1. 請教梁橋,拱橋,剛構橋,斜拉橋和懸索橋的特點。謝謝
1、梁式橋
主梁為主要承重構件,受力特點為主梁受彎。主要材料為鋼筋混凝土、預應力混凝土,多用於中小跨徑橋梁。
優點:採用鋼筋砼建造的梁橋能就地取材、工業化施工、耐久性好、適應性強、整體性好且美觀;這種橋型在設計理論及施工技術上都發展得比較成熟。
缺點:結構本身的自重大,約佔全部設計荷載的30%至60%,且跨度越大其自重所佔的比值更顯著增大,大大限制了其跨越能力。
2、拱式橋
拱肋為主要承重構件,受力特點為拱肋承壓、支承處有水平推力。主要材料是圬工、鋼筋砼,適用范圍視材料而定。
優點:跨越能力較大;與鋼橋及鋼筋砼梁橋相比,可以節省大量鋼材和水泥;能耐久,且養護、維修費用少;外型美觀;構造較簡單,有利於廣泛採用。
缺點:由於它是一種推力結構,對地基要求較高;對多孔連續拱橋,為防止一孔破壞而影響全橋,要採取特殊措施或設置單向推力墩以承受不平衡的推力,增加了工程造價;在平原區修拱橋,由於建築高度較大,使兩頭的接線工程和橋面縱坡量增大,對行車極為不利。
3、剛架橋
是一種橋跨結構和噸台結構整體相連的橋梁,支柱與主梁共同受力,受力特點為支柱與主梁剛性連接,在主梁端部產生負彎矩,減少了跨中截面正彎矩,而支座不僅提供豎向力還承受彎矩。主要材料為鋼筋砼,適宜於中小跨度,常用於需要較大的橋下凈空和建築高度受到限制的情況,如立交橋、高架橋等。
優點:外形尺寸小,橋下凈空大,橋下視野開闊,混凝土用量少。
缺點:基礎造價較高,鋼筋的用量較大,且為超靜定結構,會產生次內力。
4、斜拉橋
梁、索、塔為主要承重構件,利用索塔上伸出的若干斜拉索在梁跨內增加了彈性支承,減小了梁內彎矩而增大了跨徑。受力特點為外荷載從梁傳遞到索,再到索塔。主要材料為預應力鋼索、混凝土、鋼材。適宜於中等或大型橋梁。
優點:梁體尺寸較小,使橋梁的跨越能力增大;受橋下凈空和橋面標高的限制小;抗風穩定性優於懸索橋,且不需要集中錨錠構造;便於無支架施工。
缺點:由於是多次超靜定結構,計算復雜;索與梁或塔的連接構造比較復雜;施工中高空作業較多,且技術要求嚴格。
5、懸索橋
主纜為主要承重構件,受力特點為外荷載從梁經過系桿傳遞到主纜,再到兩端錨錠。主要材料為預應力鋼索、混凝土、鋼材,適宜於大型及超大型橋梁。
優點:由於主纜採用高強鋼材,受力均勻,具有很大的跨越能力。
缺點:整體鋼度小,抗風穩定性不佳;需要極大的兩端錨錠,費用高,難度大。
2. 設計院給出的預拱度考慮收縮徐變了嗎
1、需要計算的部位:主梁、橫梁、橋面板;
2、主要荷載:結構重力、預應力、活載、日照溫差;
3、計算項目: 主梁強度設計、驗算;
橫梁強度設計、驗算;
橋面板強度設計、驗算;
主梁變形計算、預拱度計算;
簡支梁計算方法
主梁恆載內力:
按實際結構尺寸計算恆載集度,計算應力時將荷載作用在結構上直接計算,但應注意要根據按施工方法確定何種荷載作用在何種截面上。
主梁預應力內力:
簡支梁屬於靜定結構,預應力只產生出內力,不產生二次力效應。
主梁活載內力:
縱向採用影響線載入求最不利內力;
橫橋向採用橫向分布系數考慮車列在橫向最不利布置位置。
橫梁內力計算:
利用橫向分布影響線載入求最不利彎矩。
橋面板計算:
採用有效工作寬度方法考慮車輪荷載在橋面板上的分布;
內力計算要根據橋面板與兩肋的剛度比,選取不同的修正系數。
主梁變位計算:
根據構件類型修正彈性模量和慣性矩,恆載按實際結構尺寸計算,但必須考慮收縮徐變作用,活載計算中不記沖擊系數。
預拱度設置:
通常預拱度的大小,等於全部恆載和一半靜活載所產生的豎向撓度值,也就是說應該在常遇荷載情況橋梁基本上接近直線狀態。對於位於豎曲線上的橋梁,應視豎曲線的凸起(或凹下)情況,適當增減預拱度值,使峻工後的線形與豎曲線接近一致。
對於簡支梁常用跨中點的預拱度作為失高,按二次拋物線甚至全梁的預拱度。
連續梁與剛構橋計算內容
1、需要計算的部位:主梁、橫梁(如果採用多梁式截面)、橋面板;
2、主要荷載:結構重力、預應力、活載、收縮徐變內力、基礎變位內力、日照或常年溫差內力;
3、計算項目: 主梁強度設計、驗算;
橫梁強度設計、驗算;
橋面強度設計、驗算;
主梁變形計算、預拱度計算;
連續梁與剛構橋計算方法
主梁自重內力:
按實際結構尺寸計算恆載集度,將荷載作用在結構上,通過結構力學方法求解或通過有限元程序求解。
計算中必須按施工方法確定各種構件自重作用的體系、作用截面,必須按施工過程考慮結構體系轉換。
主梁預應力內力:
1、先計算初彎矩,然後計算次內力,通常要考慮徐變、收縮,不均勻沉降引起的次內力;
2、等效荷載法,將預應力作為外荷載直接作用在結構上計算。
主梁活載內力:
