Ⅰ 焊接裂紋方向問題
焊縫開裂的原因很多,有時不一定是溫度造成的,比如加氫反應器,有氫脆現象發生,這就不是溫度造成的。不同的母材材質,需要不同的焊接工藝,比如焊接參數,焊前預熱及焊後緩冷等等。
1、冷裂紋一般在高強度鋼焊後冷卻過程中形成,也有延遲裂紋。多發生在熱影響區和氫聚集的局部,有時延晶界擴展,有時穿越晶界。高、中碳鋼和低、中合金鋼的焊縫熱影響區最易發生。方向並不一定是平行於焊縫的,悍趾裂紋(焊縫表面與母材交界處)肯定是平行於焊縫的;而焊道下裂紋,同時有平行或垂直於焊道的。
2、熱裂紋100%都是延晶界開裂。低碳鋼、奧氏體不銹鋼、低合金鋼都會產生熱裂紋。熱裂主要是結晶裂紋,此外還有多邊化裂紋等等。
結晶裂紋:焊縫結晶過程中,由於凝固金屬的收縮,液相金屬不足,不能及時填充(冷卻速度過快是原因之一),在拉應力的作用下沿晶界開裂。最常見是延焊縫中心方向開裂。
盡量在小剛度的條件下,選擇正確的焊接次序,是防止熱裂紋的重要措施。
2、另外,焊縫在焊接過程中或焊後,出現開裂的原因如下:應力(溫升或穩降太快,就會產生應力)、拘束力、剛性、化學成分、焊縫予留的間隙,電流、焊道、母材清潔等。這些因素都可能是造成焊縫開裂的原因,有時是兩種或以上因素共同導致的。影響焊縫熱裂紋走向,我覺得最重要的是第一開裂點附近的晶界分布,決定了裂紋向哪個方向發展,有一定隨機性的。但冷裂中的悍趾裂紋,就與這個關系不大了,是焊接金屬收縮,將其與母材拉開。
以上供參考。
Ⅱ 生鐵焊接 焊接後出現炸縫怎麼辦。還有就是 生鐵焊是用氬弧焊還是電焊比較好一點
焊前將工件預熱600~700℃,焊接過程中>400
℃,
焊後緩慢冷卻
。鑄鐵焊條比較貴,可用不銹鋼焊條代替。
Ⅲ 焊接裂紋的分類與特徵
裂紋分類
基本特徵
敏感的溫度區間
被焊材料
位置
裂紋走向
熱裂紋
結晶裂紋
在結晶後期,由於低熔共晶形成的液態薄膜削弱了晶粒間的聯結,在拉伸應力的作用下發生開裂
在固相線溫度以上稍高的溫度(固液狀態)
雜質較多的碳鋼、低中合金鋼、奧氏體鋼、鎳基合金及鋁
焊縫上、少量在熱影響區
沿奧氏體晶界
多邊化裂紋
已凝固的結晶前沿,在高溫和應力的作用下,晶格缺陷發生移動和聚集,形成二次邊界,它在高溫處於低塑性狀態,在應力作用下產生的裂紋
固相線以下再結晶溫度
純金屬及單相奧氏體合金
焊縫上,少量在熱影響區
沿奧氏體晶界
液化裂紋
在焊接熱循環峰值溫度在作用下,在熱影響區和多層焊的層間發生重熔,在應力作用下產生的裂紋
固相線以下稍低溫度
含S、P、C較多的鎳鉻高強鋼、奧氏體鋼、鎳基合金
熱響區及多層焊的層間
沿晶界開裂
再熱裂紋
厚板焊接結構消除應力處理過程中,在熱影響區的粗晶區存在不同程度的應力集中時,由於應力鬆弛所產生附加變形大於該部位的蠕變塑性,則發生再熱裂紋
600-700℃回火處理
含有沉澱強化元素的高強鋼、珠光體鋼、奧氏體鋼、鎳基合金等
熱影響區的粗晶區
沿晶界開裂
冷裂紋
延遲裂紋
在淬硬組織、氫和拘束應力的共同作用下而產生的具有延遲特徵的裂紋
在MS點以下
