A. 为什么冷凝管中的冷却水从下口进 上口出
冷凝管中的冷水低进高出有两个好处.
一是,延长热交换时间,充分利用资源.但这不是主要的作用.
二是,高温的水密度比底温的水小,冷水如果由下而上,冷凝水就可能会因为下面密度小,有上升趋势,而倒致冷却水在管内形成湍流,不利于换热的有效进行.
而从下而上,就不会存在这个问题了.
B. 如何为模具设计完美的冷却系统
注塑成型工艺是成型塑料制品的一种常用方法,其工艺流程如图1-1所示。 从以上工艺流程可以看出,注塑成型是一个循环过程,完成注塑成型需要经过预塑、注塑、冷却定型3个阶段。 (1)预塑阶段。螺杆开始旋转,然后将从料斗输送过来的塑料向螺杆前端输送,塑料在高温和剪切力的作用下塑化均匀并逐步聚集在料筒的前端,随着熔融塑料的聚集,压力越来越大,最后克服螺杆背压将螺杆逐步往后推,当料筒前部的塑料达到所需的注塑量时,螺杆停止后退和转动,预塑阶段结束。 (2)注塑阶段。螺杆在注塑油缸的作用下向前移动,将储存在料筒前部的塑料以多级速度和压力向前推压,经过流道和浇口注入已闭合的模具型腔中。 (3)冷却定型阶段。塑料在模具型腔中经过保压,防止塑料倒流直到塑料固化,型腔中压力消失。一个生产周期中冷却定型时间占的比例最大。 注塑过程是一个周期性循环过程,每个循环内要完成模具关闭、填充、保压、冷却、开模、顶出制品等操作。其中,注塑(熔体填充)、保压和冷却是关系到能否顺利成型的3个关键环节。然而熔体的流动行为和填充特性又和填充的压力、速度以及熔体的温度密切相关,了解熔体的流动行为等相关特性,对于设计整个注塑工艺意义重大。 1.1.1 注塑工艺参数 1.注塑压力 注塑压力是由注塑系统的液压系统提供的。液压缸的压力通过注塑机螺杆传递到塑料熔体上,塑料熔体在压力的推动下,经注塑机的喷嘴进入模具的竖流道(对于部分模具来说也是主流道)、主流道、分流道,并经浇口进入模具型腔,这个过程即为注塑过程,或者称之为填充过程。压力的存在是为了克服熔体流动过程中的阻力,或者反过来说,流动过程中存在的阻力需要注塑机的压力来抵消,以保证填充过程顺利进行。 在注塑过程中,注塑机喷嘴处的压力最高,以克服熔体全程中的流动阻力。其后,压力沿着流动长度往熔体最前端波前处逐步降低,如果模腔内部排气良好,则熔体前端最后的压力就是大气压。 影响熔体填充压力的因素很多,概括起来有3类:(1)材料因素,如塑料的类型、粘度等;(2)结构性因素,如浇注系统的类型、数目和位置,模具的型腔形状以及制品的厚度等;(3)成型的工艺要素。 2.注塑时间 这里所说的注塑时间是指塑料熔体充满型腔所需要的时间,不包括模具开、合等辅助时间。尽管注塑时间很短,对于成型周期的影响也很小,但是注塑时间的调整对于浇口、流道和型腔的压力控制有着很大作用。合理的注塑时间有助于熔体理想填充,而且对于提高制品的表面质量以及减小尺寸公差有着非常重要的意义。 注塑时间要远远低于冷却时间,大约为冷却时间的1/10~1/15,这个规律可以作为预测塑件全部成型时间的依据。在作模流分析时,只有当熔体完全是由螺杆旋转推动注满型腔的情况下,分析结果中的注塑时间才等于工艺条件中设定的注塑时间。如果在型腔充满前发生螺杆的保压切换,那么分析结果将大于工艺条件的设定。 3.注塑温度 注塑温度是影响注塑压力的重要因素。注塑机料筒有5~6个加热段,每种原料都有其合适的加工温度(详细的加工温度可以参阅材料供应商提供的数据)。注塑温度必须控制在一定的范围内。