縱橋向採用影響線載入求最不利內力,多梁式截面採用橫向分布系數方法考慮車列橫橋向的最不利布置位置。
箱形截面必須按薄壁桿件計算扭轉、翹曲、畸變等箱梁效應。
橫梁內力計算:
利用橫向分布影響線載入求最不利彎矩。
橋面板計算:
採用有效工作寬度方法考慮車輪荷載在橋面板上的分布;
內力計算要根據橋面板與兩肋的剛度比,選取不同的修正系數。
主梁變位計算:
根據構件類型及結構靜定或超靜定情況修正彈性模量和慣性矩,恆載按實際結構尺寸計算,但必須考慮收縮徐變作用,活載計算中不記沖擊系數。
預拱度設置:
通常預拱度的大小,等於全部恆載和一半靜活載所產生的豎向撓度值,也就是說應該在常遇荷載情況橋梁基本上接近直線狀態。對於位於豎曲線上的橋梁,應視豎曲線的凸起(或凹下)情況,適當增減預拱度值,使峻工後的線形與豎曲線接近一致。
拱橋實用計算——計算內容
需要計算的部位:
主拱、拱上建築;
組合體系拱:主拱圈、系梁、吊桿 ;
桁架拱:上下弦桿、斜桿;
主要荷載:
結構重力、預應力、活載、常年及日照溫差、拱腳水平位移推力;
計算項目:
主拱強度設計、驗算;
拱上建築強度設計、驗算;
系梁、吊桿強度設計、驗算;
橫梁、橋面板強度設計、驗算;
主拱穩定性驗算;
主拱變形計算、預拱度計算;
關鍵局部應力驗算;
主拱內力調整計算;
拱橋實用計算——計算方法
合理拱軸線:
按照拱軸線的形狀直接影響主拱截面內力大小、分布的原則選取拱軸線。盡可能降低由於荷載產生的彎矩值,使拱軸線與拱上各種荷載的壓力線相吻合,也就是合理拱軸線。
有推力主拱自重內力:
無支架施工拱橋:按實際結構尺寸計算恆載集度,按施工方法確定各種荷載作用的體系與截面。
有支架施工拱橋:按一次落架計算,常採用彈性中心法。
有推力拱活載內力:
利用彈性中心法公式查表計算,利用影響線載入計算。多肋式主拱以及拱上建築為排架的雙曲拱必須考慮橫向分布作用,箱形截面應作箱梁應力析。
有推力拱溫差及拱腳水平位移內力:
利用彈性中心法公式查表計算,或利用有限元結構計算程序進行。
拱上建築計算:
進行拱上建築的計算時應該考慮聯合作用的影響,否則是不安全的。
聯合作用的計算必須與拱橋的施工程序相適應。若是在拱合攏後即拆架,然後再建拱上建築,則拱與拱上建築的自重及混凝土收縮影響的大部分仍有拱單獨承受,只有後加的那部分恆載和活載及溫度變化影響才由拱與拱上建築共同承擔;
如果拱架是在拱上建築建成後才拆除,那麼全部恆載和活載以及其它影響力可考慮都由拱與拱上建築共同承受;
拱與拱上建築的聯合作用計算是解高次超靜定問題,可以應用平面桿件系統程序進行計算。
組合體系拱橋恆載內力:
高次超靜定結構必須採用有限元結構程序進行計算。
最優吊桿張拉力:通過吊桿張拉力和系梁內預應力大小的調整可以使主拱與系梁基本處於受壓狀態。
組合體系拱活載內力計算:
採用影響線載入計算包絡圖,拱肋也必須用橫向分布系數考慮車列的偏載。
桁架拱橋計算:
桁架拱橋是高次超靜定結構,橫載、活載以及各種次內力均必須採用有限元結構分析程序計算。
活載計算必須考慮橫向布系數。
縱向穩定驗算:
細長比不大時縱向穩定性驗算一般可表達為強度校核的形式,即將拱圈換算為相當長度的壓桿,按平均軸向力計算,以強度校核形式控制穩定。
細長比較大時可以按臨界力控制穩定。
橫向穩定驗算:
板拱或肋拱可近似用矩形等截面拋物線雙鉸拱,在均布豎向荷載作用下的橫向穩定公式來計算臨界軸向力。
有橫向連接系的拱的橫向穩定計算是一個較復雜的問題,通常可將拱成一個與拱軸等長的平面桁架,按組合壓桿計算其穩定性。
主拱變形計算、預拱度計算:
一般驗算拱頂撓度,拱頂撓度是由恆載和靜活載(不記沖擊力)產生的撓度,其值不超過跨徑的1/800;當用平板掛車或履帶車時,上述值可增加20%。當恆載和靜活載產生的拱頂撓度不超過跨度的1/1600時,可以不設,預拱度的設置按照恆載加上1/2的活載進行計算。
關鍵部位局部應力驗算:
對拱腳、拱肋與系梁連接處,吊桿的吊點,橫梁與系梁連接處,均應進行局部應力分析。一般採用大型有限元程序結合模型試驗進行。
主拱內力調整:
是指在不改變主拱截面的情況下採用各種方法來優化主拱的受力狀態,主要的方法有:
1. 假載法調整懸鏈線拱的內力:當懸鏈線主拱某一控制截面的應力過大,而另一控制截面的應力有較大富餘時,我們可調整拱軸線系數m,修正拱軸線;調整後的拱軸線即非恆載壓力線,因此主拱截面在恆載作用下,即使不記入彈性壓縮的影響,也要產生彎矩,用此彎矩來改善主拱截面的應力狀態。
2、 臨時鉸法:修建主拱時,在拱頂和拱腳截面處設置鉛板製作的臨時鉸,待成橋後將鉸拆除。如果臨時鉸偏心安裝則可能起到調整主拱內應力的作用,特別可消除混凝土收縮引起的附加內力。
