⑴ 什么是焊接热裂纹
焊接热裂纹(welding hot breaking)多产生于接近固相线的高温下,有沿晶界分布的特征,有时 也能在低于固相线的温度下沿着“多边化边界”形成。 焊接热裂纹通常产生于焊缝金属内,也可能在焊接熔 合线邻近的热影响区组织内(母材金属)。按裂纹产生 的机理、形态和温度区间不同,焊接热裂纹可分为:凝 固裂纹,液化裂纹,多边化裂纹和失塑裂纹4种。
凝固裂纹又称结晶裂纹,产生在焊缝金属凝固 过程后期的脆性温度区间。此时焊缝金属结晶接近完 成,但晶粒间尚存在着很薄的液相层,塑性很低。当由 冷却不均匀收缩而产生的拉伸变形超过临界值时,即 沿晶界液相层开裂。这种裂纹大多起源于树枝状晶的 最终汇合处,沿晶间扩展,严重时裂纹一直扩展到焊缝 表面,因而凝固裂纹断口上可发现明显的氧化色。凝固 裂纹常出现在含硫、磷(有时含硅,碳)较多的碳钢焊缝 中和单相奥氏体不锈钢、耐热钢、镍基合金及铝合金焊 缝中。防止凝固裂纹发生的冶金措施有:调整成分,细 化晶粒,严格控制会形成低熔点共晶的杂质元素含量, 以提高金属材料在脆性温度区间的塑性,缩小脆性温 度区间,并从焊接构件设计和焊接工艺上设法尽量减 少在脆性温度区间的拉伸应变。 液化裂纹在邻近焊接熔池的母材区或多层焊的 前一焊道上,因受焊接热影响而发生晶界液化,并在拉 伸应变下形成裂纹。
造成液化裂纹的原因是:(l)金属 材料的晶粒边界聚集较多的低熔点物质。(2)由于快速 加热使某些金属化合物分解而来不及扩散,局部晶界 产生某些合金元素的富集而达到共晶成分,使局部组 织的熔点下降,在焊接热影响下促使局部晶界液化。防 止液化裂纹产生的措施有:严格控制母材的杂质含量; 合理选用焊接材料;制定合理的焊接工艺规范,尽量减 少焊接热作用。 多边化裂纹在焊缝金属凝固结晶不平衡的条件 下,在低于固相线温度的高温区域,沿多边形化边界形 成的热裂纹。它与一次结晶的晶界无明显关系,较多产 生于单相奥氏体金属中。
多边化裂纹形成的原因是:由 于焊接的高温过热和不平衡的结晶条件,使奥氏体结 晶中形成大量空位和位错,在一定温度和应力作用下 排列成亚晶界—多边形化晶界,当此晶界与有害杂 质富集区重合时,往往会在拉应力作用下形成多边化 裂纹。防止多边化裂纹的措施有:加入可提高多边化激 活能的合金元素,如在镍一铬基单相奥氏体金属中加入 适量的钨、铝或担等元素,使多边形化晶界来不及形 成,可以有效地避免产生多边化裂纹;同时还应减少焊 接过热和焊接应力。 失塑裂纹又称高温低塑性裂纹。在焊接热影响 区或多层焊的前一焊道上,因焊接热循环的作用致使 塑性陡降,在拉伸应力下沿二次结晶晶界形成的热裂 纹。其裂纹敏感温度区域略低于再结晶温度。多数发生 在奥氏体钢和合金及少数高强度钢的焊接接头中。其 裂纹产生条件有些类同于多边化裂纹,但其裂纹形成 机制和裂纹形态却各不相同。防止此种裂纹的有效措 施是:精炼母材,减少有害杂质。
⑵ 电焊焊接时存在接裂纹是什么原因应该怎么处理
开裂的原因如下:
(1)由于异种母材的热膨胀系数不同,冷却过程中形成的内应力专过大属。
(2)同种材料焊接加热不均匀,造成冷却过程中收缩不一致。
(3)焊缝正在凝固时,零件相互错动。
(4)结晶温度间隔过大。
(5)焊缝脆性过大。
应该找出原因是避免裂纹的重要一步。 焊材的选择 焊前清理 预热 后热 以及锤击会减少裂纹的发生先确定裂纹的方向尺寸走向,然后用砂轮打磨去除全部的裂纹(长度方向 深度方向),然后再用正确的焊材焊接。
⑶ 什么是焊接冷裂纹,特点和产生的原因及裂纹的防止措施
什么是冷裂纹
冷裂纹是指焊接接头冷却到较低温度(对钢来说在温度以下)时,产生的焊接裂纹。
冷裂纹的特点:
(1)冷裂纹发生在焊接之后,形成的温度约在200一300℃以下,即马氏体转变温度范围。
(2)冷裂纹大多产生在基本金属上或基本金属与焊缝交界的熔合线上。
(3)露在接头金属表面的冷裂纹裂口发亮,裂纹断面上无明显的氧化痕迹。
(4)冷裂纹可能发生在晶界上,也可能贯穿晶粒内部。
碳当量等于或大于0.40%的低合金钢、中高碳钢、合金钢、工具钢和超高强度钢等钢种在焊接时易产生冷裂倾向,而形成冷裂纹。
冷裂纹产生的原因:
(1)焊缝中的氢在结晶过程中要向热影响区扩散、聚集。
(2)如果被焊材料的淬透性较大,则焊后冷却下来时,在热影响区形成马氏体组织,其性脆而硬。
(3)焊接时的残余应力。
这三个因素(氢、淬硬组织和应力)的综合作用,就会导致冷裂纹的产生。氢在金属里的扩散速度有快有慢,因此冷裂纹产生的时间也不同。有的在焊后冷却过程中产生,有的甚至放置一段时间后才产生,故又称为延迟裂纹。
防止冷裂纹的措施:
(l)焊前预热和焊后缓冷。
(2)采用减少氢的工艺措施。
(3)合理选用焊接材料。
(4)采用适当的工艺参数。
(5)选用合理的装焊顺序。
(6)进行焊后热处理。
⑷ 什么是焊接裂纹,裂纹对材料的性能有什么影响
焊接裂纹就是焊缝或热区母材开裂,分为热裂纹,冷裂纹。一般是由于焊材选择不当或焊接工艺不合理.热处理不合理造成。裂纹是焊接中严禁出现的缺陷,对材料的性能轻者开裂断掉,严重后果不堪设想。
⑸ 什么叫焊接裂纹
焊接裂纹,焊接件中最常见的一种严重缺陷
按裂纹形成的条件,可分为热裂纹、冷裂纹、
再热裂纹和层状撕裂等四类。
⑹ 焊接后焊件出现裂纹是什么原因
这个原因太多了,可以做好几个课题。
一般有冷裂纹,热裂纹,和延迟裂纹
普通结构钢,专碳钢,一般是冷裂纹,属结构原因,坡口设计太窄等都可能;
热裂纹一般不锈钢比较多,原因是低熔点共晶的存在,就是坡口没清理干净;
延迟裂纹在耐热钢中很常见,也很难处理,关键要做好焊前预热,控制层间温度,焊后保温缓冷;
这个是我干焊接10年的总结,细节上具体情况就需要具体分析了。
⑺ 焊接裂纹的特征是具有什么
你好,焊接裂纹的特征是:热裂纹是中间宽两头窄,带有分枝的弯曲状。(沿晶而过)冷裂纹是一条直线,也是中间大两头尖。(穿晶而过)
⑻ 焊缝裂纹怎么回事
热裂纹:产生地点:与与鱼鳞状波纹线相垂直,段口由高温发黑的氧化颜色
. .原因:金属版在结晶过程中权,高熔点物质先结晶,低熔点物质后结
晶,接近终了时,晶界间一些低熔物质液化膜被焊接应力所拉裂.低熔点物质主要母
体熔入焊缝材料(碳,硫,磷).防止热裂纹措施:①采用小电流,减少熔深,降低母材在缝中的比例②快焊速,不做太大横向摆动③采用碱性焊条,提高抗裂性
冷裂纹:产生地点近焊缝区的母体上或焊缝接触处落弱处
原因:母体近焊区受到焊接热影响,温度高,冷却速度快,结果产
生低塑性淬硬组织,当工件刚度较大时,会引起大的焊接应力常常引起裂纹.防止
措施:①焊前预热,可减少母体与焊缝的温差②细焊条,小电流,断续低焊区温度③坡口开得小.减少填充金属,降低收缩应力
⑼ 焊接裂纹的原因
焊接裂纹产生原因有很多,种类有:冷裂纹、热裂纹、再热裂纹等。比如:
焊条电弧焊裂纹出现原因:
(1)焊件含有过高的碳、锰等合金元素.
(2)焊条品质不良或潮湿.
(3)焊缝拘束应力过大.
(4)母条材质含硫过高不适于焊接.
(5)施工准备不足.
(6)母材厚度较大,冷却过速.
(7)电流太强.
(8)首道焊道不足抵抗收缩应力.
处理方法:
(1)使用低氢系焊条.
(2)使用适宜焊条,并注意干燥.
(3)改良结构设计,注意焊接顺序,焊接后进行热处理.
(4)避免使用不良钢材.
(5)焊接时需考虑预热或后热.