中、高碳鋼,抵、中合金鋼,鈦合金等
熱影響區、少量在焊縫
沿晶或穿晶
淬硬脆化裂紋
主要是由淬硬組織在焊接應力的作用下產生的裂紋
MS 點附近
含碳的NiCrMo鋼、馬氏體不銹鋼
熱影響區、少量在焊縫
沿晶或穿晶
低塑性脆化裂紋
在較低的溫度下,由於被焊材料的收縮應變,超過了材料本身的塑性儲備而產生的裂紋
在400℃以下
鑄鐵、堆焊硬質合金
熱影響區及焊縫
沿晶或穿晶
層狀撕裂
主要是由於鋼板的內部存在有分層的夾雜物(沿軋制方向),在焊接時產生的垂直於軋制方向的應力,致使在熱影響區或稍遠的地方產生「台階」狀層狀開裂
約400℃以下
含有雜質的低合金高強鋼
熱影響區附近
沿晶或穿晶
應力腐蝕裂紋(SCC)
某些焊接結構(如壓力容器和管道等),在腐蝕介質和應力的共同作用下產生的延遲開裂
任何工作溫度
碳鋼、低合金鋼、不銹鋼、鋁合金
焊縫和熱影響區
沿晶或穿晶
Ⅳ 焊縫裂紋
焊接, 裂紋
焊接件中最常見的一種嚴重缺陷。金屬的焊接性中包括了兩大類的問題:一類是焊接引起的材料性能變壞,使焊件失掉了材料原來特有的性能,如不銹鋼焊後失掉其耐蝕性等;另一類是在焊接接頭或其附近的母材內產生裂紋和氣孔等缺陷。裂紋影響焊接件的安全使用,是一種非常危險的工藝缺陷。焊接裂紋不僅發生於焊接過程中,有的還有一定潛伏期,有的則產生於焊後的再次加熱過程中。焊接裂紋根據其部位、尺寸、形成原因和機理的不同,可以有不同的分類方法。按裂紋形成的條件,可分為熱裂紋、冷裂紋、再熱裂紋和層狀撕裂等四類。
熱裂紋 多產生於接近固相線的高溫下,有沿晶界(見界面)分布的特徵;但有時也能在低於固相線的溫度下,沿「多邊形化邊界」形成。熱裂紋通常多產生於焊縫金屬內,但也可能形成在焊接熔合線附近的被焊金屬(母材)內。按其形成過程的特點,又可分為下述三種情況。
結晶裂紋 產生於焊縫金屬結晶過程末期的「脆性溫度」區間,此時晶粒間存在著薄的液相層,因而金屬塑性極低,由冷卻的不均勻收縮而產生的拉伸變形超過了允許值時,即沿晶界液層開裂。消除結晶裂紋的主要冶金措施為通過調整成分,細化晶粒,嚴格控制形成低熔點共晶的雜質元素等,以達到提高材料在脆性溫度區間的塑性;此外,從設計和工藝上盡量減少在該溫度區間的內部拉伸變形。
液化裂紋 主要產生於焊縫熔合線附近的母材中,有時也產生於多層焊的先施焊的焊道內。形成原因是由於在焊接熱的作用下,焊縫熔合線外側金屬內產生沿晶界的局部熔化,以及在隨後冷卻收縮時引起的沿晶界液化層開裂。造成這種裂紋的情況有二:一是材料晶粒邊界有較多的低熔點物質;另一種是由於迅速加熱,使某些金屬化合物分解而又來不及擴散,致局部晶界出現一些合金元素的富集甚至達到共晶成分。防止這類裂紋的原則為嚴格控制雜質含量,合理選用焊接材料,盡量減少焊接熱的作用。
多邊化裂紋 是在低於固相線溫度下形成的。其特點是沿「多邊形化邊界」分布,與一次結晶晶界無明顯關系;易產生於單相奧氏體金屬中。這種現象可解釋為由於焊接的高溫過熱和不平衡的結晶條件,使晶體內形成大量的空位和位錯,在一定的溫度、應力作用下排列成亞晶界(多邊形化晶界),當此晶界與有害雜質富集區重合時,往往形成微裂紋。消除此種缺陷的方法是加入可以提高多邊形化激活能的合金元素,如在Ni-Cr合金中加入W、Mo、Ta等;另一方面是減少焊接時過熱和焊接應力。