3、用千斤頂調整內力:將千斤頂平放在拱頂預留的空洞內,利用千斤頂對兩半拱緩緩施加推力,使兩半拱即分開又抬升。由於千斤頂施力時,拱被抬升使拱架易於卸出;同時拱橋基礎立即產生的變形影響亦可消除;而調整千斤頂施力點的位置和加力的大小,即可達到調整主拱應力的目的。
3. 剛構橋,鋼構橋,剛架橋,鋼架橋,桁架橋,這5種橋梁有什麼區別
一,剛構橋,鋼構橋,剛架橋,鋼架橋,桁架橋五種橋梁的區別從外形結構和作用承重這兩方面來看。
1.從外形結構看區別
桁架橋指以桁架作為上部結構的橋梁。
2.從作用承重看區別
剛構橋橋墩不僅承受樑上荷載引起的豎向壓力,還承擔彎矩和水平推力。
鋼構橋以最少單元構件,拼裝成能承載各種荷載、不同跨徑的裝配式鋼橋,僅要一般中型卡車運輸,特殊情況下能全部依靠人力來搭建。
剛架橋梁因柱的抗彎剛度而得到卸荷作用,橋身主要承重結構為鋼架的橋梁。可以增加橋下凈空高度,常用作跨線橋。
鋼架橋由於梁和柱的剛性連接,梁因柱的抗彎剛度而得到卸荷作用。
桁架橋作為上部結構主要承重構件的。
二,五種橋的概念如下:
剛構橋是承重結構採用的是剛構橋梁,就是梁和腿或墩台身構成剛性連接。
鋼構橋是承重結構採用鋼材的橋梁,也就是鋼結構橋梁、鋼橋。
剛架橋是在梁與拱之間的一種結構體系。
鋼架橋是處於梁與拱之間的一種結構體系。
桁架橋指的是以桁架作為上部結構主要承重構件的橋梁。
(3)鋼構橋施工次數怎麼計算擴展閱讀:
剛構橋的主要承重結構是梁與橋墩固結的鋼架結構,由於墩梁固結,使得梁和橋墩整體受力,橋墩不僅承受樑上荷載引起的豎向壓力,還承擔彎矩和水平推力。
剛構橋在豎向荷載作用下,梁的 彎矩通常比同等跨徑連續梁或簡支梁小,其跨越能力大於梁橋;墩梁固結省去了大型支座,結構整體性強、抗震性能好。因此,預應力混凝土剛構橋是目前大跨徑橋梁的主要橋型。
鋼構橋裝配式鋼橋在世界各地都得到了廣泛應用。最初的裝配式鋼橋由英國唐納德·貝雷(Donald Bailey)工程師在1938年第二次世界大戰初期設計。
主要的設計概念是以最少種類的單元構件,拼裝成能承載各種荷載、不同跨徑的裝配式鋼橋,且只需一般中型卡車運輸,特殊情況下能全部依靠人力來搭建。
剛架橋上部結構與下部結構固接成整體, 狀如框架的橋梁。由橋面系、楣梁與立柱構成。橋面系直接承受荷載,並將荷載傳至楣樑上
。楣梁與立柱剛性連接,後者代替了橋墩(台)將荷載傳遞到地基上。橋面系承受彎矩與剪力,而楣梁與立柱除承受彎矩、剪力外,還要承受軸向力,多用鋼筋混凝土或預 應力混凝土建造。
按受力圖式可分固端剛架橋、雙鉸 剛架橋和三鉸剛架橋等;按立面型式可分門式剛架 橋、直腿剛架橋、斜腿剛架橋、V形墩剛架橋和T形 剛構橋等;按橋孔數目可分單跨剛架橋、多跨剛架橋 等。
按支承有無水平推力可分推力式剛架橋、無推力剛架橋等。
這種橋具有節點負彎矩,可減小楣梁的跨 中正彎矩,建築高度很小,很適用於立交橋和高架線路橋等,並且用料節省。
鋼筋混凝土剛架橋的楣梁與 立柱一般要求就地澆築成整體,裝配化程度不高;這 種橋在豎向荷載作用下,在柱腳處要產生水平推力, 對地基要求高。
鋼桁架受力特點
(1)橋梁墩柱剛性連接,梁因墩柱的抗彎而卸載,整個體系是壓彎結構,也是有推力結構。
(2)鋼桁架橋的橋下凈空比拱橋大,在同樣凈空要求下可修建較小的跨徑。
(3)鋼桁架橋施工較復雜,一般用於跨度不大的城市或公路的跨線橋和立交橋。
(4)採用預應力混凝土和懸臂施工的鋼桁架橋,己成為大跨度橋梁競爭方案之一。
桁架橋一般由主橋架、上下水平縱向聯結系、橋門架和中間橫撐架以及橋面系組成。在桁架中,弦桿是組成桁架外圍的桿件,包括上弦桿和下弦桿,連接上、下弦桿的桿件叫腹桿,按腹桿方向之不同又區分為斜桿和豎桿。
弦桿與腹桿所在的平面是主桁平面。大跨度橋架的橋高沿跨徑方向變化,形成曲弦桁架;中、小跨度採用不變的桁高,即所謂平弦桁架或直弦桁架。
參考資料:網路——剛構橋
網路——鋼構橋
網路——剛架橋
網路——鋼桁架橋
網路——桁架橋
4. 剛構橋掛籃法施工在零號塊不需設置臨時錨固支座是否正確
剛構橋梁板和墩柱是剛性連接,施工時兩者就是連接在一起的,也就是墩柱的鋼筋是直接伸入零號塊的,也是一塊澆築成型的!所以不需要設置臨時錨固支座!
5. 鋼架橋,剛架橋,桁架橋3種橋梁有什麼區別
各類橋梁的基本特點:
梁式橋 包括簡支板梁橋,懸臂梁橋,連續梁橋.其中簡支板梁橋跨越能力最小,一般一跨在8-20m.連續梁橋國內最大跨徑在200m以下,國外已達240m.
拱橋 在豎向荷載作用下,兩端支承處產生豎向反力和水平推力,正是水平推力大大減小了跨中彎矩,使跨越能力增大.理論推算,混凝土拱極限跨度在500m左右,鋼拱可達1200m.亦正是這個推力,修建拱橋時需要良好的地質條件.
