Ⅰ 如何建立虚拟数控机床加工仿真系统
摘要:该文首先阐述了虚拟数控加工过程物理仿真的研究内容,其次重点讨论了所建立的切削力仿真,刀具磨损仿真与变形仿真,加工误差仿真,振动仿真和切屑形成过程仿真的数学模型。最后,提出了物理仿真今后研究的方向。
1 引言
虚拟数控加工(VNC)过程物理仿真是虚拟制造(VM)单元和虚拟制造系统基础核心技术,越来越受到各国学者的重视。虚拟数控加工过程的仿真包括数控(NC)代码仿真,几何仿真和物理仿真。数控代码仿真是虚拟数控加工过程的一个重要环节,通过它可以检查数控程序的正确性及实现碰撞、干涉检验,大大节省数控程序的调试时间,减少昂贵的试切用度,进步数控机床的安全性等。几何仿真是数控加工过程仿真的条件,通过刀具扫略体和工件模型连续的布尔运算可得切屑的往除加工过程仿真,它也提供了物理仿真评估切削力和加工误差所需的主要参数。物理仿真主要是力学仿真,它是虚拟数控加工过程仿真的核心部分,其内涵就是综合考虑实际切削中的各种因素,建立与实际切削拟合程度高的数学模型,从真正意义上实现虚拟加工与实际加工的“无缝连接”,满足虚拟数控加工的沉醉感和交互性。只有对物理仿真的机理研究透彻,才能真正意义上的满足虚拟制造的目的即实际加工过程在计算机上的真实映射。
2 物理仿真的研究内容体系
物理仿真的主要内容包括切削力仿真、加工误差仿真、切屑的天生过程仿真、刀具的偏移、变形和磨损仿真、及数控切削机床的振动与温度仿真等。其仿真体系结构。
3 虚拟数控加工物理仿真的模型
3.1 切削力仿真模型
在切削力的仿真中,关于切削力的模型,有人以为,刀具受的切削力可以看做是单位时间材料往除率的函数。首先在刀具上建立笛卡儿坐标系,刀刃上受到三个正交力。
Ft=KtSt Fr=KrSr Fa=KaSa (1)
式中:St、Sr、St——切屑在三个坐标平面上的投影面积。
Kt、Kr、Ka——从金属切削中得到的材料和切削速度参数。
上述切削力仿真的方法经过S.Jayaram的研究对于三轴以上的数控机床切削力误差较大,因此此仿真方法只适应于三轴和三轴以下的数控机床的切削力仿真。
Hirohisa基于刀具沿轴向的切削力均匀分布假设的基础上提出了一种将刀具分成很多部分的切削力仿真模型。本文在此基础上利用有限元法(FEM)建立切削力模型,将刀具切削刃划分成若干微元对其中一个微元做受力分析。那么由第j个刀具微元的切向力dFtj(θ, z),径向力dFrj(θ, z)和轴向力dFaj(θ, z)可以得出基本的切削力。
dFtj(θ, z)=[Kte+Ktchj(θ, z)]dz=[Kte+KtcStsinθj]dz
dFrj(θ, z)=[Kre+Krchj(θ, z)]dz=[Kre+KrcStsinθj]dz
dFaj(θ, z)=[Kae+Kachj(θ, z)]dz=[Kae+KacStsinθj]dz (2)
上式中Kte、Kre、Kae,Ktc、Krc、Kac代表切削系数,可由切削测试中的各种进给速度得出。hj(θ, z)=Stsinθj是未切削工件的厚度。dz是刀具的轴向长度微分。St每一刀具微元的进给量。上面(2 )式通过求解微分方程可得出刀具在三个方向的瞬时切削力。刀具在三个方向的受力总和通过所有微元在x、y、z方向瞬时切削力的总和求出。
3.2 加工误差的模型
工件加工误差受到很多因素的影响,这给加工误差仿真带来了很多困难,由于要精确仿真出加工误差,不但要考虑每一单项因素对加工误差的影响而且还得综合考虑各因素的权重。C.Anderssson对定位误差和刀具磨损对工件精度的仿真模型分别作了较为具体的研究,Huaizhong Li对机床热变形和振动对工件加工误差的模型作了深人的研究等。影响加工误差的因素还包括机床运动精度误差、刀具尺寸误差以及主轴偏移、导轨变形、夹紧力、刀具、零件热变形和弹性变形误差及加工方法引起的误差等。基于上述研究对这些单项误差按模糊理论进行模糊综合评判得出影响工件加工精度的总误差模型。
(3)
式中,x(t)、y(t)、z(t)为时刻t 是工件表面上天生点的位置,Wi表示第i个误差叠加时的权重,Ei[x(t), y(t), z(t)]表示第i个误差在时刻t 的误差值。上式又可表达为影响刀具位置和姿态的自变量为时间t的误差函数:
(4)
这样可以在虚拟加工中融人误差并方便的计算出时间t时工件上某点的加工误差。然后将产品的理论模型与毛坯往除材料后得到的加工模型求差可得加工误差模型。在VNC 机床加工过程中,加工误差模型按误差大小用不同的颜色表示加工区域,通过对其进行检查,可对加工误差的大小及其可能产生的原因进行分析评判,并为产品的可制造性评估提供依据。
3.3 切屑天生过程的模型
切屑天生过程的实时仿真是虚拟数控加工与实际加工“无缝连接”和同步显示的主要环节切屑的天生、卷取、折断以及天生的外形受到很多因素的影响,比如与刀具的几何外形、切削液、工件和刀具的材料工件和刀具间的摩擦力以及应力厂司和应变阔、切屑的天生机理和热变形等因素有关,这一研究结果已被很多学者采用。C.Andersson的研究发现当切屑的厚度非常小时(小于2μm)切屑的厚度与切削力是线性关系,关系式为:
Cr=Fr/[(nz+1)·h1n·b1i (5)
由于已经证实了FH和h1n之间的线性关系,所以用Cr代替关系式中的FH得到:
Cr=Cr1+Cr2/H1n (6)
式中,Cr为主切削力,Cr1, Cr2为切削力的系数常量,H1n切屑厚度。
但这一方面研究仍在继续深进。CIRP工作组在1998年的Keynote Paper中的建议从以下几个方面进一步加强研究。
对切削和切屑形成的机理及毛边和碎片的控制、抑制方法作进一步深人的研究。
加强有限元法(FEM)、混沌理论(Choas Theory)、人工神经网络(ANN))、及遗传算法(GA)在切屑天生机理和仿真中应用的研究。
规范切屑的结构分类和标准建立全球同一的切屑试验参数数据库。
3.4 刀具的磨损和偏移
刀具的磨损模型
刀具的磨损仿真是估算刀具寿命的有效方法,它可以省往繁杂的切削试验既经济又省时,它也是选择刀具与切削条件的有洲衣据。根据硬质渗碳钢在数控铣床上的切削实验,刀具的磨损既有坑状磨损又有平面磨损。实验数据表明每单位进给间隔和单位面积的刀具磨损体积dw/dl与切削温度θ和压应力σ有关,即:
dw/dl=c1σtexp(-c2/θ) (7)
式中c1、c2是切削的特征常数,θ是切削的尽对温度。
刀具的变形模型
在磨削刀具变形模型中,刀具的线性变形和非线性变形都应考虑到。为了便于分析在此使用一般的固体力学模型假设切削力作用在刀尖部分。从丈量刀具的变形可以得出刀具和刀具夹头间的接触面积对刀具的变形起很大作用,刀尖到刀具间隔为z的每一点的线性变形都能按下式计算。
εx(z)=Eh·Fx+Er·My(l-z)
εy(z)=Eh·Fy+Er·Mx(l-z) (8)
上式中Fx和Fy是切向力在x, y向的分力,Er和Eh是平移和旋转的系数常量,可通过实验得到,Mx和My刀尖部位的切削力产生的力矩。
Mx=Fy·l My=Fx·l (9)
由于端磨刀具的非线性变形可以被简化成悬臂梁模型,刀具沿z轴的非线性变形按下式计算。
δx(z)=Fx·(l-z)2·(2l+z)/6EJ
δy(z)=Fy·(l-z)2·(2l+z)/6EJ (10)
那么,刀具在沿z轴任意点的总变形可从下式中得到:
Dx(z)=εx(z)+δx(z) Dy(z)=εy(z)+δy(z) (11)
3.5 加工温度模型
磨削和车削的加工过程是连续变化的,持续型的加工温度模型Huaizhong Li已经给出即
Tstatic=T[1-v lg(ε/ε0)] (12)
式中T 是切削点的温度,v是给出的材料参数常量,ε是应变率,ε0是材料特性不受影响的临界应变率。
铣削是间歇切削过程不能直接将(12)式用于铣削加工的温度仿真。在间歇切削中切削温度的预热传递过程随切削时间T(t)变化,为到达与持续切削相同的平稳状态,Tstatic必须考虑。下面给出预热传递过程的温度模型:
T(t)=Tstaticexp(τ/t)+Tmin (13)
式中:τ是常量,t是一个周期中每一铣齿的切削时间;Tmin和Tp是切削周期中的最小和最高温度。
Tmin=Tpexp(-t2/τ)
Tp=Tstatic·[exp(-τ/t1)/(1-exp(-t2/τ))] (14)
