① 低碳鋼拉伸實驗時需要消除自重的原因及方法是什麼
低碳鋼壓縮曲線也有明顯的屈服點,但由於試樣很短屈服階段與拉伸相比短的多,進入強化階段後塑性變形越來越大,因三向應力狀態限制了端面附近的變形,因此試樣的變形呈鼓形。隨著變形的增長,承載面積、三向應力狀態的影響越來越大,試樣繼續變形的抗力不斷增長P-h曲線開始上翹,而且上翹程度越來越陡。最後,低碳鋼只能壓扁而不會發生斷裂,因此低碳鋼壓縮時只有屈服極限 sc而沒有強度極限。
鑄鐵受壓時不存在拉應力的影響,隨著載荷的增長,45°截面的最大剪應力能夠不斷增長,因而產生明顯的塑性變形,使壓縮曲線與拉伸曲線相比明顯變彎。試樣變形後呈鼓狀。最後試樣在最大剪應力的作用下,沿45°~45°截面被剪斷,斷口平滑呈韌性。由於鑄鐵的抗剪能力大大超過其抗拉能力,所以其壓縮強度極限bc遠遠大於其拉伸的強度極限
② 比較低碳鋼拉伸,鑄鐵拉伸的斷口形狀,簡單分析其破壞的力學原因
低碳鋼(最典型的即是目前鋼結構工程中常用的Q235鋼)拉伸時出現明顯屈服和頸專縮現象,斷口周屬圍產生約45°滑移線;鑄鐵拉伸時不屈服也無頸縮現象,斷口整齊。
原因:低碳鋼拉伸破壞由最大切應力造成;鑄鐵拉伸破壞由最大拉應力造成。
解釋:低碳鋼抗剪強度低於抗拉強度,根據第三強度理論,單向應力狀態下與第一主應力成45°的斜截面上產生最大切應力,且數值上τ=σ₁/2,故低碳鋼拉伸時沿45°斜面剪切破壞;鑄鐵抗拉強度則很小,根據第一強度理論,直接沿橫截面被拉斷。
③ 低碳鋼拉伸試驗中為什麼載入速度要緩慢
你好!
載入速度超過一定值就稱為「動載荷」,此時低碳鋼的「屈服」階段變得不明顯,強度極限也有所提高。所以拉伸載入時速度應緩慢:靜載荷。供參考!
如果對你有幫助,望採納。
④ 低碳鋼為什麼經過拉伸之後會有磁性
低碳鋼拉伸後,內部保留了一定的拉應力,此應力使其內部磁疇發生一定角度的專偏轉,所以對外屬呈現出磁性.隨著鋼的含碳量增多,由於弱鐵磁相Fe3C的存在,其飽和的磁場強度會減小,而且內部的雜質會給磁疇的轉動造成阻力.