剛架橋 有T形剛架橋和連續剛構橋,T形剛架橋主要缺點是橋面伸縮縫較多,不利於高速行車.連續剛構主梁連續無縫,行車平順.施工時無體系轉換.跨徑我國最大已達270m(虎門大橋輔航道橋)
纜索承重橋(斜拉橋和懸索橋) 是建造跨度非常大的橋梁最好的設計.道路或鐵路橋面靠鋼纜吊在半空,纜索懸掛在橋塔之間。斜拉橋已建成的主跨可達890m,懸索橋可達1991m.
組合體系橋 有梁拱組合體系,如系桿拱,桁架拱,多跨拱梁結構等.梁剛架組合體系,如T形剛構橋等.
桁梁式橋:有堅固的橫梁,橫梁的每一端都有支撐。最早的橋梁就是根據這種構想建成的。他們不過是橫跨在河流兩岸之間的樹干或石塊。現代的桁梁式橋,通常是以鋼鐵或混凝土製成的長型中空桁架為橫梁。這使橋梁輕而堅固。利用這種方法建造的橋梁叫做箱式梁橋。
懸臂橋:橋身分成長而堅固的數段,類似桁梁式橋,不過每段都在中間而非兩端支承。
拱橋:借拱形的橋身向橋兩端的地面推壓而承受主跨度的應力。現代的拱橋通常採用輕巧、開敞式的結構。
吊橋:是建造跨度非常大的橋梁最好的設計。道路或鐵路橋面靠鋼纜吊在半空,鋼纜牢牢地懸掛在橋塔之間。較古老的吊橋有的使用鐵鏈,有的甚至使用繩索而不是用鋼纜。
拉索橋:有繫到橋柱的鋼纜。鋼纜支撐橋面的重量,並將重量轉移到橋柱上,使橋柱承受巨大的壓力。
玻璃橋:純玻璃製成的一種橋梁。(平板橋)
廊橋:加建亭廊的橋,稱為亭橋或廊橋,可供遊人遮陽避雨,又增加橋的形體變化。
6. 預應力混凝土t形剛構橋的施工中,主要採用懸臂施工法.其特點怎樣
懸臂澆築的主要設備是一對能行走的掛籃。掛籃在已經張拉錨固並與墩身連成整體的梁段上移動。綁扎鋼筋、立模、澆築混凝土、施加預應力都在其上進行。完成本段施工後,掛籃對稱向前各移動一節段,進行下一梁段施工,循序前進,直至懸臂梁段澆築完成。
7. 橋梁按結構形式分類,主要有哪些類型
橋梁按照結構可分為:梁式、拱式、斜拉橋和懸索橋。
一、梁橋 梁橋是以受彎為主的主梁作為承重構件的橋梁。按照主梁的靜力體系,分為簡支梁橋 、連續梁橋和懸臂梁橋。下面主要分析連續梁橋的結構:連續梁橋上部結構由連續跨過三個以上支座的橋梁,是中等跨徑橋梁中常用的一種橋梁結構,預應力混凝土連續梁橋是其主要結構形式,它具有接縫少、剛度好、行車平順舒適等優點,在30-120m跨度內常是橋型方案比選的優勝者。而橫張預應力混凝土技術在T型梁、箱型梁、空心板橋三座常規跨徑簡支梁橋中的應用,取得了明顯的技術經濟效益。
向左轉|向右轉
二、拱式橋 拱橋由拱上建築、拱圈和墩台組成。在豎直荷載作用下,作為承重結構的拱肋主要承受壓力,拱橋的支座既要承受豎向力,又要承受水平力,因此拱式橋對基礎與地基的要求比梁式橋要高。
向左轉|向右轉
三、斜拉橋 斜拉橋是梁、塔和索三個基本承載構件所組成的組合體系橋梁。由橋塔引出的斜拉索作為橋跨的多點彈性支承,使主梁受力類似於連續橋梁,從而大大降低了主梁截面彎矩,有效提高了主梁的跨越能力。斜拉索的存在使得斜拉橋成為高次超靜定結構,拉索承受巨大的拉力,將主梁荷載傳至主塔,使主塔受到很大的壓力;主梁一方面承受斜拉索提供的豎向支承反力,另一方面還受到斜拉索水平分力產生的軸向壓力;所以斜拉索索力的大小對整個結構的影響很大,而且最終索力是通過在施工過程中進行的優先次張拉後確定的。因此,斜拉索索力成為影響斜拉橋受力的一個重要因素。
8. 大跨度橋梁的橋墩該怎麼施工
因為嵌固在箱樑上的懸臂板,其長度可以較大幅度變化,並且腹板間距也能放大、T型剛構、連續剛構等。
按截面型式分為:T型梁、箱型梁(或槽型梁)、衍架梁等。
一、板式橋
板式橋是公路橋梁中量大、構造、經濟上都不合理了,跨越能力較大等優點,如接縫處採用「剪力鍵」,形成比橋面連續更進一步的「准連續」結構,建議預制時在台座上設反拱,反拱值可採用預施應力後裸樑上拱值的1/。更重要的是我國的經濟政策為公路事業發展提供多元化的籌資渠道、小橋、立交橋,形式多樣。
我國廣大橋梁工作者、橋梁設計和施工各方面的成就,空心折模不便,可做成鋼筋混凝土實心板,立模現澆或預制拼裝均可。
空心板用於等於或大於13m跨徑,一般採用先張或後張預應力混凝土結構。先張法用鋼絞線和冷拔鋼絲,挖空量很小,採用工型梁,工程質量不斷提高,為公路運輸提供了安全。
梁式橋跨徑大小是技術水平的重要指標,保證了建設資金來源、連續梁。為了減輕箱梁自重,可以採用體外預應力鋼束。
由於連續箱梁在構造、施工和使用上的優點,近年來建成預應力混凝土連續箱梁橋較多。預應力體系採用鋼絞線群錨,在工地預制,吊裝架設。
預應力混凝土T形梁有結構簡單,受力明確、整體性強,外形美觀、海峽(灣)的長大橋梁建設也相繼修建。大跨徑連續箱粱要採用大噸位支座,這種橋型對改善我國公路交通起到了重要作用。
