㈠ 直縫高頻電阻焊管成型工藝有哪些
1.在高頻焊管生產過程中 ,如何確保產品質量符合技術標準的要求和顧客的需要 ,則要對鋼管生產過程中影響產品質量的因素進行分析。通過對本公司 Φ76mm高頻焊接鋼管機組某月份不合格品的統計 ,認為在生產過程中影響鋼管產品質量的要素有原材料、焊接工藝、軋輥調節、軋輥材質、設備故障、生產環境及其它原因等七個方面。其中原材料占 32 .44% ,焊接工藝占 24 .85 % ,軋輥調節占 22 .72 % ,三者相加占 80 .01 % ,是主要環節。而軋輥材質、設備故障、生產環境及其它原因等四個方面的要素 ,對鋼管產品質量的影響佔19.99% ,屬相對次要環節。因此 ,在鋼管生產過程中 ,應對原材料、焊接工藝和軋輥調節三個環節進行重點控制。
2 原材料對鋼管焊接質量的影響 影響原材料質量的因素主要有鋼帶力學性能不穩定、鋼帶的表面缺陷及幾何尺寸偏差大等三個方面 ,因此 ,應從這三個方面進行重點控制。
1)鋼帶的力學性能對鋼管質量的影響焊接鋼管常用的鋼種為碳素結構鋼 ,主要的牌號有 Q195、Q215、Q235 SPCC SS400 SPHC等多種 。鋼帶屈服點和抗拉強度過高 ,將造成鋼帶的成型困難 ,特別是管壁較厚時 ,材料的回彈力大 ,鋼管在焊接時存在較大的變形應力 ,焊縫容易產生裂縫。當鋼帶的抗拉強度超過 635 MPa、伸長率低於 10 %時 ,鋼帶在焊接過程中焊縫易產生崩裂。當抗拉強度低於 30 0MPa時 ,鋼帶在成型過程中由於材質偏軟 ,表面容易起皺紋。可見 ,材料的力學性能對鋼管的質量影響很大 ,應從材料強度方面對鋼管質量進行有效地控制。
)鋼帶表面缺陷對鋼管質量的影響鋼帶表面缺陷常見的有鐮刀彎、波浪形、縱剪啃邊等幾種 ,鐮刀彎和波浪形一般出現在冷軋鋼帶軋制過程中 ,是由壓下量控制不當造成的。在鋼管成型過程中 ,鐮刀彎和波浪形會引起帶鋼的跑偏或翻轉 ,容易使鋼管焊縫產生搭焊 ,影響鋼管的質量。鋼帶的啃邊 (即鋼帶邊緣呈現鋸齒狀凹凸不平的現象 ) ,一般出現在縱剪帶上 ,產生原因是縱剪機圓盤刀刃磨鈍或不鋒利造成的。由於鋼帶的啃邊 ,時時出現局部缺肉 ,使鋼帶在焊接時易產生裂紋、裂縫而影響焊縫質量的穩定性。
3)鋼帶幾何尺寸對鋼管質量的影響當鋼帶的寬度小於允許偏差時 ,焊接鋼管時的擠壓力減小 ,使得鋼管焊縫處焊接不牢固 ,出現裂縫或是開口管 ;當鋼帶的寬度大於允許偏差時 ,焊接鋼管時的擠壓力增加 ,在鋼管焊縫處出現尖嘴、搭焊或毛刺等焊接缺陷。所以 ,鋼帶寬度的波動 ,不但影響了鋼管外徑的精度 ,而且嚴重影響了鋼管的表面質量。對要求同一斷面壁厚差不超過規定值的鋼管 ,即要求壁厚均勻程度高的鋼管 ,鋼帶厚度的波動 ,會將同一卷鋼帶厚度差超出的允許值轉移到成品鋼管的壁厚差 ,使大批鋼管厚度超出允許偏差而判廢。厚度的波動不僅影響成品鋼管的厚度精度 ,同時 ,由於鋼帶的厚薄不一 ,使鋼管在焊接時 ,擠壓力和焊接溫度不穩定 ,造成了鋼管焊接時焊縫質量不穩定。此外 ,由於鋼材內部存在著夾層、雜質、沙眼等材料缺陷 ,也是影響鋼管質量的一個重要因素。因此 ,在鋼帶焊接前 ,要檢查每卷鋼帶的表面質量和幾何尺寸 ,對鋼帶質量不符合標准要求的 ,不要進行生產 ,以免造成不必要的損失。