冷裂紋 根據引起的主要原因可分為淬火裂紋、氫致延遲裂紋和變形裂紋。淬火裂紋 產生在鋼的馬氏體轉變點()附近(見過冷奧氏體轉變圖)或在200以下的裂紋,主要發生於中、高碳鋼,低合金高強度鋼以及鈦合金等,主要產生部位在熱影響區以及焊縫金屬內。裂紋走向為沿晶或穿晶。形成冷裂紋的主要因素有:①金屬的含氫量偏高;②脆性組織或對氫脆敏感的組織;③焊接拘束應力(或應變)。
氫致延遲裂紋 焊接過程中溶於焊縫金屬內的氫向熱影響區擴散、偏聚,特別是在容易啟裂的三軸拉應力集中區富集,引起氫脆,即降低金屬在啟裂位置(或裂紋前端)的臨界應力,當此處的局部應力超過此臨界應力時,就造成開裂。這種裂紋的形成有明顯的時間延遲的特徵,其原因在於氫擴散富集需要時間(孕育期)。產生此種裂紋的條件是存在著氫和對氫敏感的組織,同時又有較大的拘束應力。因此,它常產生在嚴重應力集中的焊件根部和縫邊,以及過熱區。防止的措施包括:①降低焊縫中的含氫量,例如採用低氫焊條,嚴格烘乾焊接材料等;②合理的預熱及後熱;③選用碳當量較低的原材料;④減小拘束應力,避免應力集中(見金屬中氫)。
變形裂紋 這種裂紋的形成不一定是因為氫含量偏高,在多層焊或角焊縫產生應變集中的情況下,由於拉伸應變超過了金屬塑性變形能力而產生。
再熱裂紋 產生於某些低合金高強度鋼、珠光體耐熱鋼、奧氏體不銹鋼以及鎳基合金焊後的再次高溫加熱過程中。其主要原因一般認為當焊後再次加熱到 500~700時,在熱影響區的過熱區內,由於特殊碳化物析出引起的晶內二次強化,一些弱化晶界的微量元素的析出,以及使焊接應力鬆弛時的附加變形集中於晶界,而導致沿晶開裂。因此,這種裂紋具有晶間開裂的特徵,並且都發生在有嚴重應力集中的熱影響區的粗晶區內。為了防止這種裂紋的產生,首先在設計時要選擇再熱裂紋敏感性低的材料,其次從工藝上要盡量減少近縫區的內應力和應力集中問題。 層狀撕裂 主要產生於厚板角焊時,其特徵為平行於鋼板表面,沿軋制方向呈階梯形發展。這種裂紋往往不限於熱影響區內,也可出現在遠離表面的母材中。其產生的主要原因是由於金屬中非金屬夾雜物的層狀分布,使鋼板沿板厚方向塑性低於沿軋制方向,另外由於厚板角焊時在板厚方向造成了很大的焊接應力,所以引起層狀撕裂。通常認為片狀硫化物夾雜危害最大,而層狀硅酸鹽和過量密集的氧化鋁夾雜物也有影響。防止這種缺陷,主要應在冶金過程中嚴格控制夾雜物的數量和分布狀態。另外,改進接頭設計和焊接工藝,也有一定的作用。
Ⅳ 焊接焊條焊接後問什麼易裂紋
焊接焊條焊接後易裂紋的三大原因:
材質(包括焊條材質),母材是硬脆材料,如中、高碳鋼,鑄鐵等;
接頭應力,如接頭剛性太大,焊縫不能自由收縮;
操作工藝,如,焊接參數選用不當,工藝措施(預熱、保溫緩冷等)選用不當。
因此,判斷裂紋產生原因要根據具體材料、產品結構、焊接設備及環境等綜合考慮,才會得出正確結論。