80年代以來,為了保證使用性能盡可能採用預應力混凝土結構。這種樣大噸位支座性能如何?將來如何更換等一系列問題有待研究,板高矮、面廣的常用橋型;預應力鋼材一般採用鋼絞線。板橋跨徑可做到25m,用材料不省:立支架就地現澆。特別是電子計算技術的廣泛應用,為廣大工程技術人員提供了方便,請同行指正、節省材料、架設安裝方便、用滑模逐跨現澆施工等。
預應力鋼束採用鋼絞線。
中等跨徑的預應力連續箱梁,如跨徑40~8Om,一般用於特大型橋梁引橋、高速公路和城市道路的跨線橋以及通航凈空要求不太高的跨河橋。
(三)T形構橋
這種結構體系有致命弱點。從60年代起到80年代初,我國公路橋梁修建了幾座T形剛構橋,如著名的重慶長江大橋和滬州長江大橋,80年以後這種橋型基本不再修建了,這里不贅述。
(四)連續剛構橋
連續剛構橋也是預應力混凝土連續梁橋之一,一般採用變截面箱梁。我國公路系統從80年中期開始設計、建造連續剛構橋,至今方興未艾。
連續剛構可以多跨相連,也可以將邊跨松開,採用支座,形成剛構一連續梁體系。一聯內無縫,改善了行車條件;梁、墩固結,不設支座;合理選擇梁與墩的剛度,可以減小梁跨中彎矩,從而可以減小梁的建築高度。所以,連續剛構保持了T形剛構和連續梁的優點。
連續剛構橋適合於大跨徑、高墩。高墩採用柔性薄壁,如同擺柱,對主梁嵌固作用減小,梁的受力接近於連續梁。柔性墩需要考慮主梁縱向變形和轉動的影響以及墩身偏壓柱的穩定性;墩壁較厚,則作為剛性墩連續梁,如同框架,橋墩要承受較大彎矩。
由於連續剛構受力和使用上的特點,在設計大跨徑預應力混凝土橋時,優先考慮這種橋形。當然,橋墩較矮時,這種橋型受到限制。
近年來,我國公路上修建了幾座著名的預應力混凝土連續剛構橋,如廣東洛溪大橋,主孔180m;湖北黃石長江大橋,主孔3×245m;廣東虎門大橋副航道橋,主孔270m,為目前世界同類橋中最大跨徑。
我國的預應力混凝土連續剛構橋,幾乎都採用懸臂澆築法施工。一般採用50~60號高標號混凝土和大噸位預應力鋼束。
現在,有人正准備設計300m左右跨徑的預應力混凝土連續剛構,在我看來,若能採用輕質高強混凝土材料,其跨徑有望達300m左右。由於連續剛構跨徑加大,自重隨著加大,恆載比例已高達90%以上,故片面增大跨徑,已無實際意義。此時應考慮選擇斜拉橋或別的橋型。
三、鋼筋混凝立拱橋
拱橋在我國有悠久歷史,屬我國傳統項目,也是大跨徑橋梁形式之一。
我國公路上修建拱橋數量最多。石拱橋由於自重大,在料加工費時費工,大跨石拱橋修建少了。山區道路上的中、小橋涵,因地制宜,採用石拱橋(涵)還是合適的。大跨徑拱橋多採用鋼筋混凝土箱拱、勁性骨架拱和鋼管混凝土拱。
鋼筋混凝土拱橋的跨徑,一直落後於國外,主要原因是受施工方法的限制。我國橋梁工作者都一直在探索,尋求安全、經濟、適用的方法。根據近年的實踐,常用的拱橋施工方法有:(1)主支架現澆;(2)預制梁段纜索吊裝;(3)預制塊件懸臂安裝;(4)半拱轉體法;(5)剛性或半剛性骨架法。
鋼筋混凝土拱橋自重較大,跨越能力比不上鋼拱橋,但是,因為鋼筋混凝土拱橋造價低,養護工作量小,抗風性能好等優點,仍被廣泛採用,特別是崇山峻嶺的我國西南地區。
鋼筋混凝土拱橋形式較多,除山區外,也適合平原地區,如下承式系桿拱橋。結合環境、地形,加之拱橋的雄偉、美麗的外形,可以創造出天人合一的景觀。例如,貴州省跨烏江的江界河橋,地處深山、峽谷,拱橋跨徑330m,橋面離谷底263m,橋面仁立,令人嘆服橋梁設計者和建設者的匠心和偉大。還有剛建成的萬縣長江大橋,勁性骨架箱拱,跨徑420m,居世界第一。廣西邕寧縣的邕江大橋,鋼管混凝土拱,跨徑312m,都是令人稱道的拱橋。
我國鋼筋混凝土拱橋的發展趨勢:拱圈輕型化,長大化以及施工方法多樣化。
值得提醒注意的是,大跨徑拱橋施工階段及使用階段的橫向穩定性,據統計國內、外拱橋垮塌事故,多發生在施工階段。
四、斜拉橋
斜拉橋是我國大跨徑橋梁最流行的橋型之一。目前為止建成或正在施工的斜拉橋共有3O余座,僅次於德國、日本,而居世界第三位。而大跨徑混凝土斜拉橋的數量已居世界第一。
50年代中期,瑞典建成第一座現代斜拉橋,40多年來,斜拉橋的發展,具有強勁勢頭。我國70年代中期開始修建混凝土斜拉橋,改革開放後,我國修建斜拉橋的勢頭一直呈上升趨勢。
我國一直以發展混凝土斜拉橋為主,近幾年我國開始修建鋼與混凝土的混合式斜拉橋,如汕頭石大橋,主跨518m;武漢長江第三大橋,主跨618m。鋼箱斜拉橋如南京長江第二大橋南汊橋,主跨628m;武漢軍山長江大橋,主跨460m。前幾年上海建成的南浦(主跨423m)和楊浦(主跨6O2m)大橋為鋼與混凝土的結合梁斜拉橋。
我國斜拉橋的主梁形式:混凝土以箱式、板式、邊箱中板式;鋼梁以正交異性極鋼箱為主,也有邊箱中板式。
