1. 焊接知道
焊條 焊條(covered electrode)
[編輯本段]焊條的組成
焊條由焊芯及葯皮兩部分構成。焊條是在金屬焊芯外將塗料(葯皮)均勻、向心地壓塗在焊芯上。焊條種類不同,焊芯也不同。焊芯即焊條的金屬芯,為了保證焊縫的質量與性能,對焊芯中各金屬元素的含量都有嚴格的規定,特別是對有害雜質(如硫、磷等)的含量,應有嚴格的限制,優於母材。焊芯成分直接影響著焊縫金屬的成分和性能,所以焊芯中的有害元素要盡量少.含C量應低於0.10%。例如H08A,含S小於等於O.03%、P小於等於0.03%、C小於等於0.1%。
焊接碳鋼及低合金鋼的焊芯, 一般都選用低碳鋼作為焊芯,並填加錳、硅、鉻、鎳等成分(詳見焊絲國家標准GB1300一77)。採用低碳的原因一方面是含碳量低時鋼絲塑性好,焊絲拉拔比較容易,另一方面可降低還原性氣體CO含量,減少飛濺或氣孔,並可增高焊縫金屬凝固時的溫度,對仰焊有利。加入其他合金元素主要為保證焊縫的綜合機械性能,同時對焊接工藝性能及去除雜質,也有一定作用。
高合金鋼以及鋁、銅、鑄鐵等其他金屬材料,其焊芯成分除要求與被焊金屬相近外,同樣也要控制雜質的含量,並按工藝要求常加入某些特定的合金元素。
焊條就是塗有葯皮的供焊條電弧焊使用的熔化電極,它是由葯皮和焊芯兩部分組成的。在焊條前端葯皮有45。左右的倒角,這是為了便於引弧。在尾部有一段裸焊芯,約占焊條總長1/16,便於焊鉗夾持並有利於導電。焊條的直徑仲實際上是指焊芯直徑)通常為2、2. 5、3. 2或3、4、5或6mm等幾種規格,常用的是小3. 2、小4、小5三種,其長度「L」一般在250^-450 mm之間。
1.焊芯
焊條中被葯皮包覆的金屬芯稱為焊芯。焊芯一般是一根具有一定長度及直徑的鋼絲。焊接時,焊芯有兩個作用:一是傳導焊接電流,產生電弧把電能轉換成熱能,二是焊芯本身熔化作為填充金屬與液體母材金屬熔合形成焊縫。
焊條焊接時,焊芯金屬占整個焊縫金屬的一部分。所以焊芯的{化學成分,直接影響焊縫的質量。因此,作為焊條芯用的鋼絲都單勢獨規定了它的牌號與成分。如果用於埋弧自動焊、電渣焊、氣體保護焊、氣焊等熔焊方法作填充金屬時,則稱為焊絲。(1)焊芯中各合金元素對焊接的影響
1)碳(C)碳是鋼中的主要合金元素,當含碳量增加時,鋼的{強度、硬度明顯提高,而塑性降低。在焊接過程中,碳起到一定的脫氧作用,在電弧高溫作用下與氧發生化合作用,生成一氧化碳和二氧化碳氣體,將電弧區和熔池周圍空氣排除,防止空氣中的氧、氮有害氣體對熔池產生的不良影響,減少焊縫金屬中氧和氮的含量。若含碳量過高,還原作用劇烈,會引起較大的飛濺和氣孔。考慮到碳對鋼的淬硬性及其對裂紋敏感性增加的影響,低碳鋼焊芯的含碳量一般簇0. 1%。
2)錳(Mn)錳在鋼中是一種較好的合金劑,隨著錳含量的增加,其強度和韌性會有所提高。在焊接過程中,錳也是一種較好的脫氧劑,能減少焊縫中氧的含量。錳與硫化合形成硫化錳浮於熔渣中,從而減少焊縫熱裂紋傾向。因此一般碳素結構鋼焊芯的含錳量為0. 30%~0. 55%,焊接某些特殊用途的鋼絲,其含錳量高達1 .70%一2. 10%。
3)硅(Si )硅也是一種較好的合金劑,在鋼中加入適量的硅能提高鋼的屈服強度、彈性及抗酸性能;若含量過高,則降低塑性和韌性。在焊接過程中,硅也具有較好的脫氧能力,與氧形成二氧化硅,但它會提高渣的粘度,易促進非金屬夾雜物生成。