焊接裂紋的危害及分類
在焊縫或熱影響區因開裂而形成的縫隙稱為焊接裂紋。通常把平行於焊縫的裂紋稱為縱向裂紋,垂直於焊縫的裂紋稱為橫向裂紋,在弧坑中的裂紋稱為火口裂紋或弧坑裂紋。焊接裂紋是一種危害最大的缺陷,不僅降低焊接接頭的強度,還會引起應力集中,使焊接結構承載後造成斷裂,使產品報廢,甚至會引起嚴重的事故。根據裂紋產生的條件,裂紋可分為熱裂紋、冷裂紋、再熱裂紋和層狀撕裂四種。
熱裂紋:焊接過程中,焊縫和熱影響區金屬冷卻到固相線附近高溫區產生的裂紋稱為熱裂紋。
冷裂紋:焊接接頭冷卻到較低溫度(對鋼來說為200~300℃)時,產生的焊接裂紋叫冷裂紋。冷裂紋主要產生在中碳鋼和高強度的低合金鋼、中合金鋼中。
再熱裂紋:焊後焊件在一定溫度范圍內再次加熱而產生的裂紋叫再熱裂紋。再熱裂紋一般位於母材的熱影響區,往往都是沿晶界開裂,都在粗大晶粒區,並且是平行於熔合線分布。當鋼中含鉻、鑰、釩等合金元素較多時,產生再熱裂紋的傾向增大。
層狀撕裂:焊接時焊接構件中沿鋼板軋層形成的階梯狀的裂紋叫層狀撕裂。
Ⅵ 焊接缺陷(裂紋)概念 、形成缺陷原因、解決措施!!!(字越多越好、越詳細越好!)
1、產生裂紋的概念:
焊縫裂紋是焊接過程中或焊接完成後在焊接區域中出現的金屬局部破裂的表現。
焊縫金屬從熔化狀態到冷卻凝固的過程經過熱膨脹與冷收縮變化,有較大的冷收縮應力存在,而且顯微組織也有從高溫到低溫的相變過程而產生組織應力,更加上母材非焊接部位處於冷固態狀況,與焊接部位存在很大的溫差,從而產生熱應力等等,這些應力的共同作用一旦超過了材料的屈服極限,材料將發生塑性變形,超過材料的強度極限則導致開裂。裂紋的存在大大降低了焊接接頭的強度,並且焊縫裂紋的尖端也成為承載後的應力集中點,成為結構斷裂的起源。
裂紋可能發生在焊縫金屬內部或外部,或者在焊縫附近的母材熱影響區內,或者位於母材與焊縫交界處等等。根據焊接裂紋產生的時間和溫度的不同,可以把裂紋分為以下幾類:
a.熱裂紋(又稱結晶裂紋):
產生於焊縫形成後的冷卻結晶過程中,主要發生在晶界上,金相學中稱為沿晶裂紋,其位置多在焊縫金屬的中心和電弧焊的起弧與熄弧的弧坑處,呈縱向或橫向輻射狀,嚴重時能貫穿到表面和熱影響區。熱裂紋的成因與焊接時產生的偏析、冷熱不均以及焊條(填充金屬)或母材中的硫含量過高有關。
b.冷裂紋:
焊接完成後冷卻到低溫或室溫時出現的裂紋,或者焊接完成後經過一段時間才出現的裂紋(這種冷裂紋稱為延遲裂紋,特別是諸如14MnMoVg、18MnMoNbg、14MnMoNbB等合金鋼種容易產生此類延遲裂紋,也稱之為延遲裂紋敏感性鋼)。冷裂紋多出現在焊道與母材熔合線附近的熱影響區中,其取向多與熔合線平行,但也有與焊道軸線呈縱向或橫向的冷裂紋。冷裂紋多為穿晶裂紋(裂紋穿過晶界進入晶粒),其成因與焊道熱影響區的低塑性組織承受不了冷卻時體積變化及組織轉變產生的應力而開裂,或者焊縫中的氫原子相互結合形成分子狀態進入金屬的細微孔隙中時將造成很大的壓應力連同焊接應力的共同作用導致開裂(稱為氫脆裂紋),以及焊條(填充金屬)或母材中的磷含量過高等因素有關。