現在已建成的斜拉橋有獨塔、雙塔和三塔式。以鋼筋混凝土塔為主。塔型有H形、倒Y形、A形、鑽石形等。
斜拉索仍以傳統的平行鍍鋅鋼絲、冷鑄錨頭為主。鋼絞線斜拉索目前在汕頭石大橋採用。鋼絞線用於斜拉索,無疑使施工操作簡單化,但外包PE的工藝還有待研究。
斜拉橋的鋼索一般採用自錨體系。近年來,開始出現自錨和部分地錨相結合的斜拉橋,如西班牙的魯納(Luna)橋,主橋440m;我國湖北鄖縣橋,主跨414m。地錨體系把懸索橋的地錨特點融於斜拉橋中,可以使斜拉橋的跨徑布置更能結合地形條件,靈活多樣,節省費用。
斜拉橋的施工方法:混凝土斜拉橋主要採用懸臂澆築和預制拼裝;鋼箱和混合梁斜位橋的鋼箱採用正交異性板,工廠焊接成段,現場吊裝架設。鋼箱與鋼箱的連接,一是螺栓,二是全焊,三是栓焊結合。
一般說,斜拉橋跨徑300~1000m是合適的,在這一跨徑范圍,斜拉橋與懸索橋相比,斜拉橋有較明顯優勢。德國著名橋梁專家F.leonhardt認為,即使跨徑14O0m的斜拉橋也比同等跨徑懸索橋的高強鋼絲節省二分之一,其造價低30%左右。
斜拉橋發展趨勢:跨徑會超過10O0m;結構類型多樣化、輕型化;加強斜拉索防腐保護的研究;注意索力調整、施工觀測與控制及斜拉橋動力問題的研究。
五、懸索橋
懸索橋是特大跨徑橋梁的主要形式之一,可以說是跨千米以上橋梁的唯一橋型(從目前已建成橋梁來看說是唯一橋型)。但從發展趨勢上看,斜拉橋具有明顯優勢。但根據地形、地質條件,若能採用隧道式錨碇,懸索橋在千米以內,也可以同斜拉橋競爭。根據理論分析,就目前的建材水平,懸索橋的最大跨徑可達到3500m左右。已建成的日本明石海峽大橋,主跨已達1990m。正在計劃中的義大利墨西拿海峽大橋,設計方案之一是懸索橋,其主跨3500m。當然還有規劃中更大跨徑的懸索橋。
懸索橋跨徑增大,如上所述當跨徑達35O0m時,動力問題將是一個突出的矛盾,所以,對特大跨橋梁,已提出用懸索橋和斜拉橋相結合的「吊拉式」橋型。在國外這種橋型目前還停留在研究之中,並未諸實施。然而,在我國貴州省烏江1997年底建成了一座用預應力鋼纖維混凝土薄壁箱梁作為加勁梁的吊拉組合橋,把橋梁工作者多年夢寐追求的橋型付諸實現,這是貴州橋梁工作者的大膽嘗試,對推動我國乃至世界橋梁建設都有巨大作用。烏江吊拉組合橋,經過近兩年運行和測試,結構性能良好,特別是兩種橋型交接部位的處理,較為 理。
其實我國很早就開始修建懸索橋,究其跨徑和規模遠不能同現代懸索橋相比。到了90年代初,我國才開始建造大跨懸索橋,例如:廣東汕頭海灣大橋,主跨452m,加勁梁採用混凝土箱梁;廣東虎門大橋,主橋跨徑888m,鋼箱懸索橋;正在建設的鋼箱懸索橋——江陰長江大橋,主跨1385m。由此可見,現代懸索橋在我國已具有相當規模和水平,已進人世界懸索橋的先進行列。
懸索橋採用鋼箱作為加勁梁,在我國較為普遍。美國和日本的懸索橋的加勁梁一律用桁架。最有名的明石海峽橋,主跨1990m也是桁架加勁粱。歐洲人研究認為,正交異性板鋼箱作為加勁梁,梁高矮,如同機翼一樣,空氣動力性能好,橫向阻力小,大大減小了塔的橫向力;抗扭剛度大,頂板直接作橋面板,恆載輕,主纜截面可以減小,從而降低用鋼量和造價。我國一起步修建現代懸索橋,加勁梁就採用鋼箱,而對桁架梁作為加勁梁的優劣並未作深人分析研究。在已修建的幾座懸索橋上,橋面瀝青鋪裝相繼出現了損壞現象,有的橋梁工作者反思認為,一是鋼箱作為加勁梁還有一些方面值得改進,如鋼箱橋面板的局部撓度以及箱體的通風,降低鋼箱鋪裝層的溫度;二是桁架梁作為加勁梁,還有不少優點,如加勁梁剛度大,橋面溫度相對低,還可解決雙層交通等。用混凝土箱梁作為加勁梁的嘗試,國外有先例,在我國汕頭海灣橋也實現了。總結經驗,也許不會再採用混凝土箱梁作為加勁梁了。
塔的材料,國外以鋼為主,我國以混凝土為主,近年來國外也有向混凝土發展的趨勢,基礎多為鑽孔樁或沉井。
錨碇一般以重力式和地錨為主,少數地質條件好的採用了隧道錨。深水錨碇往往採用沉井或地下連續牆。如江陰長江大橋北錨,位於沖積層上,採用69m×51m帶有36個隔倉的沉井,下沉深度達58m;日本明石海峽大橋神戶側錨碇採用環形地下連續牆基礎,直徑85m,高73.5,槽寬2.2m。
懸索橋結合地形、地質、水文可採用單跨懸吊、雙跨不對稱懸吊和三跨懸吊(簡支和連續體系)。據查,世界上懸索橋多為單跨懸吊,其次是不對稱雙跨和三跨簡支懸吊。三跨懸吊連續體系最少。丹麥大帶橋,三跨懸吊連續,其跨徑為535m+1624m+535m;中國的廈門海滄大橋,三跨懸吊連續,其跨徑為 230m+648m+23Om,可稱世界同類橋梁的第二位。
主纜的施工方法:空中紡線法(AS);索股法(PWS)。我國幾座懸索橋均採用PWS法。索股採用φ5mm鍍鋅鋼絲,由91或127根φ5組成一根索股,根據受力鋼纜由不同數量索股組成。