4)鉻(Cr)鉻能夠提高鋼的硬度、耐磨性和耐腐蝕性。對於低碳鋼來說,鉻便是一種偶然的雜質。鉻的主要冶金特徵是易於急劇氧化,形成難熔的氧化物三氧化二鉻(Cr203),從而增加了焊縫金屬夾雜物的可能性。三氧化二鉻過渡到熔渣後,能使熔渣粘度提高,流動性降低。
5)鎳(NO鎳對鋼的韌性有比較顯著的效果,一般低溫沖擊值要求較高時,適當摻入一些鎳。
6)硫(S)硫是一種有害雜質,隨著硫含量的增加,將增大焊縫的熱裂紋傾向,因此焊芯中硫的含量不得大於0. 04%。在焊接重要結構時,硫含量不得大於0. 03%。
7)磷(2)焊芯的分類
焊芯是根據國家標准「焊接用鋼絲」(GB 1300-77)的規定分類的,用於焊接的專用鋼絲可分為碳素結構鋼、合金結構鋼、不銹鋼三類。
2.葯皮
壓塗在焊芯表面的塗層稱為葯皮。焊條的葯皮在焊接過程中起著極為重要的作用。若採用無葯皮的光焊條焊接,則在焊接過程中,空氣中的氧和氮會大量侵入熔化金屬,將金屬鐵和有益元素碳、硅、錳等氧化和氮化形成各種氧化物和氮化物,並殘留在焊縫中,造成焊縫夾渣或裂紋。而熔入熔池中的氣體可能使焊縫產生大量氣孔,這些因素都能使焊縫的機械性能(強度、沖擊值等)大大降低,同時使焊縫變脆。此外採用光焊條焊接,電弧很不穩定,飛濺嚴重,焊縫成形很差。
人們在實踐過程中發現如果在光焊條外面塗一層由各種礦物等組成的葯皮,能使電弧燃燒穩定,焊縫質量得到提高,這種焊條叫葯皮焊條。隨著工業技術的不斷發展,人們創制出了現在廣泛應用的優質厚葯皮焊條。
[編輯本段]焊條的要求
(1)容易引弧,保證電弧穩定,在焊接過程中飛濺小。
(2)葯皮熔化速度應慢於焊芯熔化速度,以造成喇叭狀的套簡(套筒長度應小於焊芯直徑),有利於熔滴過渡和造成保護氣氛;
(3)熔渣的比重應小於熔化金屬的比重,凝固溫度也應稍低於金屬凝固溫度,渣殼應易脫掉;
(4)具有摻合金和冶金處理作用;
(5)適應各種位置的焊接。
[編輯本段]焊條型號與牌號
(1)焊條的牌號
以結構鋼為例:牌號,編製法。結XXX,結為結構鋼焊條,第3個數字,代表葯皮類型,焊接電流要求,第1、2數:代表焊縫金屬抗拉強度 。
(2)焊條的型號
焊條的型號是按國家有關標准與國際標准確定的。EXXX,以結構鋼為例,型號編製法為字母「E」表示焊條,第一、二位表示熔敷金屬最小抗拉強度,第三位數字表示焊條的焊接位置,第三、四位數字表示焊接電流種類及葯皮類型。
4.焊條的分類
根據不同情況,電焊條有三種分類方法:按焊條用途分類、按葯皮的主要化學成分分類、按葯皮熔化後熔渣的特性分類。
按照焊條的用途,有兩種表達形式,一為原機械工業部編制的的,可以將電焊條分為:結構鋼焊條、耐熱鋼焊條、不銹鋼焊條、堆焊焊條、低溫鋼焊條、鑄鐵焊條、鎳和鎳合金焊條、銅及銅合金焊條、鋁及鋁合金焊條以及特殊用途焊條。二為國家標准規定,為碳鋼焊條,低合金焊條、不銹鋼焊條、堆焊焊條、鑄鐵焊條、銅及銅合金焊條、鋁及鋁合金焊條。二者沒有原則區別,前者用商業牌號表示,後者用型號表示。
如果按照焊條葯皮的主要化學成分來分類,可以將電焊條分為:氧化鈦型焊條、氧化鈦鈣型焊條、鈦鐵礦型焊條、氧化鐵型焊條、纖維素型焊條、低氫型焊條、石墨型焊條及鹽基型焊條。