温度太低,熔料塑化不良,影响成型件的质量,增加工艺难度;温度太高,原料容易分解。在实际的注塑成型过程中,注塑温度往往比料筒温度高,高出的数值与注塑速率和材料的性能有关,最高可达30℃。这是由于熔料通过注料口时受到剪切而产生很高的热量造成的。在作模流分析时可以通过两种方式来补偿这种差值,一种是设法测量熔料对空注塑时的温度,另一种是建模时将射嘴也包含进去。 4.保压压力与时间 在注塑过程将近结束时,螺杆停止旋转,只是向前推进,此时注塑进入保压阶段。保压过程中注塑机的喷嘴不断向型腔补料,以填充由于制件收缩而空出的容积。如果型腔充满后不进行保压,制件大约会收缩25%左右,特别是筋处由于收缩过大而形成收缩痕迹。保压压力一般为充填最大压力的85%左右,当然要根据实际情况来确定。 5.背压 背压是指螺杆反转后退储料时所需要克服的压力。采用高背压有利于色料的分散和塑料的融化,但却同时延长了螺杆回缩时间,降低了塑料纤维的长度,增加了注塑机的压力,因此背压应该低一些,一般不超过注塑压力的20%。注塑泡沫塑料时,背压应该比气体形成的压力高,否则螺杆会被推出料筒。有些注塑机可以将背压编程,以补偿熔化期间螺杆长度的缩减,这样会降低输入热量,令温度下降。不过由于这种变化的结果难以估计,故不易对机器作出相应的调整。
C. 注塑模具冷却系统
注塑模具的冷却系统的冷却水,在一般情况下,工作时,水是不停的在循环的。只有在冬天里,温度很低的情况下,模具本身的温度很低,这时如果再打开冷却循环水,型腔就会打不满,这时,冷却循环水才可以短时间的关闭,等到干了一段时间后,模具已经发烫了,就要把冷却水打开,再进行冷却循环。
D. 蒸馏实验中,冷凝水为什么要下进上出
冷凝管中的冷水下进上出有两个好处. (1)延长热量交换时间,使热量能更充分。(2)高温的水密度比底温的水小,冷水如果由下而上,冷凝水就可能会因为下面密度小,有上升趋势,而倒致冷却水在管内形成湍流,非常不利于换热的有效进行, 而且冷凝管会因为冷热不均导致冷凝管炸裂。
一般蒸馏汽始终保持100摄氏度,不需要及时控温,所以不需要使用温度计。
E. 注塑工艺
塑料电子零部件大都采用注射成型,由于这些塑料件本身具有较高的设计精度,使用特殊的工程塑料加工,对这些塑料件不能采用常规的注射成型,而必须采用精密注射成型工艺技术。为了保证这些精密塑料件的性能、质量与可靠性及长期使用的稳定性,注射成型出质量较高、符合产品设计要求的塑料制品,必须对塑料材料、注塑设备与模具设计及注塑工艺以及注塑现场管理进行完善。
我们通常说的精密注塑成型是指注塑制品的外型精度应满足严格的尺寸公差、形位公差和表面粗糙度。要进行精密注塑必须有许多相关的条件,而最本质的是塑料材料、注塑模具、注塑工艺和注塑设备这四项基本因素。设计塑料制品时,应首先选定工程塑料材料,而能进行精密注塑的工程塑料又必须选用那些力学性能高、尺寸稳定、抗蠕变性能好、耐环境应力开裂的材料。其次应根据所选择的塑料材料、成品尺寸精度、件重、质量要求以及预想的模具结构选用适用的注塑机。在加工过程中,影响精密注塑制品的因素主要来自模具的温度、注塑工艺控制,以及生产现场的环境温度和湿度变化幅度及后天产品退火处理等方面。
就精密注塑而言,模具是用以取得符合质量要求的精密塑料制品的关键之一,精密注塑用的模具应切实符合制品尺寸、精度及形状的要求,模具材料应严格选取。但即使模具的精度、尺寸一致,其模塑的塑料制品之实际尺寸也会因收缩量差异而不一致。因此,有效地控制塑料制品的收缩率在精密注塑技术中就显得十分重要。