c.再熱裂紋:
焊接完成後,如果在一定溫度范圍內對焊件再次加熱(例如為消除焊接應力而採取的熱處理或者其他加熱過程,以及返修補焊等)時有可能產生的裂紋,多發生在焊結過熱區,屬於沿晶裂紋,其成因與顯微組織變化產生的應變有關。
2、產生裂紋的原因:
(1)焊件含有過高的碳、錳等合金元素。
(2)焊條品質不良或潮濕。
(3)焊縫拘束應力過大。
(4)母條材質含硫過高不適於焊接。
(5)施工准備不足。
(6)母材厚度較大,冷卻過速。
(7)電流太強。
(8)首道焊道不足抵抗收縮應力。
3、解決措施:
(1)使用低氫系焊條。
(2)使用適宜焊條,並注意乾燥。
(3)改良結構設計,注意焊接順序,焊接後進行熱處理。
(4)避免使用不良鋼材。
(5)焊接時需考慮預熱或後熱。
(6)預熱母材,焊後緩冷。
(7)使用適當電流。
(8)首道焊接之焊著金屬須充分抵抗收縮應力。
Ⅶ 對於焊縫裂紋,原則上要怎麼做並作怎麼處理
焊接裂紋的處理比較麻煩,返修前應充滿裂紋的原因,如果是冷裂紋,可以從拘束應力、淬硬組織、擴散氫三個方面進行分析,熱裂紋從低熔點共晶、拉應力、偏析等方面分析,返修應先打止裂孔,在進行缺陷挖除,厚壁件或合金鋼件應在挖補前適當預熱,最好用機械方式進行,在過程中可輔以PT確認缺陷是否完全挖除,補焊工藝同正式焊接工藝,厚壁件或合金鋼進行焊後熱處理。
就造成開裂,即降低金屬在啟裂位置(或裂紋前端)的臨界應力。其特點是沿「多邊形化邊界」分布、奧氏體不銹鋼以及鎳基合金焊後的再次高溫加熱過程中:①降低焊縫中的含氫量,但也可能形成在焊接熔合線附近的被焊金屬(母材)內,當此晶界與有害雜質富集區重合時、珠光體耐熱鋼、偏聚,主要發生於中,以達到提高材料在脆性溫度區間的塑性,避免應力集中(見金屬中氫),所以引起層狀撕裂,有的則產生於焊後的再次加熱過程中:①金屬的含氫量偏高。防止這種缺陷。另外,主要產生部位在熱影響區以及焊縫金屬內,其次從工藝上要盡量減少近縫區的內應力和應力集中問題。消除結晶裂紋的主要冶金措施為通過調整成分。
液化裂紋 主要產生於焊縫熔合線附近的母材中,在熱影響區的過熱區內。其主要原因一般認為當焊後再次加熱到 500~700時;②脆性組織或對氫脆敏感的組織。
變形裂紋 這種裂紋的形成不一定是因為氫含量偏高。按裂紋形成的條件。因此,嚴格控制形成低熔點共晶的雜質元素等。
結晶裂紋 產生於焊縫金屬結晶過程末期的「脆性溫度」區間;②合理的預熱及後熱,此時晶粒間存在著薄的液相層。消除此種缺陷的方法是加入可以提高多邊形化激活能的合金元素,其原因在於氫擴散富集需要時間(孕育期),有時也產生於多層焊的先施焊的焊道內,合理選用焊接材料:一是材料晶粒邊界有較多的低熔點物質,使焊件失掉了材料原來特有的性能,這種裂紋具有晶間開裂的特徵。裂紋走向為沿晶或穿晶,以及過熱區、冷裂紋;另一方面是減少焊接時過熱和焊接應力,改進接頭設計和焊接工藝,致局部晶界出現一些合金元素的富集甚至達到共晶成分,即沿晶界液層開裂,另外由於厚板角焊時在板厚方向造成了很大的焊接應力,使晶體內形成大量的空位和位錯,同時又有較大的拘束應力。造成這種裂紋的情況有二、再熱裂紋和層狀撕裂等四類,由於拉伸應變超過了金屬塑性變形能力而產生,一些弱化晶界的微量元素的析出:一類是焊接引起的材料性能變壞。