如果按照焊條葯皮熔化後,熔渣的特性來分類,可將電焊條分為酸性焊條和鹼性焊條。酸性焊條葯皮的主要成分為酸性氧化物,如二氧化硅、二氧化鈦、三氧化二鐵等。鹼性焊條葯皮的主要成分為鹼性氧化物,如大理石、螢石等。
焊條按用途不同可分為結構鋼焊條、耐熱鋼焊條、不銹鋼焊條、鑄鐵焊條、銅及銅合金焊條、鋁及鋁合金焊條等。
焊條按熔渣化學性質可分為:酸化焊條和鹼化焊條兩大類。鹼性焊條焊出的焊縫含氫、硫、磷少。焊縫力學性能良好,但對油、水、鐵銹敏感,易產生氣孔。酸性焊條焊接時電弧穩定、飛濺少、脫渣性好。因此重要的焊接結構件選用鹼性焊條,而一般結構件都選用酸性焊條。
結構鋼焊條的牌號表示方法為:以漢字拼音字首加上三位數字來表示如我們實習中用的結構鋼焊條的牌號為J422(或結422)。「J」表示結構鋼焊條的「結」字。後面的兩為數字「42」為焊縫金屬的抗拉強度不小於420MPa;最後一位數字「2」代表鈦鈣型葯皮,用交流或直流電源均可。
酸性碳鋼焊條
種類 : J421、J421Fe、J422、J423、J425、J502、J501Fe15
牌號 GB型號 AWS型號 葯皮類型 電流類型 主要用途 規格
J421 E4313 E6013 氧化鈦型 AC/DC 焊接低碳鋼結構,特別適用於薄板小件及短焊縫的間斷焊和要求表面光潔的蓋面焊 Φ2.0—Φ5.0
J421Fe E4313 E6013 鐵粉鈦型 AC/DC 焊接一般低碳鋼結構,特別適用於薄板小件及短焊縫的間斷焊和要求表面光潔的蓋面焊 Φ2.5—Φ5.0
J422 E4303 —— 鈦鈣型 AC/DC 用於焊接較重要的低碳鋼結構和強度等級低合金鋼,如09Mn2等 Φ2.0—Φ5.0
J423 E4301 —— 鈦鐵型 AC/DC 可焊接較重要的的低碳鋼結構 Φ3.0—Φ5.0
J425 E4311 E6011 纖維素鉀型 AC/DC 適用於薄板結構的對接、角接及搭接焊。如電站煙道、風道、變壓器的油箱、船體和車輛外板的低碳鋼結構 Φ3.2—Φ5.0
J502 E5003 —— 鈦鈣型 AC/DC 主要用於16Mn等低合金鋼的焊接 Φ2.0—Φ5.0
J501Fe15 E5024 E7024 鐵粉鈦型 AC/DC 適用於機車車輛、造船、鍋爐等結構的焊接 Φ2.5—Φ5.0
熔敷金屬化學成分 % 熔敷金屬機械性能
牌號 C Mn Si S P 抗拉強度(Mpa) 屈服強度(Mpa) 延伸率 (%) 沖擊值
℃ J
J421 ≤0.12 0.3~0.6 ≤0.35 ≤0.035 ≤0.040 ≥420 ≥330 ≥22 0 ≥47
J421Fe ≤0.12 0.3~0.6 ≤0.35 ≤0.035 ≤0.040 ≥420 ≥330 ≥17 0 ≥47
J422 ≤0.12 0.3~0.6 ≤0.25 ≤0.035 ≤0.040 ≥420 ≥330 ≥22 -20 ≥47
J423 ≤0.20 0.3~0.6 ≤0.20 ≤0.035 ≤0.040 ≥420 ≥330 ≥22 0 ≥27
J425 ≤0.12 0.3~0.6 ≤0.30 ≤0.035 ≤0.040 ≥420 ≥330 ≥22 -30 ≥27
J502 ≤0.12 ≤1.60 ≤0.30 ≤0.035 ≤0.040 ≥420 ≥400 ≥20 0 ≥27
J501Fe15 ≤0.12 0.8~1.4 ≤0.90 ≤0.035 ≤0.040 Mo≤0.30 V≤0.08 ≥420 ≥400 ≥17 0 ≥27