注塑模具设计得合理与否会直接影响塑料制品的收缩率,由于模具型腔尺寸是由塑料制品尺寸加上所估算的收缩率求得的,而收缩率则是由塑料生产厂家或工程塑料手册推荐的一个范围内的数值,它不仅与模具的浇口形式、浇口位置与分布有关,而且与工程塑料的结晶取向性(各向异性)、塑料制品的形状、尺寸、到浇口的距离及位置有关,同时和模具冷却分布系统紧密相关。影响塑料收缩率的主要有热收缩、相变收缩、取向收缩、压缩收缩与弹性回复等因素,而这些影响因素与精密注塑制品的成型条件或操作条件有关。因此,在设计模具时必须考虑这些影响因素与注塑条件的关系及其表观因素,如注塑压力与模腔压力及充模速度、注射熔体温度与模具温度、模具结构及浇口形式与分布,以及浇口截面积、制品壁厚、塑料材料中增强填料的含量、塑料材料的结晶度与取向性等因素的影响。上述因素的影响也因塑料材料不同、其它成型条件如温度、湿度、继续结晶化、成型后的内应力、注塑机的变化而不同。
由于注塑过程是把塑料从固态(粉料或粒料)向液态(熔体)又向固态(制品)转变的过程。从粒料到熔体,再由熔体到制品,中间要经过温度场、应力场、流场以及密度场等的作用,在这些场的共同作用下,不同的塑料(热固性或热塑性、结晶性或非结晶性、增强型或非增强型等)具有不同的聚合物结构形态和流变性能。凡是影响到上述"场"的因素必将会影响到塑料制品的物理力学性能、尺寸、形状、精度与外观质量。这样,工艺因素与聚合物的性能、结构形态和塑料制品之间的内在联系会通过塑料制品表现出来。分析清楚这些内在的联系,对合理地拟定注塑加工工艺、合理地设计并按图纸制造模具、乃至合理选择注塑加工设备都有重要意义。精密注塑与普通注塑在注塑压力和注射速率上也有区别,精密注塑常采用高压或超高压注射、高速注射以获得较小的成型收缩率。综合上述各种原因,设计精密注塑模具时除考虑一般模具的设计要素外,还须考虑以下几点:①采用适当的模具尺寸公差;②防止产生成型收缩率误差;③防止发生注塑变形;④防止发生脱模变形;⑤使模具制造误差降至最小;⑥防止模具精度的误差;⑦保持模具精度。
收缩率会因注塑压力而发生变化,因此,对于单型腔模具,型腔内的模腔压力应尽量一致;至于多型腔模具,型腔之间的模腔压力应相差很小。在单型腔多浇口或多型腔多浇口的情况下,必须以相同的注塑压力注射,使型腔压力一致。为此,必须确保使浇口位置均衡。为了使型腔内的模腔压力一致,最好使浇口入口处的压力保持一致。浇口处压力的均衡与流道中的流动阻力有关。所以,在浇口压力达到均衡之前,应先使流通均衡。
由于熔体温度和模具温度对实际收缩率产生影响,因此在设计精密注塑模具型腔时,为了便于确定成型条件,必须注意型腔的排列。因为熔融塑料把热量带入模具,而模具的温度梯度分布一般是围绕在型腔的周围,呈以主流道为中心的同心圆形状。
因此,流道均衡、型腔排列和以主流道为中心的同心圆状排列等设计措施,对减小各型腔之间的收缩率误差、扩大成型条件的允许范围以及降低成本都是必要的。精密注塑模具的型腔排列方式应满足流道均衡和以主流道为中心排列两方面的要求,且必须采用以主流道为对称线的型腔排列方式,否则会造成各型腔的收缩率差异。
由于模具温度对成型收缩率的影响很大,同时也直接影响注塑制品的力学性能,还会引起制品表面发花等各种成型缺陷,因此必须使摸具保持在规定的温度范围内,而且还要使模具温度不随时间变化而变化。多型腔模具的各型腔之间的温差也不得发生变化。为此,在模具设计中必须采取对模具加热或冷却的温度控制措施,且为了使模具各型腔间的温差尽量缩小,必须注意温控-冷却回路的设计。在型腔、型芯温控回路中,主要有串联冷却与并联冷却两种连接方式。