式中t1、t2分别指一个周期中切削和非切削时间,由于刀具的旋转周期是60/nR(S),所以有
t1=(60/nR)·(Øgx-Øst)/2π
t2=(60/nR)·[1-(Øgx-Øst)/2π] (15)
式中Øgx、Øst分别指铣削时铣刀的切进角和离开角。
在铣削中切削区的温度首先使用式(12)计算持续切削温度,然后通过(13)~(15)式修正。
3.6 振动模型
在大多数模型中,仅考虑静态切削力动力可能引起的振动也将影响工件的加工表面精度。对振动的实时仿真可以提供避免或减少振动的依据公道地选择加工条件。在这方面学者已做了大量工作并建立了主要的仿真理论。但存在的题目是很多重要的变量参数难以丈量且丈量精度也难以保证。有两方面数据非常重要:
赖于机床、工件及刀具和随切削力向量的位置和方向变化的系统的动力学参数。
与切削力相关的加工材料、刀具外形和材料、切削状况、刀具磨损类型和磨损量等变化的动力学行为。
一个二自由度铣削振动模型,在此模型中假设振动方向是沿相互垂直的X和Y方向,且进给方向是沿X轴。座标系被固定在NC铣床上,轴与主振幅对齐,铣刀有n个齿且均匀分布。铣刀系统的振动模型由下面微分方程给出:
(16)
式中m、c、k是铣床仿真模型在X、Y方向的质量、阻尼系数和弹簧刚性系数,Fxj和Fyj是第j个铣齿上的铣削力在x、y向的分力,n是铣刀的齿数。
3.7 摩擦力模型
切屑和刀具面的摩擦力影响着切屑的外形、系统的温度等物理仿真中的很多因素摩擦力在刀具切削刃进进工件到离开工件的时间内是变化的,切削摩擦力的大小与系统的温度、工件和切屑的塑性变形等之间有相互影响、非常复杂的关系,这就要求收集临界点的数据,建立切屑参数数据库以便更好的建立摩擦力仿真模型,有效控制摩擦力。方程(17 ) 给出了非线性摩擦力仿真模型。
τt/k=1-exp(μσt/k) (17)
式中τt和&sogma;t是刀具面的摩擦力和正压力,k是切屑的剪切力系数,μ是材料的特征参数常量。
4 小结
物理仿真模型的建立是物理仿真的基础与关键。在很多方面已经做了大量的工作,也取得了一定的进展,但笔者以为,现有的VNC加工过程仿真系统不能给用户精确的结果,很唯实现VM的交互性与沉醉感,模型的研究仍有待进一步完善。因此为了使仿真模型的定量计算与实际加工相同,笔者建议必须从以下四个方面加强物理仿真的研究。
实验方面:建立物理仿真全过程的切削实验参数数据库。
机理方面:仿真机理与实际加工机理及两者之间的进一步藕合关系。
仿真领域:向高速切削、硬质合金切削的物理仿真及微细切削的分子力仿真领域扩展。
仿真方法:仿真手段和方法的多样化,如有限元法(FEM)、人工神经网络(ANN)等。
-----------------------------------------
建立一个真实的数控铣床加工环境,并在此环境下对加工过程进行仿真。对虚拟制造的体系结构和相关技术进行了深入的研究和分析、着重阐述了虚拟数控机床的建模原理及其相关的控制技术,在建立的虚拟数控机床上实现机床各轴的运动控制、程序显示、NC编译、反馈信息显示等功能,实现了虚拟数控铣床最基本的功能。本系统的目标是建立一个真实的数控加工环境。在这个环境中,需要建立机床模型和加工过程模型。机床模型就是整个加工过程的物理环境,将真实的机床在计算机中以3D画面的形式出现;加工过程模型是一个动画过程,模拟真实机床、刀具、切削等加工过程的运动。该系统应满足的要求:1)具有逼真的加工环境;2)能够对NC代码等进行检测,即具备机床的NC程序编译功能,能发现NC程序的错误,并生成目标文件;3)能够显示刀具轨迹及切削过程;4)能调整、修改机床状态参数,实时监控机床的运动状态;5)有友好的人机界面,能方便用户操作。它具备的特点有:1)环境真实,系统的环境和真实的机床环境尽量相同;2)功能一致,系统的功能要和机床的功能一样;3)较强的纠正错误能力,能发现各种错误同时给出报警信息;4)快速完成仿真过程,仿真加工过程需要的时间不能和真实的加工时间一样,否则让人难以忍受,加工过程时问可以根据用户的要求来进行调节。1本系统整体构架仿真过程为:在控制面板上编辑NC程序或调入NC程序,然后对准备好的加工程序进行检查,轨迹仿真,确认无误,准备加工。