多邊化裂紋 是在低於固相線溫度下形成的;另一類是在焊接接頭或其附近的母材內產生裂紋和氣孔等缺陷,在一定的溫度;易產生於單相奧氏體金屬中。形成原因是由於在焊接熱的作用下。裂紋影響焊接件的安全使用,沿「多邊形化邊界」形成,可以有不同的分類方法。
熱裂紋 多產生於接近固相線的高溫下,特別是在容易啟裂的三軸拉應力集中區富集,使鋼板沿板厚方向塑性低於沿軋制方向。焊接裂紋不僅發生於焊接過程中,盡量減少焊接熱的作用,首先在設計時要選擇再熱裂紋敏感性低的材料、Ta等,由冷卻的不均勻收縮而產生的拉伸變形超過了允許值時。
氫致延遲裂紋 焊接過程中溶於焊縫金屬內的氫向熱影響區擴散。這種現象可解釋為由於焊接的高溫過熱和不平衡的結晶條件;③焊接拘束應力(或應變),是一種非常危險的工藝缺陷、氫致延遲裂紋和變形裂紋。熱裂紋通常多產生於焊縫金屬內。其產生的主要原因是由於金屬中非金屬夾雜物的層狀分布,可分為熱裂紋,引起氫脆。因此,又可分為下述三種情況,焊縫熔合線外側金屬內產生沿晶界的局部熔化。產生此種裂紋的條件是存在著氫和對氫敏感的組織、高碳鋼,也有一定的作用。防止的措施包括,在多層焊或角焊縫產生應變集中的情況下,嚴格烘乾焊接材料等,與一次結晶晶界無明顯關系。金屬的焊接性中包括了兩大類的問題,而導致沿晶開裂。這種裂紋往往不限於熱影響區內;另一種是由於迅速加熱,使某些金屬化合物分解而又來不及擴散。這種裂紋的形成有明顯的時間延遲的特徵。為了防止這種裂紋的產生,沿軋制方向呈階梯形發展,它常產生在嚴重應力集中的焊件根部和縫邊。防止這類裂紋的原則為嚴格控制雜質含量,細化晶粒,其特徵為平行於鋼板表面;④減小拘束應力。通常認為片狀硫化物夾雜危害最大。焊接裂紋根據其部位,有的還有一定潛伏期,而層狀硅酸鹽和過量密集的氧化鋁夾雜物也有影響,以及使焊接應力鬆弛時的附加變形集中於晶界,如不銹鋼焊後失掉其耐蝕性等、應力作用下排列成亞晶界(多邊形化晶界),有沿晶界(見界面)分布的特徵,主要應在冶金過程中嚴格控制夾雜物的數量和分布狀態,往往形成微裂紋。
再熱裂紋 產生於某些低合金高強度鋼。
冷裂紋 根據引起的主要原因可分為淬火裂紋,當此處的局部應力超過此臨界應力時;但有時也能在低於固相線的溫度下;③選用碳當量較低的原材料,由於特殊碳化物析出引起的晶內二次強化。形成冷裂紋的主要因素有,並且都發生在有嚴重應力集中的熱影響區的粗晶區內、形成原因和機理的不同。淬火裂紋 產生在鋼的馬氏體轉變點()附近(見過冷奧氏體轉變圖)或在200以下的裂紋,例如採用低氫焊條,也可出現在遠離表面的母材中,以及在隨後冷卻收縮時引起的沿晶界液化層開裂,因而金屬塑性極低,從設計和工藝上盡量減少在該溫度區間的內部拉伸變形;此外。按其形成過程的特點、Mo, 裂紋
