㈠ 電焊氣孔形成的原因
電焊時產生氣孔是怎麼回事?電焊氣孔形成的原因是什麼?如何防止電焊氣孔形成?下面就由我告訴大家電焊氣孔形成的原因吧!
電焊氣孔形成的原因
1、電弧焊接中所產生的氣體里含有過量的氫氣及一氧化碳所造成的;
2、母材鋼材中含硫量過多;
3、焊劑的性質和烘賠溫度不夠高;
4、焊接部位冷卻速度過快;
5、焊接區域有油污、油漆、鐵銹、水或鍍鋅層等造成;
6、空氣中潮氣太大、有風;
7、電弧發生偏吹。
防止電焊氣孔形成的 措施(1)選擇合適的焊接材料,按要求烘乾焊條。
(2)清除焊件對口邊緣及兩側各10 - 15mm的油、銹污物,至發出金屬光澤。
(3)選用合理的焊接規范,保證必要的焊接線能量,採用短弧焊接。
(4)採用預熱或其他 方法 減慢熔池冷卻速度。
(5)保持較大的熔池寬深比,使氣體有充分的時間逸出。
造成電焊氣孔的原理CO2電弧焊時,由於熔池表面沒有熔渣蓋覆,CO2氣流又有較強的冷卻作用,因而熔池金屬凝固比較快,但其中氣體來不及逸出時,就容易在焊縫中產生氣孔。
可能產生的氣孔主要有3種:一氧化碳氣孔、氫氣孔和氮氣孔。
1、一氧化碳氣孔
產生CO氣孔的原因,主要是熔池中的FeO和C發生如下的還原反應: FeO+C==Fe+CO
該反應在熔池處於結晶溫度時,進行得比較劇烈,由於這時熔池已開始凝固,CO氣體不易逸出,於是在焊縫中形成CO氣孔。
如果焊絲中含有足夠的脫氧元素Si和Mn,以及限制焊絲中的含碳量,就可以抑制上述的還原反應,有效地防止CO氣孔的產生。所以CO2電弧焊中,只要焊絲選擇適當,產生CO氣孔的可能性是很小的。
2、氫氣孔
如果熔池在高溫時溶入了大量氫氣,在結晶過程中又不能充分排出,則留在焊縫金屬中形成氣孔。
電弧區的氫主要來自焊絲、工件表面的油污及鐵銹,以及CO2氣體中所含的水分。油污為碳氫化合物,鐵銹中含有結晶水,它們在電弧高溫下都能分解出氫氣。減少熔池中氫的溶解量,不僅可防止氫氣孔,而且可提高焊縫金屬的塑性。所以,一方面焊前要適當清除工件和焊絲表面的油污及鐵銹,另一方面應盡可能使用含水分低的CO2氣體。CO2氣體中的水分常常是引起氫氣孔的主要原因。
另外,氫是以離子形態溶解於熔池的。直流反極性時,熔池為負極,它發射大量電子,使熔池表面的氫離子又復合為原子,因而減少了進入熔池的氫離子的數量。所以直流反極性時,焊縫中含氫量為正極性時的1/3~1/5,產生氫氣孔的傾向也比正極性時小。
3、氮氣孔
氮氣的來源:一是空氣侵入焊接區;二是CO2氣體不純。試驗表明:在短路過渡時CO2氣體中加入φ(N2)=3%的氮氣,射流過渡時CO2氣體中加入φ(N2)=4%的氮氣,仍不會產生氮氣孔。而正常氣體中含氮氣很少,φ(N2)≤1%。由上述可推斷,由於CO2氣體不純引起氮氣孔的可能性不大,焊縫中產生氮氣孔的主要原因是保護氣層遭到破壞,大量空氣侵入焊接區所致。
造成保護氣層失效的因素有:
過小的CO2氣體流量;噴嘴被飛濺物部分堵塞;噴嘴與工件的距離過大,以及焊接場地有側向風等。因此,適當增加CO2保護氣體流量,保證氣路暢通和氣層的穩定、可靠,是防止焊縫中氮氣孔的關鍵。