加工前对整个系统进行必要的设置,刀具参数设置,工件坐标系设置等。进行加工时,显示机床运动动画及工件切削动画,对机床状态进行监测,显示监测的信息,如果有非法操作、越程等信息,发出相应的警报。系统分为五个模块:人机界面、几何模块、运动模块、编译模块和监测反馈模块。整个系统的模块划分如图l所示。人机界面用来实现人机交互,即机床的控制面板;几何模块用来实现系统的物理环境,刀具轨迹及工件模型等几何体;NC模块主要功能有数控程序编辑、刀补、插补、编译生成虚拟机床驱动文件等;运动模块用来实现虚拟机床运动,刀具运动及切削运动等;机床参数设鬣、机床状态信息反馈与监测等功能用监测反馈模块来实现。整个系统各个模块关系如图2所示。2各个模块的设计2.1人机界面(控制面板)的设计这个模块有两个方面:一是对面板的各个界面元素进行设计,一一个是对机床等各个虚拟物体进行控制。操作面板上的组件数量很多,但大多数都具有相似性,因此可以将具有相同功能的组件设计为ActiveX控件,利用ActiveX控件的封装性和动态连接性来实现虚拟操作面板上的具有相同功能的组件。界面元素构建三个类CRob、CMyButton、CMyEdiloCRob是用米实现旋转开关。CMyEdit用于实现显示屏。CMyBunon来实现方形按钮。几乎所用的操作,控制都在控制面板上,那么所有的模块都在这里汇集,可以是指针、实体,用来实现整个机床及加工过程的控制。设计一个NcPanel类,这个类提供各个控制变量,用于NC文件检查,机床参数设置,机床运动控制等等。2.2几何模块的设计2.2.1机床本体模型、刀具模型、切削液喷管等复杂几何模型这峰模型比较复杂,直接采用绘图编程的方法很难实现这么复杂的图形,即使实现了也需要花费极大的时间和精力,绘制出来的效果也难以达到预期效果。本文采用一些成熟绘图应用软件如3dsMax、UG、Pro/E等来实现这些几何模型。本系统并不能直接调用这些软件生成的几何模型,只能得到这些几何模型的描述性文件。不得不对这些文件进行研究,找出需要的几何信息,然后转化成程序中能够使用的几何实体。有一种标准的文件格式--3DS文件格式,几乎所有的3D绘图软件都支持这种文件格式,能转化成这种文件格式。因此,这个模块的工作便是编写一个文件接口,将3DS二进制文件读入转换成0penGL几何实体。构建的类如下:classC3dsReader;//3DS文件读人类class8CTriList;//生成数据链表(用来逼近3DS图形的小三角形片//集合)将机床各个部件几何模型组成一个机床类classMachine,这个类包括机床的各个组件,如床身、主轴等。2.2.2刀具轨迹及零件几何模型此模块用于刀具轨迹仿真,验证NC程序是否正确及显示加工后刀具轨迹几何模型,可划分为两层:第一层:基本几何元素层。点,线,圆弧,平面,直纹面面等几何元素的绘制,点,向量,矩阵的各种运算等。在0penGL环境中,可以相似地构造出一个设备环境类,让它绘制出一些基本的几何元素:直线、圆弧等。第二层:模型建立层。整个NC文件形成的刀具轨迹是由各种几何元素构成的,建模即是将各种几何元素构成一个完整的图形。如加工一个字,字体则是由多条直线构成。从中可以构建各个几何模型的类如直线(CLine),圆弧(CAre),圆(CCircIe),直纹曲面(CLin_Are)等。各个无素的绘制则调用上一层glCDC类的成员函数。如直线自我绘制可以写成:pDC->Line(start,end);pDC是glCDC一个实例的一个指针。2.2.3工件模型工件模型用于工件切削运动。采用空间分割法对工件模型进行建模。本文只将工件在X、Y平面上进行分割,Z方向用top值表示,构建的模型的如下:classPexSeL//离散的小方块实体模型整个工件可表示为:PexSelBox[x][y];//x,y为工件分辨率2.3运动模块的设计运动模型有机床本体运动,刀具运动,加工切削运动,属于动画制作过程。动画可以让一张张相关的图片以较快的速度进行切换,就能得到连续的运动效果。相似地,在一定地时间里绘制N张相关的图片,就能得到计算机动画效果。先设置一个系统时间,让它不停的刷新画面,接下来的工作就是绘制这些相关的图片。