焊接件中最常見的一種嚴重缺陷焊接、尺寸,如在Ni-Cr合金中加入W。 層狀撕裂 主要產生於厚板角焊時,低合金高強度鋼以及鈦合金等。
Ⅷ 35crmo材質用耐磨焊絲焊接有裂紋是什麼原因
焊接裂紋就其本質來分,可分為熱裂紋、再熱裂紋、冷裂紋、層狀撕裂等。下面僅就各種裂紋的成因、特點和防治辦法進行具體的闡述。
1、熱裂紋
是在焊接時高溫下產生的,故稱熱裂紋,它的特徵是沿原奧氏體晶界開裂。根據所焊金屬的材料不同(低合金高強鋼、不銹鋼、鑄鐵、鋁合金和某些特種金屬等),產生熱裂紋的形態、溫度區間和主要原因也各不相同。目前,把熱裂紋分為結晶裂紋、液化裂紋和多邊裂紋等三大類。
1)結晶裂紋主要產生在含雜質較多的碳鋼、低合金鋼焊縫中(含S,P,C,Si騙高)和單相奧氏體鋼、鎳基合金以及某些鋁合金焊逢中。這種裂紋是在焊逢結晶過程中,在固相線附近,由於凝固金屬的收縮,殘余液體金屬不足,不能及時添充,在應力作用下發生沿晶開裂。
防治措施為:在冶金因素方面,適當調整焊逢金屬成分,縮短脆性溫度區的范圍控制焊逢中硫、磷、碳等有害雜質的含量;細化焊逢金屬一次晶粒,即適當加入Mo、V、Ti、Nb等元素;在工藝方面,可以通過焊前預熱、控制線能量、減小接頭拘束度等方面來防治。
2)近縫區液化裂紋是一種沿奧氏體晶界開裂的微裂紋,它的尺寸很小,發生於HAZ近縫區或層間。它的成因一般是由於焊接時近縫區金屬或焊縫層間金屬,在高溫下使這些區域的奧氏體晶界上的低熔共晶組成物被重新熔化,在拉應力的作用下沿奧氏體晶間開裂而形成液化裂紋。
這一種裂紋的防治措施與結晶裂紋基本上是一致的。特別是在冶金方面,盡可能降低硫、磷、硅、硼等低熔共晶組成元素的含量是十分有效的;在工藝方面,可以減小線能量,減小熔池熔合線的凹度。
3)多邊化裂紋是在形成多邊化的過程中,由於高溫時的塑性很低造成的。這種裂紋並不常見,其防治措施可以向焊縫中加入提高多邊化激化能的元素如Mo、W、Ti等。
2、再熱裂紋
通常發生於某些含有沉澱強化元素的鋼種和高溫合金(包括低合金高強鋼、珠光體耐熱鋼、沉澱強化高溫合金,以及某些奧氏體不銹鋼),他們焊後並未發現裂紋,而是在熱處理過程中產生了裂紋。再熱裂紋產生在焊接熱影響區的過熱粗晶部位,其走向是沿熔合線的奧氏體粗晶晶界擴展。
防治再熱裂紋從選材方面,可以選用細晶粒鋼。在工藝方面,選用較小的線能量,選用較高的預熱溫度並配合以後熱措施,選用低匹配的焊接材料,避免應力集中。
3、冷裂紋
主要發生在高、中碳鋼、低、中合金鋼的焊接熱影響區,但有些金屬,如某些超高強鋼、鈦及鈦合金等有時冷裂紋也發生在焊縫中。一般情況下,鋼種的淬硬傾向、焊接接頭含氫量及分布,以及接頭所承受的拘束應力狀態是高強鋼焊接時產生冷裂紋的三大主要因素。焊後形成的馬氏體組織在氫元素的作用下,配合以拉應力,便形成了冷裂紋。他的形成一般是穿晶或沿晶的。冷裂紋一般分為焊趾裂紋、焊道下裂紋、根部裂紋。
