当直流反接时,工件表面的氧化膜在电弧的作用下可以被清除掉而获得外表光亮美观、成形良好的焊缝。这是因为金属氧化物逸出功小,容易发射电子,所以氧化膜上容易形成阴极斑点并产生电弧,阴极斑点有自动寻找金属氧化物的性质。阴极斑点的能量密度很高,被质量很大的正离子撞击,使氧化膜破碎。
但是,直流反接的热作用对焊接是不利的,因为钨极氩弧焊阳极热量多于阴极。反极性时电子轰击钨极,放出大量热量,很容易使钨极过热熔化,这时假如要通过125A焊接电流,为不使钨极熔化,就需约6mm直径的钨棒。
同时,由于在焊件上放出的能量不多,焊缝熔深浅而宽,生产率低,而且只能焊接约3mm厚的铝板。所以在钨极氤弧焊中直流反接除了焊铝、镁薄板外很少采用。
『贰』 焊接电弧的焊接电弧的物理基础
电弧是一种气体放电现象,它是带电粒子通过两电极之间气体空间的一种导电过程。
电弧有三个部分构成:阴极区、阳极区、弧柱区。 1、气体的电离
在外加能量作用下,使中性的气体分子或原子分离成电子和正离子的过程称为气体电离。
其本质是中性气体粒子吸收足够的能量,使电子脱离原子核的束缚而成为自由电子和正离子的过程。
电离种类:
(1)热电离
气体粒子受热的作用而产生电离的过程称为热电离。其本质为粒子热运动激烈,相互碰撞产生的电离。
(2)场致电离
带电粒子在电场中加速,和其中的中性粒子发生非弹性膨胀而产生的电离。
电离程度:
电离度:单位体积内电离的粒子数浴气体电离前粒子总数的比值称为电离度。
(3)光电离
中性气体粒子受到光辐射的作用而产生的电离过程称为光电离。
2、阴极电子发射
(1)电子发射:阴极中的自由电子受到外加能量时从阴极表面逸出的过程称为电子发射。其发射能力的大小用逸出功Aw表示。
(2)阴极斑点
阴极表面光亮的区域称为阴极斑点。
阴极斑点具有“阴极清理”(“阴极破碎”)作用,原因:由于氧化物的逸出功比纯金属低,因为阴极斑点会移向有氧化物的地方,将该氧化物清除。
(3)电子发射类型
1)热发射
阴极表面受热引起部分电子动能达到或超过逸出功时产生的电子发射。
热阴极以热发射为主要的发射形式。
2)场致发射
阴极表面受到电场力的影响,当电场力达到某一程度时电子逸出阴极表面形成电子发射。
冷阴极以场致发射为主要的发射形式。
3)光发射
阴极表面受到光辐射的作用使自由电子能量达到一定程度而逸出金属表面形成发射。
4)粒子碰撞发射
电弧中高速运动的正离子碰撞阴极时使表面自由电子得到能量而逸出阴极表面的现象。 1、扩散
带电粒子从密度高的中心部位向密度低的周边迁移的现象。
2、复合
电弧周边正负粒子结合成中性粒子的现象。
3、负离子的形成
部分中性粒子吸附电子而形成负离子的过程。 弧柱是包含大量电子、正离子等带电粒子和中性粒子等聚合在一起的气体状态,这种对外呈电中性的状态称为电弧等离子体。
最小电压原理:弧柱在稳定燃烧的时候,有一种使自身能量消耗最小的特性,即当电流和电弧周围条件一定时,稳定燃烧的电弧将自动选择一个确定的导电截面,使电弧的能量消耗最小。当电弧长度也为定值时,电场强度的大小即代表了电弧产热量的大小,因此,能量消耗最小时的电场强度最低,即在固定弧长上的电压降最小,这就是最小电压原理。 作用有:接受由弧柱传来的正离子流;向弧柱区提供电弧导电所需的电子流。
其发射形式主要有:
1、热发射型
2、电场发射型
(三)阳极区的导电特性
1、阳极斑点
在阳极表面可看到的烁亮发光的区域,称为阳极斑点。
阳极斑点会自动寻找熔点比较低的纯金属表面而避开氧化物,在金属表面游走。
2、阳极区的导电形式
(1)场致电离
(2)热电离
『叁』 焊接电弧的焊接电弧的工艺特性