图形的绘制,把它封装成按参数化形式绘制,只要将其参数进行修改就可以实现动画控制。比如一个正方体绘制可写成:Translated(m_x,m_y,m_z);//DrawBox(length,width,high);那么只要对m_x,m_y,m_z三个变量进行控制,然后让画图模块不停地按参数绘制即可实现正方体移动动画。接下来的工作需按时间对位置变量进行控制,实现需要的运动。设计一些位置控制器,如直线、圆弧位置控制器等cIassMoveCircle//实现圆弧运动计算器classMovenne//实现直线运动计算器……2.4编译模块的设计编译模块主要划分为四个部分:词法分析、语法分析、目标代码生成和出错处理。编译过程是输入数控加工程序,输出目标代码或错误信息。本系统采用逐行扫描方式,以词法分析程序和语法分析程序为核心,出错处理作为一个独立的过程,目标代码的生成则在错误为零的情况下生成。设计一个编译类Compile。输入:CStringm_Nccode;//一段NC代码功能函数:Wo-check()//词法检查SyntaxCheck()//语法检查输出:CStringerrInfo//错误信息操作数据对象ProgramNodeNcSegementStruct//编译后生成的中间文件。CTypedPtrList<C0bList,CPart*>*m_curvelist;//生成的刀具轨迹链表2.5监测反馈模块的设计机床参数系统的没计:1)设计一个后台数据库CDaoDatabasem_db,后台数据库使用微软公司的ACCESS制作;2)所有的变量设计一个MachineState类来集中进行管理。3)状态监测,设计一个类RunErrCheck,实现功能包括非法报警、工件与刀具干涉、非法操作和越程等。3小结数控加工过程本身是一个十分复杂的过程,它是对零部件设计、工艺规划等许多工作的一个检验。本文建立的系统已经具备虚拟机床的基本功能,仍然存在以下几个需要改进的地方:1)工件模型可以进一步进行研究,找出结构更优秀,显示速度更快的模型,使得切削过程更加逼真、快捷;2)运动模型需要进一步研究,构造更强大的运动控制器,如高级曲线运动控制、高级曲面运动控制,以满足更高级CNC系统刀位控制要求;3)本系统只研究了纯几何仿真,对于加工中一些力学因素没有考虑,今后可通过建立加工过程的力学物理仿真模型,进行加工过程切削性能与切削效果仿真。
Ⅱ 关于火花纹MT标准如何对应VDI火花纹
火花纹是铜公放电时在模具表面留下的烧蚀痕迹,电火花冲出来的时候可以有粗的和细的,火花纹其纹面是麻点,麻点粗细程度可以通过火花机的电流调整,但花纹形式就只有一种而晒纹, 其花纹形式多样, 当然火花纹也能做出来。
利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。 电火花加工是在较低的电压范围内,在液体介质中的火花放电。
(2)摄像头CR模具的纹面如何加工扩展阅读
按照工具电极的形式及其与工件之间相对运动的特征,可将电火花加工方式分为五类:
1、利用成型工具电极,相对工件作简单进给运动的电火花成形加工;
2、利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工。
Ⅲ 模具立体纹怎么制作(过程)啊
制作工艺
1.底图制作
装饰纹底图除电脑或手工绘制外,多数选用塑料样件和人造革上的装饰纹。塑料样件应选取花纹清晰、均匀、平整的表面,先喷一层黑色自干漆,晾干后,用200目以上的白粉(碳酸钙)涂抹,填平纹路,再轻轻抹去突出面的白粉,使其露出黑色,直至版面花纹清晰,黑白分明,底图便告完成。如选用人造革装饰纹,可将人造革摊平钉紧在木板上,按上述要求同样加工,最好选用黑色人造革,可省去喷漆。
2.照相制版
采用CR或SO软片,1:1对底图进行拍摄。照相底片大小以100mm×200mm左右为宜,便于制丝网版和贴花转印。
3 制丝网版
用200~300目黄色涤纶丝绢,0.02mm厚的蓝色感光膜,铝质框架和照相底片,按制造印刷线路丝网版的方法制造。
4 油墨调配
选取优质固体沥青500g,装入清洁无锈铁罐,加煤油300ml,放在可调温电炉上熬炼