从热交换效率来看,冷却水的流动应呈紊流。但是在并联冷却回路中,成为分流的一条回路中的流量比在串联冷却回路中的流量小,这样可能会形成层流,而且实际进入每条回路中的流量也不一定相同。由于进入各回路的冷却水温度相同,各型腔的温度也应相同,但实际上因各回路中的流量不同,且每条回路的冷却能力也不相同,致使各模腔的温度也不可能一致。采用串联冷却回路的缺点是冷却水的流动阻力大,最前面的型腔入口处的冷却水温度同最后型腔入口处的冷却水温度有明显的差别。冷却水出入口的温差因流量的大小而变化。对于加工.塑料件的小型精密注塑模具而言,一般从降低模具成本考虑,采用串联冷却回路较适宜。如果所使用的模温调节控制仪(机)的性能能在2℃内控制冷却水的流量,则各型腔的温差最大也可保持在2℃范围内。
模具型腔和型芯应有各自的冷却水回路系统。在冷却回路的设计上,由于从型腔和型芯上所摄取的热量不同,回路结构的热阻力也不一样,型腔与型芯入口处的水温会产生很大的温差。若采用同一系统,冷却回路设计也较困难。一般.塑料件用的小型注塑模具型芯都很小,采用冷却水系统有很大的困难。如有可能,可以采用被青铜材料制造型芯,对实心铍青铜型芯则可采用插入式冷却的方法。另外,在对注塑制品采取防止翘曲的对策时,也希望型腔与型芯之间保持一定的温差。因此设汁型腔与型芯的冷却回路时应能分别进行温度的调节和控制。为了保持在注塑压力、锁模力下的模具精度,设计模具结构时必须考虑对型腔零件进行磨削、研磨和抛光等加工的可行性。尽管型腔、型芯的加工已经达到高精度的要求,而且收缩率也同所预计的一样,但由于成型时的中心偏移,其所成型的制品内侧、外侧的相关尺寸都很难达到塑料零部件的设计要求。为了保持动、定模型腔在分型面上的尺寸精度,除了设置常规模具所常用的导柱、导套定中心外,还必须加装锥形定位销或楔形块等定位以确保定位精度准确、可靠。
精密注塑技术是塑料零部件的主要和关键生产技术,而精密注塑模具的设计是这项生产技术的主要部分,合理地设计精密注塑模具是获得精密制品的基础和必要前提。通过合理地确定模具的尺寸与公差、采取防止注塑制品产生收缩率误差、注塑变形、脱模变形、溢边等,以及确保模具精度等技术措施,并采用正确的精密注塑工艺、适用的工程塑料材料和精密的注塑设备,使之达到最佳的匹配!
转自中国塑料助剂商情网
参考资料: http://www.paddic.com
F. 模具水道设计有什么规律
冷却水道设计规律:
①在允许的条件下,冷却水道距型腔壁不宜太远,也不宜太近,以免影响冷却效果和注塑模具的强度,通常在12-20mm范围内。
②注意平衡注塑模具中塑料注塑加工件不同部位的冷却。同一塑料注塑加工件的不同部位的冷却应与塑料注塑加工件的厚度相匹配,当制件壁厚均匀时,尽可能使所有的冷却水道到各处型腔表面的距离相等。当制件壁厚不均匀时,在壁厚处开设距离较小的冷却水道。
③冷却水道不应穿过设有镶块或其接缝部位,以防漏水。
④冷却水道内不应有存水或产生回流的部位。冷却孔道直径一般不小于8mm,进水管直径的选择,应使进水流速不超过冷却孔道中的水流速度,避免产生过大的压降。
⑤型腔、型芯或成形芯应分别冷却,并应保证其冷却平衡.
⑥浇口部位是注塑模具上最热的部位,应加强冷却,一般将冷却水的人口设在浇口处,使冷却水先通过浇口处.