⑤ 為什麼低碳鋼拉伸試驗是材料典型的靜拉伸試驗
從這種材料的拉伸試驗過程中,可清楚看到其線性變形階段,非線性變形階段,屈服階段,強化階段。所以比較典型。
⑥ 低碳鋼拉伸破壞的原因
低碳鋼拉伸破壞的原因
問題一:低碳鋼和鑄鐵拉伸破壞的主要原因低碳鋼壓縮曲線也有明顯的屈服點,但由於試樣很短屈服階段與拉伸相比短的多,進入強化階段後塑性變形越來越大,因三向應力狀態限制了端面附近的變形,因此試樣的變形呈鼓形。隨著變形的增長,承載面積、三向應力狀態的影響越來越大,試樣繼續變形的抗力不斷增長P-h曲線開始上翹,而且上翹程度越來越陡。最後,低碳鋼只能壓扁而不會發生斷裂,因此低碳鋼壓縮時只有屈服極限sc而沒有強度極限。
鑄鐵受壓時不存在拉應力的影響,隨著載荷的增長,45°截面的最大剪應力能夠不斷增長,因而產生明顯的塑性變形,使壓縮曲線與拉伸曲線相比明顯變彎。試樣變形後呈鼓狀。最後試樣在最大剪應力的作用下,沿45°~45°截面被剪斷,斷口平滑呈韌性。由於鑄鐵的抗剪能力大大超過其抗拉能力,所以其壓縮強度極限bc遠遠大於其拉伸的強度極限。
問題二:低碳鋼的拉伸和扭轉的破壞原因是否一樣拉伸為平斷口,扭轉為45度的螺旋斷口。
拉伸時的破壞原因是拉應力
扭轉時,由於低碳鋼抗拉能力大於抗剪能力,所以剪應力先於拉應力達到最大值;故破壞原因是最大剪應力。
問題三:比較低碳鋼拉伸,鑄鐵拉伸的斷口形狀,簡單分析其破壞的力學原因低碳鋼拉伸時發生頸縮,斷口截面要小於實際截面,截面不平整,斷口呈金屬光澤。鑄鐵不會發生頸縮,斷口截面比較平整,呈灰黑色。
問題四:低碳鋼和鑄鐵拉伸破壞時有什麼特點?並分別說明破壞原因~低碳鋼碳含量百分比在0.5%以下,具有較低硬度,有良好韌性。確定他的延浮性和塑性,是塑性材料。抗拉能力高。
而鑄鐵的碳含量大於2%,碳已飽和獨立存在鐵中,碳顆粒懸浮在鐵中,令鐵的結構鬆散,成了脆性材料,韌性差,抗拉能力低。
問題五:低碳鋼拉伸和扭轉的斷口形狀是否一樣?分析其破壞原因。拉伸為平斷口,扭轉為45度的螺儲斷口。
拉伸時的破壞原因是拉應力
扭轉時,由於低碳鋼抗拉能力大於抗剪能力,所以剪應力先於拉應力達到最大值;故破壞原因是最大剪應力。
問題六:低碳鋼和鑄鐵在拉伸時的力學性能和破壞形式有何異同低碳鋼屬於塑性材料,拉伸過程中有明顯的屈服階段,有明顯的頸縮間斷(又稱斷裂階段)。
鑄鐵屬於脆性材料,拉伸過程中沒有明顯的屈服階段,沒有明顯的頸縮間斷
⑦ 低碳鋼和鑄鐵拉伸破壞的主要原因
鑄鐵的拉伸破壞發生在橫截面上,是由最大拉應力造成的。壓縮破壞發生專在約50-55度斜截面上,屬是由最大切應力造成的。扭轉破壞發生在45度螺旋面上,是由最大拉應力造成的。
低碳鋼拉伸破壞的主要原因是最大切應力引起塑性屈服。引起鑄鐵斷裂的主要原因是最大拉應力引起脆性斷裂,這說明低碳鋼的抗能力大於抗剪能力,而鑄鐵抗剪能力大於抗拉能力。
(7)為什麼低碳鋼拉伸擴展閱讀
鑄鐵的組織和機械性能:
灰鑄鐵的凝固形態隨著碳當量變化。在碳當量小於4.3%的亞共晶條件下,首先奧氏體樹枝晶析出(叫做初晶奧氏體),當殘留的鐵液變成共晶成分時,由石墨和奧氏體兩相層狀組織形成的共晶團形核、成長,凝固結束。