1~2h,控制微沸状态,适当搅拌,炼至适合丝网印刷的稠度,以冷却至室温为软冻状,表面又不结皮不起皱为佳,此为沥青油墨。沥青油墨和2711—4油墨,按重量比
1:1混合,再加入No78燥油,用量为混合油墨重量的2%~5%,用油墨刀调匀,便制得抗蚀转印油墨。
5贴花纸印装饰纹
用WPS400型丝网印刷机,装上丝网版,橡胶刮板放上适量抗蚀转印油墨,先用废蓝图纸反面试印,用力要均匀,轻重要适度,不要回墨,直至印出均匀清晰的装饰纹,再用贴花纸印制。贴花纸印前应裁成适当大小,用干净橡皮刮板刮平。印制过程中如发生油墨堵塞网孔,图纹不清晰,说明油墨过干,可加适量煤油调稀;如果印制的装饰纹易模糊,说明油墨中煤油过量,可将油墨放在玻璃板上,用油墨刀反复调合,挥发部份煤油再印制。
6 油墨干燥
将印好的贴花纸放入烘箱网格上,油墨面朝上,均匀摊开,不得重叠,温40~45℃,烘至油墨半干状取出,即轻摸贴花纸上油墨不粘手,稍加压力便粘手,一般约烘10~15min。油墨烘得过干,转印时与模具不粘或结合力差;油墨过潮,转印易模糊。
7 贴花转印
根据模具型腔特点,将贴花纸剪成便于粘贴的形状,轻轻揭下印有装饰纹的一层薄纸,油墨面向
模具,细心粘贴,要求平整服贴不起皱,平面用橡皮刮板刮一下,曲面用脱脂棉花揉成团,垂直用力压纸基,使贴花纸上油墨转印到模具上。转印完后,用海绵沾少量水将贴花纸润湿,再轻轻揭下纸基,用海绵或吸水纸吸干模具上的水。
8 干燥
9 修整
10 腐蚀
11 检验、清理、防锈
Ⅳ 已有一个基于vc的用本机摄像头录像,截图的代码,如何加工成一个类似c/s模式的。
用socket来做网路功能,实现相互能发收数据,图片也是数据,把图片的参数信息(如尺寸等)发送到服务器端,然后把图片的数据发送到服务器端,服务器端收到后根据参数和数据将图像绘制在界面上,考虑到传输效率,还可以对图像进行编码(图片压缩方式如jpg,gif等)后再传输,服务器端当然就要相应的做解码工作了。
要做成这个东西,两个方面的知识要掌握好:1.视频采集,图像,图像显示原理,2.socket网络编程。
网上可以找到视频传输的代码,自己可以下回来研究研究。
Ⅳ 数控电火花机床加工常见技术指标有什么特性
由于数控电火花加工机床市场竞争日益激烈,故越来越多的厂家都在宣传“镜面电火花加工”、“高效率加工”、“专家系统”等高性能指标。从表面上来看,似乎大多数控电火花加工机床的加工性能已经同质化,具有很高水平。而事实上,一些数控电火花加工机床用户的使用效果并不理想,甚至有些用户感觉上当了。造成这种情况的原因是:电火花加工行业通常是用一些技术指标来衡量机床的加工性能,如最佳表面粗糙度、最大加工效率、最小电极损耗、是否具有专家系统等。正是由于这些技术指标的局限性,一些厂商利用其进行宣传而误导了用户的真实需求。本文从最佳表面粗糙度、最大加工效率、专家系统3个方面,谈谈这几个常用技术指标与数控电火花加工机床真实加工性能的关系,希望对引导用户的理性需求有所帮助。
1、最佳表面粗糙度
当前电加工机床行业出现了众多的“数控镜面电火花加工机床”,这些机床标注的最佳表面粗糙度通常是Ra0.2μm或者Ra0.1μm。
众所周知,表面粗糙度是电火花加工机床的一项主要工艺指标。影响加工表面粗糙度的因素除机床加工性能外,加工面积、加工形状、工件材料是3项最主要的因素。加工面积越大,加工形状越复杂,深度越深,就越难达到精细的表面。对于工件材料而言,要进行镜面加工必须选用镜面钢,如:S136、SKD61等钢材,有些材料是不能达到镜面加工效果的,如:SKD11钢材。
所谓的“最佳表面粗糙度Ra0.2μm”,通常是指用直径10mm的圆棒电极,在S136镜面钢料上加工一个浅表面,最终加工表面粗糙度Ra<0.2μm。也就是说,最佳表面粗糙度是在加工面积合适、形状简单、使用镜面钢的特殊情况下完成的。一些厂家在这项测试中甚至是不计加工精度与加工效率的。而实际生产中的电火花加工需求与这种测试条件相比往往要复杂得多。一旦加工面积变大,形状变得复杂,加工不出镜面效果便是必然的事。这里提供一个数控镜面电火花加工机床的测试基准:使用粗、精二个电极,加工一个50mm×50mm×5mm的方形型腔,底面与侧面都要求达到均匀的镜面效果,精度控制在0.01mm内,总加工时间不能超过15h,这个加工测试综合反映了机床的镜面加工能力。如果机床的加工水准接近这个测试基准,才可以说能胜任实际的镜面电火花加工需求。