⑦避免将冷却水道开在注塑加工制品的熔合纹处,以免降低注塑加工制品此处的强度。
⑧进、出水的水管接头应设在不影响操作的方向,尽可能设在注塑模具的同一侧,通常朝向注塑加工机的背面。
⑨水管连接处必须密封,保证不漏水。
⑩当注塑模具仅设一个人水口和一个出水口时,冷却管道应进行串联连接,并联连接因各回路的流动阻力不同,很难形成相同的冷却条件。
G. 湍流理论的湍流的起因
层流过渡为湍流的主要原因是不稳定性。在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而形成湍流斑,扰动继续增强,最后导致湍流。这一类湍流称为剪切湍流。两平板间的流体受下板面加热或由上板面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发展的湍流。这一类湍流称热湍流或对流湍流。边界层、射流以及管道中的湍流属于前一类;夏天地球大气受下垫面加热后产生的流动属于后一类。为了弄清湍流过渡的机制,科学家们开展了关于流动稳定性理论(见流体运动稳定性)、分岔(bifurcation)理论和混沌(chaos)理论的研究,还进行了大量实验研究(见湍流实验)。对于从下加热流层而向湍流过渡的问题,原来倾向于下述观点:随着流层温差的逐渐增加,在发生第一不稳定后,出现分岔流态;继而发生第二不稳定,流态进一步分岔;然后第三、第四以及许多更高程度的不稳定接连发生;这种复杂的流动称为湍流。实验结果支持这一论点。但是,这一运动过程在理论上得不出带有连续谱的无序运动,而与实验中观察到的连续谱相违。对不稳定系统的理论分析提出了另一种观点:在发生第一、第二不稳定之后,第三不稳定就直接导致一个可解释为湍流的无序运动。这一观点也得到实验的支持。剪切流中湍流的发生情况更为复杂。实验发现,平滑剪切流向湍流过渡常会伴有突然发生的、作奇特波状运动的湍流斑或称过渡斑。可以设想,许多逐渐形成的过渡斑,由于一再出现的新的突然扰动而互相作用和衰减,使混乱得以维持。把过渡斑作为一种孤立的非线性波动现象来研究,有可能对湍流过渡现象取得较深刻的理解。因此,存在着不止一条通向湍流的途径。过去认为,一个机械系统发生无序行为往往是外部干扰或外部噪声影响的结果。然而,观察到:在某个系统里进行确定的基本操作会导致混乱的重复发生。这类系统可认为含有一个能吸引系统维持混乱的奇怪吸引子。这种混乱现象称为短暂混沌。预期对这种短暂混沌的可普遍化特性的研究将会得到说明完全发展的无序现象(湍流)的新线索。
H. 在进行CFD计算的时候,请问为什么要有湍流模型湍流模型的作用是什么
CFD是应用数值求解N-S方程来获得全场的参数的。
在湍流的N-S方程中雷诺应力方程的加入使求解不封闭(通俗讲就是解不了),因此就有人建立了相应地湍流模型来进行模化,从而求解整个流场。
CFD中的不同内湍流模型对于不同流动问题的求解有着不同的精度,因此需要选择和求解问题相应地湍流模型来进行求解,以获得较高的精度。
具体讲常用的工程湍流模型有S-A模型、k-epsilon模型等等
想要了解更多容可以参考高等流体力学,计算流体动力学、或者相关的CFD软件帮助
I. 模具接冷却水、油温问题
材料没有关系,冷却水与模温机是控制模具温度的,有利于产品稳定,恒定的温度有利于成型,一般光洁度高产品精度高的都用模温器,这样稳定,如果没有这些措施模具温度高了会出废边,低了料不足,差数不好设置
J. 模具在注塑时运水在流动吗
注塑的时候是不流动的。只有在冷却时间段才会流动,这是注塑基本的常识问题。
注塑周期中有以下几个时间段:合模》注塑填充》保压》冷却》开模》顶出。只有在冷却时间段,注塑机才打开水阀,其他时间段都是关闭的,但关闭不代表水管里没有水,只是不流动而已