另外,工藝因素對氣孔的產生也有影響。電弧電壓越高,空氣侵入的可能性越大,就越可能產生氣孔。焊接速度主要影響熔池的結晶速度。焊接速度慢,熔池結晶也慢,氣體容易逸出;焊接速度快,熔池結晶快,則氣體不易排出,易產生氣孔。
磷化處理是種強鹼弱酸鹽,處理時一般會在處理葯劑中適當增加一些活性劑。若工件表面情況良好,且焊接是滿焊,那麼一般情況下是沒有氣孔產生的;若工件的表面粗糙,焊接時存在一些縫隙,那麼容易產生一些焊縫的腐蝕,造成氣孔,不過氣孔的大小和處理時間的長短有一定的關系。
氣孔允許存在的指標在標准中都有規定,不同的行業焊接有不同的規定,關鍵焊縫和普通焊縫也不同,這在檢測標准中都有的。產生的氣孔主要有N氣孔和H氣孔相對來說H氣孔較容易產生,具體原因焊條焊絲含有過多的水分,工件有污物(如鐵銹,水分),保護氣體不純或是氣體流量調節不好,還有就是焊接時候有穿堂風存在。
㈡ 焊縫金屬怎樣產生氣孔
CO2電弧焊時,由於熔池表面沒有熔渣蓋覆,CO2氣流又有較強的冷卻作用,因而熔池金屬凝固比較快,但其中氣體來不及逸出時,就容易在焊縫中產生氣孔。 可能產生的氣孔主要有3種:一氧化碳氣孔、氫氣孔和氮氣孔。1、一氧化碳氣孔產生CO氣孔的原因,主要是熔池中的FeO和C發生如下的還原反應: FeO+C==Fe+CO該反應在熔池處於結晶溫度時,進行得比較劇烈,由於這時熔池已開始凝固,CO氣體不易逸出,於是在焊縫中形成CO氣孔。如果焊絲中含有足夠的脫氧元素Si和Mn,以及限制焊絲中的含碳量,就可以抑制上述的還原反應,有效地防止CO氣孔的產生。所以CO2電弧焊中,只要焊絲選擇適當,產生CO氣孔的可能性是很小的。2、氫氣孔如果熔池在高溫時溶入了大量氫氣,在結晶過程中又不能充分排出,則留在焊縫金屬中形成氣孔。電弧區的氫主要來自焊絲、工件表面的油污及鐵銹,以及CO2氣體中所含的水分。油污為碳氫化合物,鐵銹中含有結晶水,它們在電弧高溫下都能分解出氫氣。減少熔池中氫的溶解量,不僅可防止氫氣孔,而且可提高焊縫金屬的塑性。所以,一方面焊前要適當清除工件和焊絲表面的油污及鐵銹,另一方面應盡可能使用含水分低的CO2氣體。CO2氣體中的水分常常是引起氫氣孔的主要原因。另外,氫是以離子形態溶解於熔池的。直流反極性時,熔池為負極,它發射大量電子,使熔池表面的氫離子又復合為原子,因而減少了進入熔池的氫離子的數量。所以直流反極性時,焊縫中含氫量為正極性時的1/3~1/5,產生氫氣孔的傾向也比正極性時小。3、氮氣孔氮氣的來源:一是空氣侵入焊接區;二是CO2氣體不純。試驗表明:在短路過渡時CO2氣體中加入φ(N2)=3%的氮氣,射流過渡時CO2氣體中加入φ(N2)=4%的氮氣,仍不會產生氮氣孔。而正常氣體中含氮氣很少,φ(N2)≤1%。由上述可推斷,由於CO2氣體不純引起氮氣孔的可能性不大,焊縫中產生氮氣孔的主要原因是保護氣層遭到破壞,大量空氣侵入焊接區所致。 造成保護氣層失效的因素有:過小的CO2氣體流量;噴嘴被飛濺物部分堵塞;噴嘴與工件的距離過大,以及焊接場地有側向風等。因此,適當增加CO2保護氣體流量,保證氣路暢通和氣層的穩定、可靠,是防止焊縫中氮氣孔的關鍵。另外,工藝因素對氣孔的產生也有影響。電弧電壓越高,空氣侵入的可能性越大,就越可能產生氣孔。焊接速度主要影響熔池的結晶速度。焊接速度慢,熔池結晶也慢,氣體容易逸出;焊接速度快,熔池結晶快,則氣體不易排出,易產生氣孔。