另外,也不能单凭镜面加工测试来判定数控电火花加工机床的精加工性能。这里列举一个应用实例:使用边长20mm的方形电极进行浅表面的镜面加工测试,只要参数配置合理,大多数的数控电火花加工机床都能达到较好的镜面加工效果,通常Ra<0.2μm。可以发现加工过程中放电非常稳定,气泡连续均匀,加工出的镜面表面均匀,具有光泽效果。事实上,达到这个加工指标,并不能说明数控电火花加工机床的精加工性能就已经很好了。在这项加工测试中,如果要求加工Ra0.22μm(VDI07)或Ra0.4μm(VDI12)的亚光表面,就加工指标而言,没有加工经验的技术人员会认为表面粗糙度值大了,更容易加工了。实际上,这种亚光表面的电火花加工难度比镜面加工更大。亚光表面的电火花加工通常使用负极性、小电流、小脉宽、大脉间、加电容的参数匹配,如果机床的精加工性能不稳定,加工后的表面会有积碳、黑斑,表面效果很难达到均匀一致。因此,考查数控电火花加工机床能否实现均匀一致的亚光面加工,比进行镜面加工测试更能反映出脉冲电源的精加工性能。
事实上,很多用户对电火花加工表面的要求不需要那么精细,通常为Ra0.8~2.5μm。对于这些加工要求,似乎所有的电火花加工机床都能达到。这也是一种片面的认识。我们可以从两种不同的加工要求来进行认识:一种是加工要求的确不高,考虑到电火花精加工效率较低,在电火花加工完成后再使用抛光工序来改善加工表面,对于这类加工,一般使用普通的数控电火花加工机床是能达到要求的;另一种是加工指定的火花纹面,加工要求较高。像有些外观要求火花纹面的塑胶模具,表面要求是Ra1.6μm(VDI24)的纹面,在微观状态下观察加工表面颗粒形态均匀。高品质的电火花加工表面在将局部放大100倍以上时,微观状态下的表面凹坑均匀一致,颗粒分明,没有放电缺陷;而一些机床加工的表面虽然用粗糙度测量仪进行测量是合格的,但检查其微观表面时却能发现放电凹坑形态各异,颗粒有粗有细,并伴随一些局部缺陷,这就不能满足高要求的纹面加工。
综上所述,数控电火花加工机床的最佳表面粗糙度指标只是一个片面的参考指标,要考查机床的表面加工性能,需要从机床能否实现实用的镜面加工、能否实现均匀的亚光表面加工、能否实现高品质的纹面加工3个方面进行综合评价。
2、最大加工效率
不同的数控电火花加工机床标注的最大加工效率不同,有些机床标注的300mm3/min,有些机床标注的是500mm3/min。用户往往会认为标注500mm3/min的机床加工速度更快。
事实上,最大加工效率主要与机床的最大加工电流有关,机床的加工电流越大,最大加工效率就越高。在最大加工效率的加工情况下,反映的是粗加工效率,加工后的表面很粗糙。而实际加工中,很少需要用到这种大电流加工。因此可以说这种所谓的最大加工效率对于评价数控电火花加工机床的加工效率意义不大。
通常来讲,数控电火花加工机床的粗加工效率相差都不大,加工效率的差异主要体现在精加工。精加工需要使用多段加工条件,其加工效率与加工条件、加工余量、工艺等众多复杂因素相关。各种不同的加工类型,其效率会有较大差异,所以很难用具体的指标对精加工效率做出准确评价。
我们通常用多个具体的应用实例去作对比,也就是在同等的加工条件下,加工要求相同,最终对比加工的总时间。值得一提的是,这种比较只有在客观的情况下,使用数控电火花加工机床本身的工艺方法与电参数进行加工,不能有人为的干预,这样才能反映机床加工效率的差异。因为加工效率与人为调整有很大的关系,如加工一个型腔,使用机床默认的程序进行加工需用时20h,而通过调整程序能将加工时间控制到8h,这是很常见的。但越是高端的机床,这种可调整的空间就越小,其加工的适应性就更强。对复杂多变的加工类型,其整体的加工效率就会体现出明显的优势。“最大加工效率”这个指标只能用于评价机床的最大粗加工效率。实际生产中,加工效率的高低往往取决于机床的精加工效率,精加工效率可通过客观的应用对比来评测。
3、专家系统