1、弧柱的产热
电流密度小,温度高,能量主要由粒子碰撞产生,热能损失严重。
2、阴极区的产热
电流密度大,温度低,能量主要用来对阴极加热和阴极区的散热损失,还可用来加热填充材料或焊件。
3、阳极区的产热
电流密度大,温度低,能量主要用于对阳极的加热和散失,也可用来加热填充材料或焊件。 电弧力影响到焊件的熔深及熔滴过渡,熔池的搅拌、焊缝成形以及金属飞溅,因此电弧力直接影响着焊缝质量。
1、电弧力及其作用
(1)电磁收缩力
产生原因:电弧电流线之间产生的相互吸引力。
由于电极两端的直径不同,因此电弧呈倒锥形状。电弧轴向推力在电弧横截面上分布不均匀,弧柱轴线处最大,向外逐渐减小,在焊件上此力表现为对熔池形成的压力,称为电磁静压力。
作用效果:使熔池下凹;对熔池产生搅拌作用,细化晶粒;促进排除杂质气体及夹渣;促进熔滴过渡;约束电弧的扩展,使电弧挺直,能量集中。
(2)等离子流力
电磁轴向静压力推动电极附近的高温气流(等离子流)持续冲向焊件,对熔池形成附加的压力,这个压力就称为等离子流力(电磁动压力)。
作用效果:等离子流力可增大电弧的挺直性;促进熔滴过渡;增大熔深并对熔池形成搅拌作用。
(3)斑点力
电极上形成斑点时,由于斑点处受到带电粒子的撞击或金属蒸发的反作用而对斑点产生的压力,称为斑点压力或斑点力。
斑点力的方向总是和熔滴过渡方向相反,因此总是阻碍熔滴过渡,产生飞溅。
一般来说,阴极斑点力比阳极斑点力大。
2、电弧力的主要影响因素
(1)焊接电流和电弧电压
(2)焊丝直径
(3)电极的极性
(4)气体介质 概念:焊接电弧的稳定性是指电弧保持稳定燃烧的程度。
电弧的稳定性除了和操作人员的熟练程度有关之外,还与其他因素有关。
1、焊接电源(电源的空载电压;电源的极性;电源的接法)
2、焊条药皮或焊剂
3、焊接电流
4、磁偏吹
5、电弧长度
6、焊前清理
7、其他
『肆』 TIG焊按电流和极性可分为哪几种,给有什么优缺点
TIG焊的电流种类和极性
TIG焊时,焊接电弧正、负极的导电和产热机构与电极材料的热物理性能有密切关系、从而对焊接工艺有显著影响。下面分别讨论采用不同电流种类和极性进行TIG焊的情况。
一、直流TIG焊
直流TIG焊时,电流极性没有变化,电弧连续而稳定,按电源极性的不同接法,又可将直流TIG焊分为直流正极性法和直流反极性法两种方法。
1.直流正极性法
直流正极性法焊接时,焊件接电源正极,钨极接电源负极。由于钨极熔点很高,热发射能力强,电弧中带电粒子绝大多数是从钨极上以热发射形式产生的电子。这些电子撞击焊件(负极),释放出全部动能和位能(逸出功),产生大量热能加热焊件,从而形成深而窄的焊缝,该法生产率高,焊件收缩应力和变形小。另一方面,由于钨极上接受正离子撞击时放出的能量比较小,而且由于钨极在发射电子时需要付出大量的逸出功,所以钨极上总的产热量比较小,因而钨极不易过热,烧损少;对于同一焊接电流可以采用直径较小的钨极。再者,由于钨极热发射能力强,采用小直径钨棒时,电流密度大,有利于电弧稳定。
综上所述,直流正极性有如下特点:
1)熔池深而窄,焊接生产率高,焊件的收缩应力和变形都小。
2)钨极许用电流大,寿命长。
3)电弧引燃容易,燃烧稳定。
总之,直流正极性优点较多,所以除铝、镁及其合金的焊接以外,TIG焊一般都采用直流正极性焊接。
2.直流反极性法
直流反极性时焊件接电源负极,钨极接正极。这时焊件和钨极的导电和产热情况与直流正极性时相反。由于焊件一般熔点较低,电子发射比较困难,往往只能在焊件表面温度较高的阴极斑点处发射电子,而阴极斑点总是出现在电子逸出功较低的氧化膜处。当阴极斑点受到弧柱中来的正离子流的强烈撞击时,温度很高,氧化膜很快被汽化破碎,显露出纯洁的焊件金属表面,电子发射条件也由此变差。这时阴极斑点就会自动转移到附近有氧化膜存在的地方,如此下去,就会把焊件焊接区表面的氧化膜清除掉,这种现象称为阴极破碎(或称阴极雾化)现象。
