『壹』 管沟,基坑拉森钢板桩支撑 宽度4m内"如何计算单位为"10延米"的呢
10米/0.4米*2=50根
『贰』 延米怎么计算
延米是在橱柜行业中的运算,一延米 等于1米,地柜可以用延米算,吊柜也可以用延米算。在每延米范围内,结构可以适当的调整。 比如:厨房两墙间的距离是4米,需做4米的地柜,1米吊柜,那么设计师在4米的范围内,对橱柜进行结构设计,然后1延米地柜的价格为4米,就是地柜的价格, 1延米吊柜的价格为1米,就是吊柜价格。
例如:一个9平方米左右的厨房,橱柜长约4米,有三组底柜、两组吊柜。可以通过两种方式来算一算它的价格。
方法一:延米计价法:单位延米价×4米,若2000元一延米,则4延米的价格为8000元。
方法二:柜体计价法:三组底柜的价格+两组吊柜的价格。比如一组底柜的价格为1200元,三组则为3600元;一组吊柜的价格为800元,二组吊柜为1600元,加在一起的价格总共为5200元。
对于延米报价和柜体报价两种方式,业内专家给出的答复是“各有利弊”。但不论是按延米报价还是按柜体报价,消费者购买橱柜时必须要与经销商签订详细具体的合同。
在确定装修方案前对橱柜的尺寸、板材、五金件等要心里有数。如果要定做非标准橱柜,改动的吊柜、地柜尺寸会变化多少,五金件、其他配件会增减多少,都要事先列出来。在与经销商商谈价格时,要核实清楚,并在签订合同时尽量将改动的地方注明。
另外,其他一些因素,如售后服务也会对价格产生影响,消费者与经销商签订合同时要考虑到,如选择的橱柜品牌是否过硬,厂商能否保证长期售后服务等。
以延米为计价单位仍是目前橱柜市场的主要计价方式,在这种情况下,只要在定制橱柜过程中,尽量把费用预算做得完备、详实,使每一笔费用都一目了然,就不存在问题了。
延米报价只是中国橱柜市场在不成熟的情况下形成的一种报价方式,是一个过渡。今后,我国的橱柜市场也要遵照国际惯例执行柜体计价方式。
『叁』 拉森钢板桩4型每米重量是多少
四型钢板桩的出厂理论比重 76.1kg/m
400*170*15.5
中对中有效距离 400mm
以延长米2.5根。
再根据单根长度就可以计算你要的各种重量了。
『肆』 钢板桩一延米等于多少米
看具体情况定。
一般情况下“一延米”即是“一延长米”,也就等于一米。但是在钢板桩中,延米就是一米多点,具体比一米多多少就要看钢板桩多长了。
延米,即延长米,是用于统计或描述不规则的条状或线状工程的工程计量,如管道长度、边坡长度、挖沟长度等。
『伍』 拉森4型钢板桩的重量怎么计算
拉森钢板桩总重量=拉森钢板桩桩长
x
拉森钢板桩比重(根据拉森钢板桩回型号查比重)答
x
拉森钢板桩根数(实际工程延米/拉森钢板桩宽度=拉森钢板桩根数)。
钢板桩根据横截面形状和用途主要分为:U形、Z形、W形三种形状钢板桩,同时根据壁厚分为轻型和普通型冷弯钢板桩。拉森钢板桩通常定尺长度为6m、9m、12m,最长15m,入地深度不少于挖土深度的1/3。
拓展资料:
拉森钢板桩又叫U型钢板桩,它作为一种新型建材,在建桥围堰、大型管道铺设、临时沟渠开挖时作挡土、挡水、挡沙墙;在码头、卸货场作护墙、挡土墙、堤防护岸等,工程上发挥重要作用。拉森钢板桩做围堰不仅绿色、环保而且施工速度快、施工费用低,具有很好的防水功能。
网络——拉森钢板桩
『陆』 拉森4型钢板桩的重量怎么计算
四型钢板桩的出厂理论比重76.1kg/m
400mm*170mm*15.5mm
中对中有效距离400mm
以延长米2.5根。
再根据单根长度就可以计算你要的各种重量了。
(6)4型拉森钢板桩延米怎么计算扩展阅读:
拉森钢板桩又叫U型钢板桩,它作为一种新型建材,在建桥围堰、大型管道铺设、临时沟渠开挖时作挡土、挡水、挡沙墙;在码头、卸货场作护墙、挡土墙、堤防护岸等,工程上发挥重要作用。拉森钢板桩做围堰不仅绿色、环保而且施工速度快、施工费用低,具有很好的防水功能。
产品按生产工艺划分有冷弯钢板桩和热轧钢板桩两种类型。在工程建设中,冷弯钢板桩性价比比较高,工程运用中,两种类型可以相互替代。
基于钢板桩在施工作业中的诸多优点,国家质量监督检验检疫总局、国家标准化管理委员会于2007年5月14日发布由:马鞍山钢铁股份有限公司,上海瑞马钢铁有限公司,冶金工业信息标准研究院,攀枝花钢铁集团公司,莱芜钢铁集团有限公司起草的《热轧钢板桩》国家标准——GB/T 20933——2007并于2007年12月1日正式实施。
据统计,目前我国的钢板桩年消耗量保持在3万吨左右,仅占全球的1%,而且仅限于一些港口、码头、船厂建设等永久性工程和建桥围堰、基坑支护等临时性工程。
拉森钢板桩的用途非常广泛,在永久性结构建筑上,可用于码头、卸货场、堤防护岸、护墙、挡土墙、防波堤、导流堤、船坞、闸门等;在临时性构筑物上,可用于封山、临时扩岸、断流、建桥围堰、大型管道铺设临时沟渠开挖的挡土、挡水、挡沙等;在抗洪抢险上,可用于防洪、防塌陷、防流沙等。
拉森桩的由来
“拉森”板桩是知名而享誉土木工程领域已久的建筑材料。应用于各种条件下的护土结构,其应用领域以及优势已经(在专业领域)得到不断证明和证实。
1902年,德国国家主工程师Tryggve Larssen先生在不来梅开发制作了世界上第一块U型剖面铆凸互锁的钢制板桩。
1914年,两边都能连锁的板桩问世了。这个(改进)一直被世界绝大多数的板桩(制造商)沿用至今。 最为古老的拉森U型板桩被Giken Kochi公司安放在总部展示以纪念U型板桩的发展历史。 上文中提到过的互联结构可以参照下图。每块U型板桩的两边的“U型突出”设计可以用来连锁相邻的板桩。
互锁结构可以(在板桩互锁时)形成一个水密结构从而增加板桩结构的强度。它可广泛应用于围堰和泥土支撑(工程领域)。
『柒』 如何计算拉森钢板桩重量
拉森IV的规格为:400x170x15.5mm,理论重量为76.1kg/m。
总用量为:桩长 x 76.1kg/m x 根数(这里您需要2000根)
800m*2.5根*9m*0.0761kg/m=800m*2.5根*0.685吨/根=1370吨。
拉森钢板桩又叫U型钢板桩,它作为一种新型建材,在建桥围堰、大型管道铺设、临时沟渠开挖时作挡土、挡水、挡沙墙;在码头、卸货场作护墙、挡土墙、堤防护岸等,工程上发挥重要作用。拉森钢板桩做围堰不仅绿色、环保而且施工速度快、施工费用低,具有很好的防水功能。
(7)4型拉森钢板桩延米怎么计算扩展阅读:
优点:
1.高质量(高强度,轻型,隔水性良好);
2.施工简单,工期缩短、耐久性良好,寿命50年以上;
3.建设费用便宜、互换性良好,可重复使用58次;
4.施工具有显著的环保效果,大量减少了取土量和混凝土的使用量,有效地保护了土地资源;
5.救灾抢险的时效性较强,如防洪、塌方、塌陷、流沙等;
6.处理并解决挖掘过程中的一系列问题;
7.对于建设任务而言,能够降低对空间的要求;
8.使用钢板桩能够提供必要的安全性而且时效性较强;
9.使用钢板桩可以不受天气条件的制约;
10.使用钢板桩材料,能够简化检查性材料和系统材料的复杂性