目前数控电火花加工机床的智能化程度有了很大的提高。很多厂商都宣传机床配有“专家系统”,只需输入加工面积,选择电极材料、工件材料及加工要求,机床即可自动产生程序与放电参数,在无需经验的情况下实现优化加工。
这样一来,很多用户都认为操作数控电火花加工机床是很简单的事情。正是基于这样的认识,一些企业的操作人员完全依赖这些所谓的“专家系统”,导致电火花加工效率极其低下,加工不能满足要求。
其实,电火花加工的类型很复杂:加工面积不一样,小到尖点,大到大面积;深度不一样,有浅表面,有深型腔;形状不一样,有尖点、窄缝、通孔、盲孔,有简单的方、圆形状,也有形状复杂的型腔;加工表面要求不一样,从粗到细有不同的VDI级别;电极材料不一样,有紫铜、石墨、硬质合金等;工件材料不一样,有钢、硬质合金、铝、铜、钛合金等;加工要求不一样,有追求加工效率的,有追求低损耗的,有追求表面效果的……。这些众多的不一样,在加工过程中需使用不同类型的放电参数,并要进行相应的优化。
先进的数控电火花加工机床,针对上述不同的加工类型制定了上万条加工参数,经过长期的沉淀形成了一个完善、实用的加工参数库,且在加工过程中,机床系统能自动进行优化加工,这样的机床才称得上具有“专家系统”,才能满足使用全自动化数控电火花加工的运行要求,才能极大地降低机床对操作人员的技能要求。
一些普通的数控电火花加工机床只有几十条简单的加工参数,只是在系统界面中设计了能搜索这些加工条件的一款工具,其中有些选项只是形式,这样的工具是不能被称为“专家系统”的。这些数控电火花加工机床要求操作者必须具有丰富的工作经验,能根据加工要求灵活配置电参数,其操作方式与传统机床没有多大差异。
评价数控电火花加工机床的“专家系统”,要从工艺参数是否完善、工艺参数能否满足生产加工要求、适应性是否强等方面来进行评价。
以上针对数控电火花加工机床的几个常见指标进行了分析,指出了其片面性。建议电火花加工机床用户应根据具体要求,理性地选择合适的数控电火花加工机床,不要被一些表面的宣传指标与应用案例所蒙蔽。
Ⅵ 如何让模具纹面喷砂亮度变高
模具表面喷砂亮度变高,话题比较模糊。
若是表面可以喷成亚光,用最普通的玻璃珠就可以,价格便宜,也很好找。若要是再亮些,需要用氧化锆喷砂料,不过这个材料价格很高,是普通玻璃珠价格10倍还多,可能会超出预算成本。
若是表面不可以喷成亚光,那么操作起来就很难了。天狼星胶皮状喷砂料能解决,但这个成本更高,是氧化锆价格的40倍之多,一般若不是使用在价格特高的模具上是不使用的。下图是天狼星加工前和加工后的对比。那个加工后的很亮,把照相的相机和人手都映在里面。
Ⅶ 模具皮纹面为什么不能烧氩弧焊
皮纹面一般是不能烧焊的,不管是氩弧焊还是激光焊。原因很简单,皮纹面处理很贵,皮纹面不好修复,就像用螺纹电极打螺纹孔只用一个电极打出来一样,很容易出现“双眼皮”的,也就是说两次加工没有完全重合。我原来在的单位是做手机模具的,当时的做法一般是整体降面。重新来过。
Ⅷ 电火花加工常用于加工哪些模具零件
广义的电火花加工有设备,电火花打孔机,线切割,火花机;
打孔机,主要是为线切割加工打穿丝孔;
线切割,分快走丝、中走丝、慢走丝,依次加工速度越来越慢,加工精度越来越高;快走丝只能开粗,中走丝、慢走丝可以开粗和修刀(精加工),线切割主要加工模具的镶件孔、导柱导套孔、销钉孔、镶件下料、冲压模具侧刀口等等;
火花机,先要有加工中心加工电极,利用电极电火花放电腐蚀加工零件,可以加工指定粗糙度的模仁纹面、深骨位、深避位槽、热处理后材料上加工近似螺纹孔等等;
Ⅸ 求:模具在加工工艺中各项加工的工时费用,谢谢
整套模具的普通机床加工也看加工的精度要求。
价格相差很远。如果只是想报价,要看下你客户的接受能力。
CNC,线割精密加工,每小时都在70~100元。(有更贵的,比如用大型机台)
普通精度就在30~50元之间。
放电,就看机台和模具加工要求了。抛光和加工火花纹面的都在70~120之间,
普通加工30左右就有人做了。
普通机床加工也就20~40不等,要看工件的大小和加工的难度了。
你还不清楚可以把图纸发到我邮箱,我给你评估以下。不过技术资料一定要全。
用什么材料,什么硬度,什么精度,形位公差,外观要求。
QQ:466059402 邮箱:[email protected]