阴极破碎现象对于焊接工件表面存在难熔氧化物的金属有特殊的意义,如铝是易氧化的金属,它的表面有一层致密的A12O3附着层,它的熔点为2050℃,比铝的熔点(657℃)高很多,用一般的方法很难去除铝的表面氧化层,使焊接过程难以顺利。若用直流反极性TIG焊则可获得弧到膜除的显著效果,使焊缝表面光亮美观,成形良好。
但是直流反极性时钨极处于正极,TIG焊阳极产热量多于阴极(有关资料指出:2/3的热量产生于阳极,1/3的热量产生于阴极),大量电子撞击钨极,放出大量热量,很容易使钨极过热熔化而烧损,使用同样直径的电极时,就必须减小许用电流或者为了满足焊接电流的要求,就必须使用更大直径的电极;另一方面,由于在焊件上放出的热量不多,使焊缝熔深浅,生产率低。所以TIG焊中,除了铝、镁及其合金的薄件焊接外,很少采用直流反极性法。
二、交流TIG焊
交流TIG焊时,电流极性每半个周期交换一次,因而兼备了直流正极性法和直流反极性法两者的优点。在交流负极性半周里,焊件金属表面氧化膜会因“阴极破碎”作用而被清除;在交流正极性半周里,钨极又可以得到一定程度的冷却,可减轻钨极烧损,且此时发射电子容易,有利于电弧的稳定燃烧。交流TIG焊时,焊缝形状也介于直流正极性与直流反极性之间。实践证明,用交流TIG焊焊接铝、镁及其合金能获得满意的焊接质量。
但是,由于交流电弧每秒钟要100次过零点,加上交流电弧在正负半周里导电情况的差别,又出现了交流电弧过零点后复燃困难和焊接回路中产生直流分量的问题。必须采取适当的措施才能保证焊接过程的稳定进行。
综上所述,TIG焊既可以使用交流电流也可以使用直流电流进行焊接,对于直流电流还有极性选择的问题。焊接时应根据被焊材料来选择适当的电流和极性。
『伍』 焊接电弧中,阴极斑点的温度总高于阳极斑点的温度吗
阳极高于阴极,所以有些用直流反接,就是为了更好的击穿
『陆』 有色金属的焊接都有哪些特点
压力容器设备中,除广泛使用碳钢、低合金钢及不锈钢外,有色金属如钛及钛合金、镍及镍基合金、铜及铜合金、铝及铝合金的应用也日益增多。由于这些有色金属具有不锈钢所不能比的优点,所以在一些特殊的重要场合已占有主导地位。
一、镍基耐蚀合金的焊接
镍及镍基合金具有特殊的物理、力学及耐腐蚀性能,镍基耐蚀合金在200℃~1090℃范围内能耐各种腐蚀介质的侵蚀,同时具有良好的高温和低温力学性能。在一些苛刻腐蚀条件下是一般不锈钢无法取代的优良材料。纯镍一般在工业中应用较少,但在镍中添加入铬、铜、铁、钼、铝、钛、铌、钨等元素后,通过固溶强化,不但改善其力学性能,而且可适应于各种腐蚀介质下侵蚀,使其具有优良的耐腐蚀性。
1、镍基耐蚀合金的焊接特点
①易产生焊接热裂纹
由于镍基合金为单相奥氏体组织,所以与不锈钢相比,具有高的焊接热裂纹敏感性,特别是焊缝易产生多边化晶间裂纹。这种裂纹一般为微裂纹,焊后对焊缝进行着色检查时,短时间都发现不了,但经过一段时间后,才显露出来。这说明裂纹非常微细,但有时也能发展为较宽的宏观裂纹。如果在单相奥氏体焊缝中加人固溶强化的钼、钨、锰、铬、铌等元素,就可有效地抑制镍基合金焊缝多边化结晶的发展,从而显著提高抗热裂纹能力。限制线能量,避免采用大线能量焊接也有利于防止热裂纹的产生。此时注意,如果线能量过小,会加速焊缝的凝固结晶速度,更易形成多边化晶界,在一定应力下有助于多边化裂纹的产生。