(6)预热母材,焊后缓冷.
(7)使用适当电流.
(8)首道焊接之焊着金属须充分抵抗收缩应力.
⑽ 电焊焊接接裂纹是怎么形成的,请高手指点
这个焊接接头出现了表面裂纹。焊接裂纹是最严重的一种焊接缺陷,所以对于重要部件,焊接后要求探伤等检查。
焊接裂纹产生的原因很多,也很复杂,下面对其进行一个概说:
1。焊接裂纹的分类:
焊接裂纹根据其部位、尺寸、形成原因和机理的不同,可以有不同的分类方法。按裂纹形成的条件,可分为热裂纹、冷裂纹、再热裂纹和层状撕裂等四类。
热裂纹 多产生於接近固相线的高温下,有沿晶界(见界面)分布的特徵;但有时也能在低於固相线的温度下,沿「多边形化边界」形成。热裂纹通常多产生於焊缝金属内,但也可能形成在焊接熔合线附近的被焊金属(母材)内。
冷裂纹 根据引起的主要原因可分为淬火裂纹、氢致延迟裂纹和变形裂纹。
再热裂纹 产生於某些低合金高强度钢、珠光体耐热钢、奥氏体不锈钢以及镍基合金焊后的再次高温加热过程中。其主要原因一般认为当焊后再次加热到 500~700℃时,在热影响区的过热区内,由於特殊碳化物析出引起的晶内二次强化,一些弱化晶界的微量元素的析出,以及使焊接应力松弛时的附加变形集中於晶界,而导致沿晶开裂。因此,这种裂纹具有晶间开裂的特徵,并且都发生在有严重应力集中的热影响区的粗晶区内。为了防止这种裂纹的产生,首先在设计时要选择再热裂纹敏感性低的材料,其次从工艺上要尽量减少近缝区的内应力和应力集中问题。
层状撕裂 主要产生於厚板角焊时,见附图。其特徵为平行於钢板表面,沿轧制方向呈阶梯形发展。这种裂纹往往不限於热影响区内,也可出现在远离表面的母材中。其产生的主要原因是由於金属中非金属夹杂物的层状分布,使钢板沿板厚方向塑性低於沿轧制方向,另外由於厚板角焊时在板厚方向造成了很大的焊接应力,所以引起层状撕裂。通常认为片状硫化物夹杂危害最大,而层状硅酸盐和过量密集的氧化铝夹杂物也有影响。防止这种缺陷,主要应在冶金过程中严格控制夹杂物的数量和分布状态
2。焊接质量检查
既然焊接时会出现各种裂纹,为了保证焊接质量从而实现安全,优质的焊接生产,需要对焊接接头进行各种有效的检验。在生产中使用的针对焊接裂纹的质量检验方法列述如下:
(1)外观检验 包括尺寸检验、几何形状检测、外表伤痕检测等;
(2)耐压试验 包括水压试验和气压试验等;
(3)密封性试验 包括气密试验、载水试验、氨气试验、沉水试验、煤油渗漏试验、氨检漏试验等。
(4)磁粉检验
磁力探伤是通过对铁磁材料进行磁化所产生的漏磁场,来发现其表面或近表面缺陷的无损检测技术。
(5)着色检验
dyepenetrantinspection将溶有彩色染料的渗透剂渗入焊缝表面,清洗后,涂吸附剂,使缺陷内的彩色油液渗至表面,根据彩色斑点或条纹发现和判断缺陷的方法。着色检验是渗透探伤的一种,成本低、使用方便。使用国产着色探伤剂,可以发现宽0.01mm,深度不小于0.03~0.04mm的表面缺陷。
(6)超声波探伤
超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
(7)射线探伤
射线探伤的英文为:radiographic testing;
射线探伤包括:
一、X射线
工业射线照相探伤中使用的低能X射线机,简单地说是由四部分组成:射线发生器(X射线管)、高压发生器、冷却系统、控制系统。当各部分独立时,高压发生器与射线发生器之间应采用高压电缆连接。
二、γ射线
γ射线机用放射性同位素作为γ射线源辐射γ射线,它与X射线机的一个重要不同是γ射线源始终都在不断地辐射γ射线,而X射线机仅仅在开机并加上高压后才产生X射线,这就使γ射线机的结构具有了不同于X射线机的特点。γ射线是由放射性元素激发,能量不变。强度不能调节,只随时间成指数倍减小。
国家标准已经严格规定了各种焊接检验的方法,使用范围,焊缝级别的规范等。
3。焊接裂纹修复
多数情况下,焊接裂纹是允许且可以进行修复的。
具体操作要根据焊接材料,焊件用途,焊接部位等参照有关规定进行。