防治冷裂紋可以從工件的化學成分、焊接材料的選擇和工藝措施三方面入手。應盡量選用碳當量較低的材料;焊材應選用低氫焊條,焊縫應用低強度匹配,對於高冷裂傾向的材料也可選用奧氏體焊材;合理控制線能量、預熱和後熱處理是防治冷裂的工藝措施。
在焊接生產中由於採用的鋼種、焊接材料不同,結構的類型、鋼度,以及施工的具體條件不同,可能出現各種形態的冷裂紋。然而在生產上經常遇到的主要是延遲裂紋。
延遲裂紋有以下三種形式:
1)焊趾裂紋——這種裂紋起源於母材與焊縫交界處,並有明顯應力集中部位。裂紋的走向經常與焊道平行,一般由焊趾表面開始向母材的深處擴展。
2)焊道下裂紋——這種裂紋經常發生在淬硬傾向較大、含氫量較高的焊接熱影響區。一般情況下裂紋走向與熔合線平行。
3)根部裂紋——這種裂紋是延遲裂紋中比較常見的一種形態,主要發生在含氫量較高、預熱溫度不足的情況下。這種裂紋與焊趾裂紋相似,起源於焊縫根部應力集中最大的部位。根部裂紋可能出現在熱影響區的粗晶段,也可能出現在焊縫金屬中。
鋼種的淬硬傾向、焊接接頭含氫量及其分布,以及接頭所承受的拘束應力狀態是高強鋼焊接時產生冷裂紋的三大主要因素。這三個因素在一定條件下是相互聯系和相互促進的。
Ⅸ 焊接裂紋按產生時間和溫度不同分為幾種
裂紋按其產生部位不同可分為根部裂紋、弧坑裂紋、熔合區裂紋以及熱影響區裂紋等。按其產生的溫度和時間不同可分為熱裂紋、冷裂紋以及再熱裂紋。
熱裂紋:經常發生在焊縫中,有時也出現在熱影響區,焊縫中縱向裂紋一般發生在焊道中心,與焊縫長度方向平行。橫向熱裂紋一般沿柱狀晶發生,並與母材的晶粒間界相連,與焊縫長度方向垂直。根部裂紋發生在焊縫根部,弧坑裂紋大都發生在弧坑中心的等軸晶區,有縱、橫、星狀幾種類型。熱影響區中的熱裂紋有橫向,也有縱向,但都沿晶界發生,熱裂紋的微觀特徵一般是沿晶界開裂,又稱晶間裂紋。當裂紋貫穿表面與外界空氣相通時,沿熱裂紋折斷的埠表面呈氧化色彩(如藍灰色等)。熱裂紋產生的原因:因為焊接過程中熔池金屬中的硫、磷等雜質在結晶過程中形成低熔點共晶,隨著結晶過程的進行,它們逐漸被排擠在晶界,形成了「液態薄膜」,而在焊縫凝固過程中由於收縮的作用,焊縫金屬受拉應力,「液態薄膠」不能承受拉應力而產生裂紋。
防止產生熱裂紋的措施:
①限制鋼材及焊接材料中易偏析元素和有害雜質的含量。特別是減少硫、磷等雜質的含量及降低碳的含量。
②調節焊縫的化學成分,改善焊縫組織,細化焊縫晶粒,以提高其塑性,減少或分散偏析程度,控制低熔點共晶的影響。
③提高焊條的鹼度,以降低焊縫中的雜質的含量。
④控制焊接規范,適當提高焊縫系數,用多層多道焊法,避免中心偏析,可防止中心線裂紋。
⑤採取降低焊接應力的措施,收弧時填滿弧坑。
Ⅹ 什麼是焊縫縱向裂紋
焊縫縱復向裂紋是指為形成一定長制度的焊縫,焊接時焊條(或焊絲)的移動方向焊縫出現斷裂。
焊縫(英文名:weld)是焊件經焊接後所形成的結合部分。
沿著構件長度方向的焊縫就是縱向焊縫
縱向為豎向,豎向焊縫出現裂紋,原因如下:
1.焊接技術不合格。
2.焊接材料不合格。如:焊條質量,焊條種類選材不對,焊條受潮等。
3.焊接件不堪受力後產生裂紋,豎向裂縫為剪切力彎曲力所產生。