②液态金属流动性差,焊缝熔深浅
这是镍基合金的固有特性。靠加大焊接电流不是解决此问题的办法,因为电流增加会引起裂纹和气孔,降低接头的耐蚀性能,所以为了获得良好的焊缝成形,应采用小摆动工艺,另外要加大坡口角度,减小坡口钝边。
2、镍基耐蚀合金的焊接要点
镍基合金一般可采用与奥氏体不锈钢相同的焊接方法进行焊接。这里就最常用的钨极气体保护焊和焊条电弧焊进行论述。无论是何种焊接方法,焊前一定要彻底清理焊接区表面,镍基合金对污染物的危害极为敏感,母材应尽可能在固溶状态下焊接。
①钨极气体保护焊是应用最广泛的,几乎适合于任何一种可熔焊的镍基合金,特别适合于薄件和小截面构件。保护气体最常用的是氩气,它成本低,密度大,保护效果好。氩气中加5%氢气,有还原作用,一般只用于第一层焊道和单道焊,多层焊的其余焊道可能要产生气孔。氦气保护焊应用较少,但有如下特点,氦气导热大,向熔池线能量比较大,能提高焊接速度,减少了气孔的可能性,但氦弧焊,电流小于60A时,电弧不稳定。
钨极气体保护焊焊一般使用直流正接,采用高频引弧以及电流衰减的收弧技术。在保证焊透的条件下,应采用较小的焊接线能量,多层焊时应控制层间温度,焊接析出强化合金及热裂纹敏感性大的合金时,更要注意控制层间温度。弧长尽量短,薄件焊接时焊枪可不作摆动,但厚板多层焊时,为使熔敷金属与母材及前道焊缝充分熔合,焊枪仍可适当的摆动。为保证单面焊完全焊透需要用带凹形槽的铜衬垫,通以保护气体进行反面保护。为加强焊接区的保护效果,也可在焊嘴后侧加一辅助输入保护气体的拖罩。
②使用焊条电弧焊时焊接镍基合金时,由于焊条含合金元素多,且要求防止热裂纹,一般镍基合金焊条的药皮类型为碱性药皮,采用直流反接。为了防止合金元素的烧损和控制线能量,焊接时要求尽可能采用小规范,与同规格的不锈钢焊条相比,电流可降低20%~30%。由于液态金属的流动性差,为防止未熔合和气孔等缺陷,一般要求在焊接过程中适当摆动,但不能过大。在焊缝接口再引弧时,应采用反向引弧技术,以利调整接口处焊缝平滑并且能有利于抑制气孔的发生。采用逆向收弧,把弧坑填满,防止弧坑裂纹,必要时要对弧坑进行打磨。
二、钛及钛合金的焊接
钛及钛合金具有良好的耐腐蚀性能,在氧化性、中性及有氯离子介质中,其耐腐蚀性优于不锈钢,有时甚至为普通奥氏体不锈钢1Cr18Ni9Ti的10倍。工业纯钛塑性好,但强度较低,具有良好的低温性能,其线膨胀系数和热导率都不大,这都不会给焊接带来困难。钛合金的比强度大,又具有良好的韧性和焊接性,在航天工业中应用最为广泛。钛及钛合金在我国现行标准中按其退火态的组织分为α钛合金、β钛合金和α+β钛合金三类,分别用TA、TB和TC表示。在石化行业中的压力容器设备中,牌号为TA2这种工业纯钛使用为居多。
1、钛及钛合金的焊接特点
①杂质元素的沾污引起脆化
钛是一种活性元素,特别是在焊接高温下非常容易吸收氮、氢、氧,从而使焊缝的硬度、强度增加,塑性、韧性降低,引起脆化。碳也会与钛形成硬而脆的TiC,易引起裂纹。因此,钛及钛合金焊接时必须进行有效的保护,防止空气或其他因素的污染。因此钛及钛合金焊接不能采用气焊或焊条电弧焊方法进行,否则接头满足不了焊接质量要求,一般只能采用氩气保护或在真空下焊接。
②焊接相变引起的接头塑性下降
常用的工业纯钛为α合金,焊接时由于钛导热差、比热小、高温停留时间长、冷却速度慢,易形成粗大结晶;若采用加速冷却,又易产生针状α组织,也会使塑性下降。
③产生焊接裂纹
钛合金焊接时产生的焊接热裂纹的几率极小,只有当焊丝或母材质量不问题时才可能产生热裂纹。由氢引起的冷裂纹是钛合金焊接时应注意防止的,焊接时熔池和低温区母材中的氢向热影响区扩散,引起热影响区含氢量增加,造成热影响区出现延迟裂纹。