拉森钢板桩的用途非常广泛,在永久性结构建筑上,可用于码头、卸货场、堤防护岸、护墙、挡土墙、防波堤、导流堤、船坞、闸门等;在临时性构筑物上,可用于封山、临时扩岸、断流、建桥围堰、大型管道铺设临时沟渠开挖的挡土、挡水、挡沙等;在抗洪抢险上,可用于防洪、防塌陷、防流沙等。
拉森桩钢板桩围堰施工适用于浅水低桩承台并且水深4m以上,河床覆盖层较厚的砂类土、碎石土和半干性,钢板桩围堰作为封水、挡土结构,在浅水区基础工程施工中应用较多。粘土,风化岩层等基础工程。
『捌』 钢板桩工程量计算方式
钢板抄桩工程量计算方式的回答如袭下:
『玖』 拉森钢板桩基坑计算公式
复制了一个计算书内容,如果需要完整的可以留个邮箱地址。我发给你。
钢板桩支护计算书
以桩号2c0+390处的开挖深度,4C0+001.5处的开挖宽度为准(本相目的最大开挖深度和宽度)
一设计资料
1桩顶高程H1:4.100m
施工水位H2:3.000m
2地面标高H0:4.350m
开挖底面标高H3:-3.400m
开挖深度H:7.7500m
3土的容重加全平均值γ1:18.3KN/m3
土浮容重γ’:10.0KN/m3
内摩擦角加全平均值Ф:20.10°
4均布荷q:20.0KN/m2
5基坑开挖长a=20.0m基坑开挖宽b=9.0m
二外力计算
1作用于板桩上的土压力强度及压力分布图
ka=tg2(45°-φ/2)=tg2(45-20.10/2)=0.49
kp=tg2(45°+φ/2)=tg2(45+20.10/2)=2.05
板桩外侧均布荷载换算填土高度h,
h=q/r=20.0/18.3=1.09m
桩顶以上土压力强度Pa1
Pa1=r×(h+0.25)Ka=18.3×(1.09+0.25)×0.49=12.0KN/m2
水位土压力强度Pa2
Pa2=r×(h+4.35-3.00)Ka
=18.3×(1.09+4.35-3.00)×0.49=21.8KN/m2
开挖面土压力强度Pa3
Pa3=[r×(h+4.35-3.00 )+(r-rw)(3.00
+3.40)}Ka
=[18.3×(1.09+4.35-3.00)+(18.3-10)×(3.00
+3.40)]
×0.49=47.8KN/m2
开挖面水压力(围堰抽水后)Pa4:
Pa4=γ(3.00+3.40)=10×(3.00+3.40)=64.0KN/m2
三确定内支撑层数及间距
按等弯距布置确定各层支撑的Ⅲ型钢板桩
能承受的最大弯距确定板桩顶悬臂端的最大允许跨度h:
弯曲截面系WZ0=0.001350m3,折减系数β=0.7
采用值WZ=βWZ0=0.00135×0.7=0.000945m3
容许抗拉强[σ]=200000.0KPa
由公式σ=M/Wz得:
最大弯矩M0=Wz×[σ]=189.0KN*m
1假定最上层支撑位置与水位同高,则支点处弯矩
M'=Pa1*(H1-H2)2/2+(Pa2-Pa2)(H1-H2)2/6=9.2KN*m<M0=189.0KN*m
故,支撑点可设置在水位下。
2根据上式判断可知,最大允许跨度h0由下式计算
M0=Pa1h02/2+γka(H1-H2)2[h02(H1-H2)/3]/2+(Pa2-Pa1)[h0-(H1-H2)]2/2+(γw+γ')[h0-(H1-H2)]3/6
代入数值得:
189.0=6.0×h02+4.47×1.21(h0-0.733)+4.916(h0-1.10)2+3.333(h0-1.10)3
整理得:
3.333h03+5.921h02+6.692h0-191.454=0.000
解方程得:
h0=3.201m
各支撑按等弯矩布置,则:
h1=1.11h0=3.553m