㈢ 焊接用氣體的分類及作用,如何選用焊接用氣體
焊接用氣體主要是指焊接或切割時所使用的各種氣體。根據氣體在工作過程中作用,焊接用氣體可分為保護氣體和氣焊、切割用氣體兩大類。
(1)保護氣體:保護氣體是指氣體保護焊時所用的起保護作用的氣體,主要包括二氧化碳(CO2),氬氣(Ar),氦氣(He),氧氣(O2)、氮氣(N2)、氫氣(H2)及其混合氣體(如Ar+He、Ar+CO2、Ar+CO2+O2等)。國際焊接學會指出,保護氣體統一按氧化勢進行分類,並確定分類指標的簡單計算公式為:分類指標=O2%+1/2CO2%。在此公式的基礎上,根據保護氣體的氧化勢可將保護氣體分成五類,即惰性氣體或還原性氣體(I類)、弱氧化性氣體(M1類)、中等氧化性氣體(M2類)、強氧化性氣體(M3和C類)。保護氣體各類型的氧化勢指標見表4-17。
(2)氣焊、切割用氣體:根據氣體的性質,氣焊、切割用氣體又可分為助燃氣體(O2)和可燃氣體兩類。可然氣體與氧氣混合燃燒時,放出大量的熱,形成熱量集中的高溫火焰,可將金屬加熱熔化。氣焊、切割時常用的可然氣體主要是乙炔(C2H2),其他推廣使用的可燃氣體還有丙烷(C3H8 )、丙烯(C3H6)、天然氣(以甲烷CH4為主)、液化石油氣(以丙烷為主)等。
如何選用焊接用氣體
氣體保護焊、等離子弧焊、氣焊、切割、保護氣氛中釺焊等都要使用相應的氣體。焊接用氣體的選用主要取決於焊接、切割方法和被焊金屬的性質,其次還應考慮焊接接頭的質量要求、焊件厚度和焊接位置等因素。
(1)根據焊接方法選用氣體
採用的焊接方法不同,焊接、切割或保護用氣體也不同,焊接方法與焊接用氣體如表4-18所示。
(2)根據被焊材料選用氣體
在氣體保護焊中,除了自保護焊絲外,均需選擇適當的保護氣體。總體來講,保護氣只有惰性氣體和活性氣體兩類,其選擇原則是:對於易氧化的金屬如鋁、鎂、鈦、銅、鉻等及其合金,應選用惰性氣體(Ar、He或Ar+He等)進行保護;對碳鋼、低合金鋼、不銹鋼和耐熱鋼等,宜選用活性氣體(如C02、Ar + C02、Ar + 02、Ar+CO2+02等)保護,以細化晶粒,克服電弧陰極斑點漂移,減少焊道咬邊等缺陷。從生產效率考慮,在Ar中加入He、N2、H2、C02、02等氣體,可增加母材的輸入熱量,提高焊接速度。如焊接大厚度的鋁及鋁合金板時,推薦用Ar + He;焊接銅及銅合金時推薦用Ar + He或Ar+N2,焊接不銹鋼時可採用Ar + C02、,Ar + 02等。
保護氣體的選用還必須與焊絲相匹配。如含Mn、Si量較高的C02焊焊絲,若在富氬氣氛中焊接,熔敷金屬的合金含量偏高,強度增高;反之,富氬條件所用的焊絲若用CO2氣體進行焊接,則由於合金元素的燒損,熔敷金屬中合金元素偏少,焊縫性能降低。
㈣ cpd n2在焊接符號是什麼意思
CPD應該是焊縫的質量等級為CPD的焊縫,N2應該是焊縫編號。
你看的圖紙是軌道交通的產品吧,一般這樣的產品上的焊縫會標注CPD,CPC2等焊縫質量等級。