④气孔
钛及钛合金焊接时气孔是最常见的焊接缺陷。焊丝或母材表面清理不干净或氩气不纯都会造成气孔产生,因此保护气-氩气纯度要求在99.99%以上,焊丝及工件表面要酸洗、净水冲洗后烘干。
2、钛及钛合金的钨极氩弧焊
钛及钛合金焊接时采用最多的就是钨极氩弧焊,对于较厚的工件也可采用熔化极氩弧焊,对于技术要求严格的航天工业中一些重要设备经常也采用真空电子束焊接。
①焊丝的选用。焊丝的选用应使在正常焊接工艺下的焊缝在焊后状态的抗拉强度不低于母材退火状态的标准抗拉强度下限值,焊缝焊后状态的塑性和耐蚀性能不低于退火状态下的母材或与母材相当,焊接性能良好,能满足钛容器制造和使用的要求。
焊丝中的氮、氧、碳、氢、铁等杂质元素的标准含量上限值应大大低于母材中杂质元素的标准含量上限值。不允许从所焊母材上裁条充当焊丝,应采用JB/T4745-2002《钛制焊接容器》中附录D中的焊丝用作钛容器用焊丝。杂质元素含量不高于JB/T4745-2002中附录D的其他标准的焊丝也可使用。
一般情况下可按表根据所焊母材牌号来选择相应的焊丝牌号,并通过JB/T4745-2002中附录B的焊接工艺评定验证。
不同牌号的钛材相焊时,一般按耐蚀性能较好和强度级别较低的母材去选择焊丝材料。
②保护气体的选用。焊接用氩气纯度不应低于99.99%,露点不应高于-50℃,且符合GB4842-1984的规定。当瓶装氩气的压力低于0.5MPa时不宜使用。
③钨极。钨极氩弧焊时推荐采用铈钨电极。电极直径应根据焊接电流大小选择,电极端部应为圆锥形。
钛及钛合金氩弧焊时,最关键的是要将焊接高温区与空气隔离开,为了有效地进行保护,焊炬喷嘴、拖罩和背面保护装置通以适量流量的氩气是极其重要的。焊缝及近缝区颜色是衡量保护效果的标志,银白色、浅黄色表示保护效果好,深黄色为轻微氧化,一般情况下还是允许的,金紫色表示中度氧化,深蓝色表示严重氧化,至于灰白色是不允许的,表示焊缝已经变质,必须报废重焊。
三、铝及铝合金的焊接
压力容器中常用纯铝、铝-锰合金和铝-镁合金。铝锰合金仅可变形强化,其强度比纯铝略高,成形工艺及耐蚀性、焊接性好。铝镁合金仅可变形强化,其ω(Mg)一般为0.5%~7.0%,与其他铝合金相比,铝镁合金具有中等强度,其延性、焊接性能、耐蚀性良好。
铝在空气和氧化性水溶液介质中,表面产生致密的氧化铝钝化膜,因而在氧化性介质中具有良好的耐蚀性。铝在低温下与铁素体钢不同,不存在脆性转变,铝容器的设计温度可达-269℃。
1、铝及铝合金焊接特点
铝极易氧化,在常温空气中即生成致密的A12O3薄膜,焊接时造成夹渣,氧化铝膜还会吸附水分,焊接时会促使焊缝生成气孔。焊接时,对熔化金属和高温金属应进行有效的保护。
铝的线膨胀系数约为钢的2倍,铝凝固时的体积收缩率也比钢大得多,铝焊接时熔池容易产生缩孔、缩松、热裂纹及较高的内应力。
铝及铝合金液体熔池易吸收氢等气体,当焊后冷却凝固过程中来不及析出,在焊缝中形成气孔。
当母材为变形强化或固溶时效强化时,焊接热影响区强度将下降。
2、焊接方法
铝及铝合金适用的方法很多,压力容器上施焊时,经常采用钨极氩弧焊和熔化极气体保护焊,这两种焊接方法热量比较集中,电弧燃烧稳定,由于采用隋性气体,保护良好,容易控制杂质和水分来源,减少热裂纹和气孔的发生,焊缝质量优良,钨极氩弧焊一般用于薄板,熔化极气体保护焊用于厚板。
3、焊丝材料
选用的焊丝应使焊缝金属的抗拉强度不低于母材(非热处理强化铝为退火状态,热处理强化铝为指定值)的标准抗拉强度下限值或指定值,并使焊缝金属的塑性和耐蚀性不低于或接近于母材,或满足图样要求。