過共晶成分條件下,首先結晶出板狀石墨(叫做初生石墨),當殘留鐵液達到共晶成分時,共晶團形核、生長。灰鑄鐵由幾乎沒有強度的石墨和具有強度的鐵基體(鐵素體或者珠光體)組成,這二者的形狀和數量決定了機械性能。
⑧ 為什麼中低碳鋼拉伸斷口有磁性為什麼鑄鐵沒有和含碳量有沒有關系
鋼鐵材料是我們生活中用的最廣、用量最多的金屬材料,它們都是以鐵和碳為主專要元素組成的合金。最常見的屬鋼鐵材料之間的區別:
一、生鐵
碳的含量(x)大於2%的鐵碳合金稱為--生鐵。按用途分為:煉鋼生鐵、鑄造生鐵。
按化學成分分為:普通生鐵、特種生鐵。
生鐵塊
二、鑄鐵
碳的含量(x)超過2%(一般為2.5%~3.5%)的鐵碳合金稱為鑄鐵。
鑄鐵類型及應用如下:
1、按斷口顏色分為:灰鑄鐵、白口鑄鐵、麻口鑄鐵。灰鑄鐵普遍應用於機電工程中。
例如,在火電站中,灰鑄鐵多用於製造低中參數汽輪機的低壓缸等。
2、按生產方法和組織性能分為:普通灰鑄鐵、孕育鑄鐵、可鍛鑄鐵、球墨鑄鐵、特殊性能鑄鐵。
鑄鐵材料
(三)鋼
碳的含量(x)不大於2%的鐵碳合金稱為鋼。
1、按化學成分和性能分為:碳素結構鋼、合金結構鋼和特殊性能低合金高強度鋼。
其中最常見碳素結構鋼按其含碳量(x)的不同,可分為:低碳鋼(x≤0.25%)、中碳鋼
(x介於0.25%~0.60%之間)和高碳鋼(x>0
⑨ 低碳鋼和鑄鐵拉伸試驗為什麼要採用標準式樣
因為拉伸實驗中延伸率的大小與材料有關,同時與試件的標距長度有關,試回件局部變形較大的斷口部分,答在不同長度的標距中所佔比例也不同,因此在拉伸實驗中必須採用標准試件或比例試件。
拉伸夾具根據不同的試樣及試驗力大小,在結構上差別很大。大試驗力的試樣一般採用斜面夾緊結構,隨試驗力的增加,夾緊力隨之增加,台肩試樣採用懸掛結構等。
(9)為什麼低碳鋼拉伸擴展閱讀:
金屬材料的高溫拉伸試驗所規定的性能指標與常溫拉伸試驗時基本相同,但一般是測定抗拉強度、屈服強度、斷後伸長率和斷面收縮率四大性能指標。由於做高溫短時拉伸試驗時,負荷持續時間的長短,對拉伸性能有顯著影響。快速拉斷短時高溫拉伸試樣時,抗拉強度值明顯提高。
屈服點或規定非比例伸長應力的情況也類似。因此國家標准中對高溫短時拉伸試驗時的拉伸速度作了嚴格限制。試樣的最大允許應變速度只及常溫拉伸試驗時的1/20。通常估計,做一次拉伸試驗,其負荷持續的時間不應小於15~20min。
⑩ 為什麼低碳鋼拉伸變形處於屈服階段時試樣表面會產生與軸線成45度角的滑移線
變形過程中,同時受到拉應力和剪切應力,而剪切應力延與工件軸線成45度方向最內大,所以低碳鋼拉容伸變形處於屈服階段時試樣表面會產生與軸線成45度角的滑移線。
試樣的伸長量急劇地增加,而萬能試驗機上的荷載讀數卻在很小范圍內波動。如果略去這種荷載讀數的微小波動不計,這一階段在拉伸圖上可用水平線段來表示。若試樣經過拋光,則在試樣表面將看到大約與軸線成45°方向的條紋。
(10)為什麼低碳鋼拉伸擴展閱讀:
頸縮階段和斷裂Bef試樣伸長到一定程度後,荷載讀數反而逐漸降低。此時可以看到試樣某一段內橫截面面積顯著地收縮,出現「頸縮」的現象,一直到試樣被拉斷。
在計算機上輸入已測平均直徑中最小值等參數,並勾選所需測定的參數FeH值、下屈服點力FeL值和最大力Fm值,上屈服強度Reh,下屈服強度Rel抗拉強度Rm。將進油閥關閉,按試驗機上啟動鍵。同時,操作計算機軟體使之開始繪制曲線圖。