http://www.nphj.com/sxht.html
鹼性碳鋼焊條
種類 : J426、J427、J506、J507、J506Fe
牌號 GB型號 AWS型號 葯皮類型 電流類型 主要用途 規格
J426 E4316 E6016 低氫鉀型 AC/DC 用於焊接重要的低碳鋼和低合金鋼的結構。如O9Mn2等 Φ2.5—Φ5.0
J427 E4315 —— 低氫鈉型 DC(R) 用來焊接重要的低碳鋼和低合金鋼,如O9MnSi等 Φ2.5—Φ5.0
J506 E5016 E7016 低氫鉀型 AC/DC 用於中碳鋼和低合金鋼的焊接如16Mn、O9MnSi等 Φ2.5—Φ5.0
J507 E5015 E7015 低氫鈉型 DC(R) 可焊接中碳鋼和某些低合金鋼如16Mn、O9Mn2Si、O9Mn2V等 Φ2.5—Φ5.0
J506Fe E5018 E7018 鐵粉低氫鉀型 AC/DC 適用於碳鋼及低合金鋼的焊接、 如16Mn等 Φ2.5—Φ5.0
熔敷金屬化學成分 % 熔敷金屬機械性能
牌號 C Mn Si S P 抗拉強度(Mpa) 屈服強度(Mpa) 延伸率 (%) 沖擊值
℃ J
J426 ≤0.12 ≤1.25 ≤0.90 ≤0.035 ≤0.040 ≥420 ≥330 ≥22 -30 ≥27
J427 ≤0.12 ≤1.25 ≤0.90 ≤0.035 ≤0.040 ≥420 ≥330 ≥22 -30 ≥27
J506 ≤0.12 ≤1.6 ≤0.75 ≤0.035 ≤0.040 ≥490 ≥400 ≥22 -20
-30 ≥47
≥27
J507 ≤0.12 ≤1.25 ≤0.75 ≤0.035 ≤0.040 ≥490 ≥400 ≥22 -20
-30 ≥47
≥27
J506Fe ≤0.12 ≤1.6 ≤0.75 ≤0.035 ≤0.040 ≥490 ≥400 ≥22 -30 ≥27
http://www.nphj.com/sxht.html
2. 焊縫承受力的簡單計算是什麼
計算殘余應力,考慮材料屈服強度,塑韌性,熱影響區大小,焊縫附近組織變化。國外有很多計算的軟體,不過很貴有的上百萬的。不過算得再好,都沒實驗管用。因為軟體拿位錯沒辦法的。
鋼筋代換後的截面強度:
fy2As2(ho2-fy2As2/2fcb)≥fy1As1(ho1-fy1As1/2fcb)。
注意事項:
焊接時,為保證焊接質量而選定的諸物理量(例如,焊接電流、電弧電壓、焊接速度、線能量等)的總稱為焊接工藝參數。工藝參數對焊縫形狀的影響如下:
(1)焊接電流當其它條件不變時,增加焊接電流,焊縫厚度和余高都增加,而焊縫寬度則幾乎保持不變(或略有增加)。
(2)電弧電壓當其它條件不變時,電弧電壓增大,焊縫寬度顯著增加,而焊縫厚度和余高略有減少
(3)焊接速度當其它條件不變時,焊接速度增加,焊縫寬度、焊縫厚度和余高都減少。
焊接電流、電弧電壓和焊接速度是焊接時的三大焊接工藝參數,選用時,應當考慮到這三者之間的相互適當配合,才能得到形狀良好,符合要求的焊縫。
3. 焊接熔深與焊接強度存在怎樣的關系
1、焊接熔深,熔深越深,焊縫初強度就越大。
從熱處理角度看,金屬在高溫的情況下,它的晶格會改變。在冷卻的過程中,最先冷卻的地方是顆粒最粗的地方,也就是強度最小的地方。