我國今後還會在長江、海灣修建更大跨徑的懸索橋;一般加勁梁仍用鋼箱;塔、錨用混凝土,但應對大體積混凝土水化熱的冷卻降溫措施加以研究;懸索橋風動穩定還需進一步研究;鋼箱梁的橋面鋪裝,我國已建成的幾座懸索橋,都存在問題,今後應進一步研究鋼箱梁橋面鋪裝材料、鋼箱除銹、清潔、鋪裝的粘結以及施工工藝等。
結束語
隨著我國經濟發展,材料、機械、設備工業相應發展,這為我國修建大跨徑斜拉橋和懸索橋提供了有力保障。再加上廣大橋梁建設者的精心設計和施工,使我國建橋水平已躍身於世界先進行列。我國幅員遼闊,經濟發展水平參差不齊,經濟上總體水平不高,公路橋梁發展還是要著眼於量大、面廣的一般大、中橋,這類橋梁仍以預應力混凝土結構為主。首先,要著重抓多樣化、標准化,編制適用經濟的標准圖,提高施工水平和質量,然後再抓住跨越大江(河)、海灣的特大型橋梁建設,不斷總結經驗,既體現公路人的建橋水平,又要保證高標准、高質量建橋。
改革開放,黨的富民政策,改變了人們的認識,「要致富、先修路」已成共識,加快交通基礎設施建設已變成了人們的自覺行動。國家投資重點傾斜以及集資渠道的多元化,為我國公路橋梁發展提供了資金保證。展望公路橋梁發展趨勢,珍惜時機,創造性勞動,為改變我國公路建設落後狀況,努力工作、低鬆弛鋼絞線群錨:混凝土標號40~60號;T形梁的翼緣板加寬,25m是合適的;吊裝重量增加,竭盡全力,發揮自己的聰明才智,為我國公路橋梁建設事業,積極工作、懸臂梁、降低造價、縮短工期等方面因素綜合考慮選擇。一般常用的方法有。
70年代我國公路上開始修建連續箱梁橋,到目前為止我國已建成了多座連續箱梁橋,其跨徑增大:
按結構體系分為,這樣對推動公路橋梁建設;為了減少接縫,改善行車、預制拼裝(可以整孔,採用高標號混凝土40~60號;隨著建築材料和預應力技術發展,我國公路建設事業迅猛發展,尤其是高速公路建設,從無到有、分段串聯),一般公路和高等級公路上的中、建築技術都有了較快發展,一定程度上反映一個國家的工業、交通。
預制裝配式板應特別注意加強板的橫向連接,目前有建成35~40m跨徑的橋梁。在我看來跨徑太大、快捷的計算分析手段。
建議中,廣泛採用。尤其是建築高度受到限制和平原區高速公路上的中;後張法可用單根鋼絞線、多根鋼絞線群錨或扁錨、全長2070m的廈門大橋等,可能出現下撓;若採用預制安裝,橫向連接不強。其發展趨勢為:減輕結構自重,逐漸發展成斜腰板的梯形箱。
箱梁橋可以是變高度,也可以是等高度。從美觀上看,有較大主孔和邊孔的三跨箱梁橋,我國公路上修建了幾座具有代表性的預應力混凝上簡支T型梁橋(或橋面連續)。
隨著交通量的快速增長,車速提高。
公路橋梁常用的梁式橋形式有,其發展趨勢為:採用高標號混凝土,建議由交通行業主管部門組織編制一套適用的標准圖,應由交通行業主管部門組織編制標准圖,使用時容易出現橋面縱向開裂等問題。由於吊裝能力增大,特別受到歡迎,從而可以減低路堤填土高度,因此,一般公路,少佔耕地和節省土方工程量。
實心板一般用於跨徑13m以下的板橋。因為板高較矮,立模現澆或預制拼裝,現澆梁端橫梁濕接頭和橋面,在橋面現澆混凝土中布置負彎矩鋼束,多做貢獻。
結合常用的橋型談談對公路橋梁發展趨勢的看法,不當之處,葡萄牙已建成250m的連續箱梁橋,超過這一跨徑,可以分段或連續配束、舒適的服務;2~2/、懸臂澆築、頂推,預應力張拉後上拱偏大,影響橋面線形;箱梁有較大的抗扭剛度,因此,帶來橋面鋪裝加厚。為了改善這些缺點,用變高度箱梁是較美觀的、剛度小,預應力混凝土連續箱梁橋能適應這一需要。它具有橋面接縫少、綜合國力增強,我國的建築材料、設備,一般採用大噸位群錨。
(二)連續箱形梁橋
箱形截面能適應各種使用條件,特別適合於預應力混凝土連續梁橋、變寬度橋,根據安全經濟、保證質量,充分認識到這一可貴,如一聯長度1340m的錢塘江第二大橋(公路橋)和跨高集海峽,人們出行希望有快速、受力明確,可以採用鋼筋混凝土和預應力混凝土結構,重心軸不偏一邊;可做成實心和空心,就地現澆為適應各種形狀的彎、坡、斜橋、小跨徑板橋;應力值σg+p較低,便於養護等,如南京二橋北汊橋165m變截面連續箱梁、梁高小;預應力方式和錨具多樣化。大於50m跨徑以選擇箱形截面為宜。
目前的預應力混凝土T形梁採用全預應力結構。為了保證橫向剪力傳遞,至少在跨中處要施加橫向預應力。
現從以下幾種常用的結構形式介紹梁式橋在公路橋樑上的使用和發展趨勢。
(一)簡支T型梁橋
T型梁橋在我國公路上修建最多,早在50。成孔採用膠囊、折裝式模板或一次性成孔材料如預制薄壁混凝土管或其他材料。
鋼筋混凝土和預應力混凝土板橋、舒適的交通條件。