h2=0.88h0=2.817mh3=0.77h0=2.465mh4=0.70h0=2.241m
h5=0.65h0=2.081m
h6=0.61h0=2.817mh7=0.58h0=1.857mh8=0.55h0=1.761m
故,至少需2层支撑。
根据实际情况确定支撑位置如图所示。
h0=2.000m h1=3.000m h2=2.500m
四各内支撑反力
采用1/2分担法近似计算各内支撑反力
q1=p1(h0+h1)/2={γka(h+(H1-H2)+(γ'+γw)ka[(h0-(H1-H2)]}(h0+h1)/2
=71.0KN/m
q2=p2(h1+h{γka*(h+(H1-H2)+(γ’+γw)ka[(h0+h1-(H1-H2)]}(h1+h2)/2
=158.7KN/m
五钢板桩入土深度及总桩长:
根据盾恩法求桩的入土深度
由公式γHKa(hi+t)=γ(Kp-Ka)t2
整理得:
(Kp-Ka)t2-Hkat-Hkahi=0
解得t==4.837m
故总长度L=h0+h1+h2+……hi+t=12.337m
选用钢板桩长度14.0m,实际入土深T=6.500m
六基坑底部的隆起验算
Nq=eπtgφtg2(45+φ/2)=6.463
Nc=(Nq-1)/tgφ=14.929
坑外各层土的天然容重加权γ1=18.3m3
坑内各层土的天然容重加权γ2=18.2m3
土的粘聚c=5.0KPa
故抗隆起安全系数
Ks=(γ2TNq+cNc)/(γ1(H+T)+q)=3.03>1.3 满足要求
七基坑底管涌验算
KL=γ'T/γwh=2γ'/γwhw
=2.03>1.5满足要求
八坑底渗水量计算
根据设计地质资料,土的综合渗透系数取K=0.080m/d
基坑开挖面积A=a*b=180
Q=KAi=
KAhw/(hw+2T)
=4.75m3/d
九围檩受力计算(20m)
1支承力:R=n/4=q2*a/4=793.42kN
2支承布置见右图。
3围檩弯矩
支撑按等间距布置,如下图:
l=a/4=5.000m
由于安装节点的整体性通常不易保证,故按简支粱计算:
Mmax=q2l2/8=495.9KN*m
拟选用空心方钢(400*400*14)
弯曲截面系Wz=0.002521m3
容许抗拉强[σ]=200000.0KPa
方钢能承受的最大弯矩M=Wz[σ]=504.2KN*m>Mmax=495.9KN*m 满足要求
十支撑杆受力计算
拟选用空心方钢(250*250*8)
计算长度l0=8.2m,支撑面A=7520mm2,转动惯量I=72290000mm4,容重γ=78.5KN/m3,弯曲截面系Wz=578000mm3。
根据《钢结构设计规范》GB50017-2003表5.1.2-1规定,为b类构件,
钢支撑初偏心lp=l0/500=0.016m
求长细比λ:
i==97mm
因截面为双轴对称,故λ=l0/i=85 查《规范》附表C得失稳系数φ=0.648
故σ1=N/A/φ=R/A/φ=158111.1KPa<
[σ]=200000.0KPa
自重弯矩M=γAl2/8=5.11KN*m
故σ2=M/Wz=8835.0KPa
则σ=σ1+σ2=166946.0<[σ]=200000.0KP 满足要求
十一构造要求
1为防止接缝处漏水,在沉桩前应在锁口处嵌填黄油、沥青或其他密封止水材料,必要时可在沉桩后坑外注浆防渗或另施工挡水帷幕。
2在基坑转角出的支护钢板桩,应根据转角的平面形状做成相应的异形转角板桩,且转角桩和定位桩宜加长1m。