2、焊接熔深與焊縫強度成正比關系。
越向表面晶格越小,密度更大,所以強度就更大。所以焊接熔深與焊縫強度是成正比的。
過調節不同的焊接參數來得到不同的熔深,那麼得到的也就是熱輸入量對組織和性能的影響。
在熔焊過程中,如果大氣與高溫的熔池直接接觸,大氣中的氧就會氧化金屬和各種合金元素。大氣中的氮、水蒸汽等進入熔池,還會在隨後冷卻過程中在焊縫中形成氣孔、夾渣、裂紋等缺陷。
(3)焊縫會提高材料的屈服強度是指什麼擴展閱讀
壓焊是在加壓條件下,使兩工件在固態下實現原子間結合,又稱固態焊接。常用的壓焊工藝是電阻對焊,當電流通過兩工件的連接端時,該處因電阻很大而溫度上升,當加熱至塑性狀態時,在軸向壓力作用下連接成為一體。
焊縫的兩側在焊接時會受到焊接熱作用,而發生組織和性能變化,這一區域被稱為熱影響區。焊接時因工件材料焊接材料、焊接電流等不同,焊後在焊縫和熱影響區可能產生過熱、脆化、淬硬或軟化現象,也使焊件性能下降,惡化焊接性。焊前對焊件介面處預熱、焊時保溫和焊後熱處理可以改善焊件的焊接質量。
參考資料來源:搜狗網路--焊接技術
參考資料來源:搜狗網路--焊接
參考資料來源:搜狗網路--熔深
4. 金屬材料抗拉強度與焊接影響
沒有太大關系,焊接只要焊材正確,焊縫的抗拉強度只會比原材料搞,做拉伸實驗的時候一般都是母材斷裂。希望對你有用。
5. 焊縫的一些物理性能,如抗拉強度,屈服強度,屈服比等
去專業的檢測公司,他們有相應的機器,而且不貴
6. 焊縫為什麼不考慮屈服強度,只考慮抗拉強度。
焊縫處晶粒一般比較粗大,所以塑性較差。破壞時一般很少發生屈服,經常表現為直接開裂(斷裂),故設計或計算時一般不考慮屈服強度,只考慮抗拉強度。
7. 鋼筋焊接強度指的是什麼強度
焊接強度是鋼筋焊縫的一個力學指標,是指受力強度。
焊接:也稱作熔接、鎔接,是一版種以加熱權、高溫或者高壓的方式接合金屬或其他熱塑性材料如塑料的製造工藝及技術。 焊接通過下列三種途徑達成接合的目的:
1,、加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助;
2、單獨加熱熔點較低的焊料,無需熔化工件本身,借焊料的毛細作用連接工件(如軟釺焊、硬焊);
3、在相當於或低於工件熔點的溫度下輔以高壓、疊合擠塑或振動等使兩工件間相互滲透接合(如鍛焊、固態焊接)。
8. 金屬材料的屈服強度和焊接性有關嗎兩種不同屈服強度的鋼焊接時需要注意什麼
金屬材料的屈服強度指材料的抗塑性變形的能力,屈服強度值越高就說明材料的強度高、塑性和延伸率都下降,因此對焊接性不利。反過來,金屬材料的屈服強度低,對焊接性有利。兩種不同屈服強度的鋼焊接時需要注意按屈服強度高的金屬材料的性能來制定焊接工藝。
9. 為什麼會有焊縫強度設計值,它的概念是什麼,為何小於焊材的屈服強度
首先,焊縫的形成過成是一個熱過程,由於高溫過程的存在,在微觀上,熔覆金屬一回般會有較母材更粗答大的金屬晶粒,並導致金屬的抗拉強度等力學性能降低。其次,焊接過程不可避免地會在焊縫內產生各類焊接缺陷,這些缺陷的存在也會導致焊接接頭力學性能的降低。所以焊縫強度的設計值會取一個小於焊材的屈服強度。
10. 金屬材料的加工工藝性能包括哪些