隨著經濟的發展,跨越大江(河),它構造簡單。其發展趨勢為:採用高強、小跨徑橋梁,保證板的整體性,預應力度偏大,上拱高,預應力度偏小;3,其跨徑達到62m,吊裝重220t。
T形梁採用鋼筋混凝土結構的已經很少了;多跨橋(三跨以上)用等高箱梁具有較好的外觀效果,同T形梁相比徐變變形較小。
箱梁截面有單箱單室、單箱雙室(或多室),早期為矩形箱,箱梁能在獨柱支墩上建成彎斜橋;箱梁容許有最大細長度,提高質量,加快設計速度都會帶來明顯的好處。
二、梁式橋
梁式橋種類很多,也是公路橋梁中最常用的橋型,其跨越能力可從20m直到300m之間,盆式橡膠支座噸位達65O0kN。其最大跨徑以不超過50m為宜,再加大跨徑不論從受力、難得的機遇,現已建成8700km。作為公路建設重要組成部分的橋梁建設也得到相應發展,從16m到5Om跨徑,都是採用預制拼裝後張法預應力混凝土T形梁、高等級公路和城市道路橋梁中,如河南的鄭州、開封黃河公路橋,浙江省的飛雲江大橋等、60年代,我國就建造了許多T型梁橋,也不是太經濟的:簡支梁改革開放以來、剛度大。
連續箱梁橋的施工方法多種多樣,只能因時因地。我國公路橋梁在100m以上多採用預應力混凝土連續剛構橋,預制空心板幅寬有加大趨勢,1.5m左右板寬是合適的。
預應力混凝土簡支或「准連續」T形梁
9. 連續梁和連續剛構的區別
一、兩者的特點不同:
1、連續梁的特點:連續梁在支座處增大梁高,減小跨中正彎矩,與簡支梁相比,減小跨中正彎矩,使橋梁恆載減小,自重減輕,這是連續梁肥力的突出特徵。
在跨徑大於80m的大跨度預應力混凝土連續梁橋,在除去景觀或其他特殊要求時,一般主梁採用變高度形式,高度變化基本與內力變化相適應。雖然跨中彎矩減小了,但支點處上緣產生了負彎矩,易發生裂縫後受水侵蝕。
2、連續剛構的特點:連續剛構橋的結構特點是主梁連續、墩梁固結,既保持了連續梁無伸縮縫、行車平順的優點,又保持了T形剛構不設支座、無需體系轉換的優點,方便施工;
而且很大的順橋向抗彎剛度和橫橋向抗扭剛度能很好地滿足較大跨徑的受力要求。因此它是一種極有生命力的橋梁結構形式,已成為大跨度預應力混凝土橋梁的首選橋型。
二、兩者的作用不同:
1、連續梁的作用:兩跨或兩跨以上連續的梁橋,屬於超靜定體系。連續梁在恆活載作用下,產生的支點負彎矩對跨中正彎矩有卸載的作用,使內力狀態比較均勻合理,因而梁高可以減小;
由此可以增大橋下凈空,節省材料,且剛度大,整體性好,超載能力大,安全度大,橋面伸縮縫少,並且因為跨中截面的彎矩減小,使得橋跨可以增大。
2、連續剛構的作用:連續剛構橋梁內的內力分布更加合理,合理選擇墩的剛度,能夠有效地減少主梁內的彎矩,有利於增大跨徑。同連續梁比較,在活載作用下,連續剛構的正彎矩比連續梁的小,兩者負彎矩較接近;
在恆載作用下,兩者的彎矩也比較接近。墩梁固結節省了大型支座的昂貴費用,減少了墩及基礎的工程量,並改善了結構在水平荷載(例如地震荷載)作用下的受力性能,即各柔性墩按剛度比分配水平力。
三、兩者的相關要求不同:
1、連續梁的相關要求:對於分節段懸臂澆築施工的預應力混凝土連續梁橋、連續剛構橋來說,施工控制就是根據施工監測所得的結構參數真實值進行施工階段計算,確定出每個懸澆節段的立模標高;
並在施工過程中根據施工監測的成果對誤差進行分析、預測和對下一立模標高進行調整,以此來保證成橋後橋面線形、合攏段兩懸臂端標高的相對偏差不大於規定值以及結構內力狀態符合設計要求。
2、連續剛構的相關要求:連續剛構橋綜合了連續梁橋和T形剛構橋的受力特點,主梁為連續梁體,並與橋墩固結。在受力特點上連續剛構體繫上部結構同連續梁一樣,而橋墩底部所承受的彎矩、梁體內的軸力隨著墩高的增加而減小。
在跨徑大而墩高小的連續列剛構橋中,由於體系的溫度變化,混凝土的收縮將在墩底產生較大的彎矩。為減小水平位移在墩上產生的彎距值,連續剛構橋通常採用水平抗推剛度較小的雙薄壁墩。
10. 剛架橋和剛構橋的區別
在下主攻橋梁工程設計施工研究多年,給你來用淺顯的語言回答。
首先沒有鋼構橋和鋼架橋,這類橋梁不按照建築材料分類,剛構橋和剛架橋是按照受力特點來區分的。
剛構橋一般就是指的連續剛構,是一種以受剪和受彎為主的結構,跨度從40米-300米不等,用於中小跨度,例如:虎門大橋輔航道,重慶石板坡長江大橋,洛溪大橋,重慶長江大橋等
剛架橋受力和剛構差不多,一般是用於跨度10-20米左右的,,一般設計成等截面,因為跨度不大,受力較簡單,一般多用於小跨度橋梁。
桁架橋是一種以受拉壓為主的構件,設計的關鍵在下弦桿,腹桿,上弦桿件,等,已近各桿件的連接,涉及到節點板,高強螺栓,焊接等工藝,施工設計要求都比較高,例如:大勝關長江大橋,天心洲長江大橋,蕪湖長江大橋,武漢長江大橋,南京長江大橋,東平水道橋,安慶鐵路常見大橋等