为保证焊缝的耐蚀性,在焊接纯铝时宜用纯度与母材相近或纯度比母材稍高的焊丝。在焊接铝镁合金或铝锰合金等耐蚀铝合金时,宜采用含镁量或含锰量与母材相近或比母材稍高的焊丝。
焊丝可从GB/T10858-1989《铝及铝合金焊丝》中选取,也可从化学成分与变形铝及铝合金相同(符合GB/T3190-1996《变形铝及铝合金化学成分》)的丝材中选取,如按(GB/T3197-2001《焊条用铝合金线》。
常用的保护气体有氩气和氮气,其气体纯度应大于99.9%。
由于铈钨极化学稳定性好,阴极斑点小,压降低,烧损少,易于引弧,电弧稳定性好。宜选用铈钨极。
三、铜及铜合金的焊接
常用的铜及铜合金有四种:纯铜,黄铜,青铜和白铜。在压力容器中纯铜与黄铜使用较多。
纯铜是ω(Cu)不低于99.5%的工业纯铜,具有良好的导电性、导热性,良好的常温和低温塑性,以及对海水等的耐腐蚀性,纯铜中的杂志如氧、硫、铋等都不同程度地降低纯铜的优良性能,增加材料的冷脆性和接头中出现热裂纹的倾向。黄铜系铜和锌组成的二元合金,黄铜与纯铜强度、硬度和耐腐蚀能力都高,且具有一定塑性,能很好承受热加工和冷加工,ω(Zn)在<30%~40%的黄铜具有α相与少量的β相,因而提高了强度、塑性、耐蚀性、但对焊接性不利。
1、铜及铜合金焊接特点
铜及铜合金导热率高,线胀系数和收缩率大,当焊接线能量不足时,则容易产生未熔合、未焊透,焊后变形也较严重,外观成形差。焊接时,铜能与其中杂质生成多种低熔点共晶,在焊接应力作用下产生热裂纹,杂质中以氧的危害性最大。
熔焊铜及铜合金时,由于溶解的氢和氧化还原反应引起气孔,几乎分布在焊缝的各个部位。同时,由于晶粒严重长大,杂质和合金元素的掺人,有用合金元素的氧化、蒸发,使焊接接头性能发生很大的变化。
2、焊接方法
焊接铜及铜合金需要大功率、高能束的熔焊热源,热效率越高,能量越集中愈有利,不同厚度的材料对于不同焊接方法有其适应性,薄板焊接以钨极氩弧焊、焊条电弧焊和气焊为好,中板以熔化极气体保护焊和电子束焊较合适,厚板则建议使用埋弧焊、MIG焊和电渣焊。
3、焊接材料
①焊条
焊条电弧焊用焊条分为纯铜、青铜两类,由于黄铜中的锌容易蒸发,因而极少采用焊条电弧焊。纯铜焊条型号ECu为低氢型药皮,用于焊接脱氧或无氧铜结构件,在大气及海水中具有良好的耐腐蚀性。
②埋弧焊用焊丝与焊剂
埋弧焊的特点是电热效率高,对熔池的保护效果好。大、中厚度铜焊件的焊接工艺与钢基本相同,可选用高硅高锰焊剂HJ431,但可能发生合金元素向焊缝过渡,对接头性能要求高的焊件宜选用HJ260、HJ150。焊丝则选用纯铜焊丝、青铜焊丝、焊接纯铜和黄铜。
③气体保护焊用焊丝
铜薄板和中板焊接,使用气保焊逐渐取代气焊、焊条电弧焊,电极一般采用钍钨极(EWTh-2)。焊接纯铜,一般选用含有ω(Si)0.5%,ω(P)0.15%或ω(Ti)0.3%~0.5%脱氧剂的无氧铜焊丝,如HSCu。焊接普通黄铜,采用无氧铜加脱氧剂的锡青铜焊丝,如HSCuSn。对高强度黄铜则采用青铜加脱氧剂的硅青铜焊丝或铝青铜焊丝,如:HSCuAl、HSCuSi等。
保护气体则选用氩气(Ar)或Ar+He(Ar+He混合比50/50或30/70),采用Ar+He混合气体的最大优点是可以改善焊缝金属的润湿性,提高焊接质量。由于氦气保护时输入热量比氩气保护时大,故可降低预热温度。
4、焊接工艺
①焊前要预热或在焊接过程中采取同步加热的措施。
②严格限制铜中的杂质含量,通过焊丝加人硅、锰、磷等合金元素,增加对焊缝的脱氧能力,选用能获得α+β组织的焊丝等措施防止焊接接头裂纹与减少气孔。