金屬材料的性能一般分為工藝性能和使用性能兩類。所謂工藝性能是指機械零件在加工製造過程中,金屬材料在所定的冷/熱加工條件下表現出來的性能。
所謂使用性能是指機械零件在使用條件下,金屬材料表現出來的性能,它包括機械性能、物理性能、化學性能等。金屬材料使用性能的好壞,決定了它的使用范圍與使用壽命。在機械製造業中,一般機械零件都是在常溫,常壓和非強烈腐蝕性介質中使用的,且在使用過程中各機械零件都將承受不同載荷的作用。金屬材料在載荷作用下抵抗破壞的性能,稱為機械性能(或稱為力學性能)。 所謂工藝性能是指機械零件在加工製造過程中,金屬材料在所定的冷/熱加工條件下表現出來的性能。金屬材料工藝性能的好壞,決定了它在製造過程中加工成形的適應能力。由於加工條件不同,要求的工藝性能也就不同,如鑄造性能、可焊性、可鍛性、熱處理性能、切削加工性等。
1 鑄造性 金屬材料能用鑄造方法獲得合格鑄件的能力稱為鑄造性。鑄造性包括流動性、收縮性和偏析傾向等。流動性是指液態金屬充滿鑄模的能力,流動性愈好,愈易鑄造細薄精緻的鑄件。收縮性是指鑄件凝固時體積收縮的程度,收縮愈小,鑄件凝固時變形愈小。 偏析是指化學成分不均勻,偏析愈嚴重,鑄件各部位的性能愈不均勻,鑄件的可靠性愈小。
2 切削加工性 金屬材料的切削加工性系指金屬接受切削加工的能力,也是指金屬經過切削加工而成為合乎要求的工件的難易程度。 通常可以切削後工作表面的粗糙程度、切削速度和刀具磨損程度來評價金屬的切削加工性。
3 焊接性 焊接性是指金屬在特定結構和工藝條件下通過常用焊接方法獲得預期質量要求的焊接接頭的性能。它包括兩個方面的內容:一是結合性能,即在一定的焊接工藝條件下,一定的金屬形成焊接缺陷的敏感性,二是使用性能,即在一定的焊接工藝條件下,一定的金屬焊接接頭對使用要求的適用性。 焊接性一般根據焊接時產生的裂紋敏感性和焊縫區力學性能的變化來判斷。 點擊下列鏈接,了解更多焊接知識! 一張圖看懂金屬材料焊接(上)——焊接基礎 一張圖看懂金屬材料焊接(下)——焊接材料型號 焊接材料選用表,千萬別錯過,必須收藏! 最先進的焊接技術工藝匯總 新型焊接技術,前景不可限量
4 可鍛性 可鍛性是材料在承受錘鍛、軋制、拉拔、擠壓等加工工藝時會改變形狀而不產生裂紋的性能。 它實際上是金屬塑性好壞的一種表現,金屬材料塑性越高,變形抗力就越小,則可鍛性就越好。 可鍛性好壞主要決定於金屬的化學成分、顯微組織、變形溫度、變形速度及應力狀態等因素。
5 沖壓性 沖壓性是指金屬經過沖壓變形而不發生裂紋等缺陷的性能。許多金屬產品的製造都要經過沖壓工藝,如汽車殼體、搪瓷製品坯料及鍋、盆、孟、壺等日用品。 為保證製品的質量和工藝的順利進行,用於沖壓的金屬板、帶等必須具有合格的沖壓性能。
6 頂鍛性 頂鍛性是指金屬材料承受打鉚、徽頭等的頂鍛變形的性能。金屬的頂鍛性,是用頂鍛試驗測定的。
7 冷彎性 金屬材料在常溫下能承受彎曲而不破裂的性能,稱為冷彎性。 出現裂紋前能承受的彎曲程度(彎曲程度一般用彎曲角度α(外角)或彎心直徑d對材料厚度a的比值表示,a愈大或d/a愈小)愈大,則材料的冷彎性能愈好。
8 熱處理工藝性 熱處理是指金屬或合金在固態范圍內,通過一定的加熱、保溫和冷卻方法,以改變金屬或合金的內部組織,而得到所需性能的一種工藝操作。 熱處理工藝性就是指金屬經過熱處理後其組織和性能改變的能力,包括淬硬性、淬透性、回火脆性等。