③控制焊后冷却速度,防止焊接变形。
『柒』 直流焊接的接线方法有哪些怎样接各适用于焊接何种材料
一、有两种,直流正接和直流反接,正接就是工件接正,反接就是工件接负,正接和反接和材料关系不大,和焊接方法有关,一般堆焊才用直流正接以条熔敷效率,还有钨极氩弧焊也用的是正接(焊接铝、镁、铝青铜等材料时用交流)以减少钨极烧损,其它方法基本用的是直流反接。
二、通常采用反接,地线接负极焊把(或焊枪 焊钳等)接正极。作为熔化极焊接,具有电弧稳定,飞溅小,熔深比工频交流焊机浅。适合所有位置焊接。
1、直流正接,作为熔化极焊接。电弧稳定性差,飞溅较大,熔深大。通常作为对热敏感金属的焊接。或者高速堆焊等特殊场合。
2、直流正接,钨极氩弧焊,钨极作为不熔化电极。电弧稳定性好,钨极烧损低。相比反接能承载大电流。,在焊接除了铝及铝合金 镁及镁合金以外金属的焊接。薄件金属焊接 ,管道打底焊等场合。
反接,钨极氩弧焊 ,钨极烧损严重,通常极少采用。
(7)为什么阴极斑点对焊接是不利的扩展阅读:
实践证明,直流反接时,工件表面的氧化膜在电弧的作用下可以被清除掉而获得外表光亮美观、成形良好的焊缝。这是因为金属氧化物逸出功小,容易发射电子,所以氧化膜上容易形成阴极斑点并产生电弧,阴极斑点有自动寻找金属氧化物的性质。
阴极斑点的能量密度很高,被质量很大的正离子撞击,使氧化膜破碎。但是,直流反接的热作用对焊接是不利的,因为钨极氩弧焊阳极热量多于阴极。
反极性时电子轰击钨极,放出大量热量,很容易使钨极过热熔化,这时假如要通过125A焊接电流,为不使钨极熔化,就需约6mm 直径的钨棒。
同时,由于在焊件上放出的能量不多,焊缝熔深浅而宽,生产率低,而且只能焊接约3mm厚的铝板。所以在钨极氤弧焊中直流反接除了焊铝、镁薄板外很少采用。
『捌』 什么是阴极清理作用
阴极清理作用是惰性气体中的电弧在以金属板(丝)为阴极的情况下,阴极斑点在金属板(丝)上扫动,除去金属表面上的氧化膜,使其露出清洁金属面,称作电弧的阴极清理作用或氧化膜的破碎作用。
当工件为负极时,表面生成的氧化膜逸出功小.易发射电子,所以阴极斑点总是优先在氧化膜处形成。工件为冷阴极材料时,阴极区有很高的电压降,因此阴极斑点能量密度相当高,远远高于阳极。
正离子在阴极电场作用下高速撞击氧化膜,使得氧化膜破碎、分解而被清理掉,接着阴极斑点又在邻近氧化膜上发射电子,继而又被清理。
使用直流正接法时没有阴极清理作用,无法焊接那些容易被氧化的铝、镁及其合金。虽然直流反接法具有阴极清理作用能够焊接铝、镁及其合金,直流反接时的焊缝熔深深、缝宽大,但增加焊接电流,又受到钨极易烧损的限制、故这类金属多采用交流TIG焊。
主要的原因是利用交流正半周期钨极发射电子有利于电弧的稳定,而交流负半周期有工件表面的阴极清理作用焊缝清理后周围的白边,就是清理作用把母材表面氧化膜去除的痕迹。
发生的范围是在惰性气体充分包围的地方,如混入空气就不发生这种作用。当惰性气体流量不足或保护欠佳时,其作用范围就会减少。
『玖』 请问电焊中的电弧吹力是怎么回事吹力的方向和焊接电流流动方向有关系吗
电弧的力学特性
电弧力不仅直接影响焊件的熔深及熔滴过渡,而且也影响到熔池的搅拌、焊缝成形及金属飞溅等,因此,对电弧力的利用和控制将直接影响焊缝质量。电弧力主要包括电磁收缩力、等离子流力、斑点力等。
1.电弧力及其作用
(1)电磁收缩力 当电流流过导体时,电流可看成是由许多相距很近的平行同向电流线组成,这些电流线之间将产生相互吸引力。如果是可变形导体(液态或气态),将使导体产生收缩,这种现象称为电磁收缩效应,产生电磁收缩效应的力称为电磁收缩力。这个电磁收缩力往往是形成其他电弧力的力源。
焊接电弧是能够通过很大电流的气态导体,电磁效应在电弧中产生的收缩力表现为电弧内的径向压力。通常电弧可看成是一圆锥形的气态导体。电极端直径小,焊件端直径大。由于不同直径处电磁收缩力的大小不同,直径小的一端收缩压力大,直径大的一端收缩压力小,因此将在电弧中产生压力差,形成由小直径端(电极端)指向大直径端(工件端)的电弧轴向推力。而且电流越大,形成的推力越大。
电弧轴向推力在电弧横截面上分布不均匀,弧柱轴线处最大,向外逐渐减小,在焊件上此力表现为对熔池形成的压力,称为电磁静压力。这种分布形式的力作用在熔池上,则形成碗状熔深焊缝形状。
(2)等离子流力 高温气体流动时要求从电极上方补充新的气体,形成有一定速度的连续气流进入电弧区。新加入的气体被加热和部分电离后,受轴向推力作用继续冲向焊件,对熔池形成附加的压力,如图1-8所示。熔池这部分附加压力是由高温气流(等离子气流)的高速运动引起的,所以称为等离子流力,也称为电弧的电磁动压力。
等离子流力可增大电弧的挺直性,在熔化极电弧焊时促进熔滴轴向过渡,增大熔深并对熔池形成搅拌作用。
(3)斑点力 电极上形成斑点时,由于斑点处受到带电粒子的撞击或金属蒸发的反作用而对斑点产生的压力,称为斑点压力或斑点力。
阴极斑点力比阳极斑点力大,主要原因是:①阴极斑点承受正离子的撞击,阳极斑点承受电子的撞击,而正离子的质量远大于电子的质量,且阴极压降一般大于阳极压降,所以阴极斑点承受的撞击远大于阳极斑点;②阴极斑点的电流密度比阳极斑点的电流密度大,金属蒸发产生的反作用力也比阳极斑点大。
由于阴极斑点力大于阳极斑点力,所以在直流电弧焊时可通过采用反接法来减小这种影响。熔化极气体保护焊采用直流反接,可以减小熔滴过渡的阻碍作用,减少飞溅,钨极氩弧焊采用直流反接,由于阴极斑点位于焊件上,正离子的撞击使电弧具有阴极清理作用。
电弧的气体吹力
这种力出现在焊条电弧焊中。焊条电弧焊时,焊条药皮的熔化滞后于焊芯的熔化,这样在焊条的端头形成套筒。此时药皮中造气剂产生的气体及焊芯中碳元素氧化的CO气体在高温作用下急剧膨胀,从套筒中喷出作用于熔滴。不论是何种位置的焊接,电弧气体吹力总是促进熔滴过渡。
吹力的方向和焊接电流流动方向关系不大.
『拾』 焊接电弧的特点有哪些
01
阴极区
为保证焊接电弧稳定燃烧,阴极区的任务是向弧柱区提供电子流和接受弧柱区的正离子流。在焊接时,阴极表面存在一个烁亮的辉点,称为阴极斑点。阴极斑点是电子发射源,也是阴极区温度最高的部分,一般可达2130℃~3230℃,放出的热量占焊接总热量的36%左右。阴极温度的高低主要取决于阴极的电极材料,一般都低于材料的沸点。此外,电极的电流密度增加,阴极区的温度也相应提高。
02
阳极区
阳极区的任务是接受弧柱区过来的电子流和向弧柱区提供正离子流。在阳极表面上的光亮辉点称为阳极斑点。阳极斑点是由于电子对阳极表面撞击而形成的。一般情况下,与阴极比较,由于阳极能量只用于阳极材料的熔化和蒸发,无发射电子的能量消耗,因此在和阴极材料相同时,阳极区温度略高于阴极区。阳极区的温度一般可达2330℃~3980℃,放出的热量占焊接总热量的43%左右。
03
弧柱区
弧柱区是处于阳极区和阴极区之间的区域。弧柱区起着电子流和正离子流的导电通路作用。弧柱温度不受材料沸点的限制,而取决于弧柱区中气体介质和焊接电流。焊接电流越大,弧柱中电离程度就越大,弧柱温度就越高。弧柱区的温度可达5730℃~7730℃,放出的热量占焊接总热量的21%左右。
04
电弧电压
电弧电压是阴极区、阳极区和弧柱区的电压降之和。