3 高頻焊接對鋼管質量的影響 在鋼管高頻焊接過程中 ,焊接工藝及工藝參數的控制、感應圈和阻抗器位置的放置等對鋼管焊縫的焊接質量影響很大。
1) 鋼管焊縫間隙的控制鋼帶進入焊管機組經成型輥成型、導向輥定向後 ,形成有開口間隙的圓形鋼管管坯 ,調整擠壓輥的擠壓量 ,使得焊縫間隙控制在 1~ 3mm,並使焊口兩端保持齊平。焊縫間隙控製得過大 ,會使焊縫焊接不良而產生未熔合或開裂 ;焊縫間隙控製得過小 ,由於熱量過大 ,造成焊縫燒損 ,熔化金屬飛濺 ,影響焊縫的焊接質量。
2) 高頻感應圈位置的調控感應圈應放置在與鋼管同一中心線上 ,感應圈前端距擠壓輥中心線的距離 ,在不燒損擠壓輥的前提下 ,應視鋼管的規格而盡量接近。若感應圈距擠壓輥較遠時 ,有效加熱時間較長 ,熱影響區寬 ,使得鋼管焊縫的強度下降或未焊透 ;反之感應圈易燒毀擠壓輥。
3) 阻抗器位置的調控阻抗器是一個或一組焊管專用磁棒 ,阻抗器的截面積通常應不小於鋼管內徑截面積的 70 % ,其作用是使感應圈、管坯焊縫邊緣與磁棒形成一個電磁感應迴路 ,產生鄰近效應 ,渦流熱量集中在管坯焊縫邊緣附近 ,使管坯邊緣加熱到焊接溫度。阻抗器應放置在 V形區加熱段 ,且前端在擠壓輥中心位置處 ,使其中心線與管筒中心線一致。如阻抗器位置放置的不好 ,影響焊管的焊接速度和焊接質量 ,使鋼管產生裂紋。
4)高頻焊接工藝參數——輸入熱量的控制高頻電源輸入給鋼管焊縫部位的熱量稱為輸入熱量。將電能轉換成熱能時 ,其輸入熱量的公式為 :
Q=KI2 Rt (1)
式中 Q—輸入管坯的熱量 ;K—能量轉換效率 ; I—焊接電流 ;R—迴路阻抗 ; t—加熱時間。
加熱時間 :t=Lv (2)
式中 L—感應圈或電極頭前端至擠壓輥的中心距 ;v—焊接速度。
當高頻輸入的熱量不足且焊接速度過快時 ,使得被加熱的管體邊緣達不到焊接的溫度 ,鋼鐵仍保持其固態組織而焊接不上 ,形成了未熔合或未焊透的裂紋 ;當高頻輸入熱量過大且焊接速度過慢時 ,使得被加熱的管體邊緣超過了焊接溫度 ,容易產生過熱甚至過燒 ,使焊縫擊穿 ,造成金屬飛濺而形成縮孔。從公式 (1)、(2)中可知 ,可以通過調整高頻焊接電流 (電壓 )或調整焊接速度的方法 ,來控制高頻輸入熱量的大小 ,從而使鋼管的焊縫既要焊透又不焊穿 ,獲得焊接質量優良的鋼管
4 軋輥調節對鋼管質量的影響 從鋼管廢品因果分析圖可看出 ,軋輥調節是屬鋼管的操作工藝。在生產過程中 ,軋輥損壞或磨損嚴重時 ,在機組上需要更換部分軋輥 ,或某個品種連續生產了足夠的數量 ,需要更換整套的軋輥。這時都應對軋輥進行調節 ,以獲得良好的鋼管質量。如軋輥調節得不好 ,易造成鋼管管縫的扭轉、搭焊、邊緣波浪、鼓包及管體表面有壓痕或劃傷 ,鋼管橢圓度大等缺陷 ,因此 ,換輥時應掌握軋輥調節的技巧。
1 )更換鋼管規格 ,一般都對整套軋輥進行更換。軋輥調節的方法是 :用鋼絲從機組入口到出口拉一條中心線 ,進行調整 ,使各架孔型在一條中心線上 ,並使成型底線符合技術要求。更換軋輥規格後 ,首先對成型輥、導向輥、擠壓輥、定徑輥作一次全面的調節 ,然後重點對成型輥的封閉孔型、導向輥、擠壓輥調節。
2 )導向輥的作用是控制鋼管的管縫方向和管坯底線高度 ,緩解邊緣延伸 ,控制管坯邊緣回彈 ,保證管縫平直而不扭轉進入擠壓輥。如導向輥調節不好 ,在鋼管的焊接過程中 ,易造成鋼管管縫的扭轉、搭焊、邊緣波浪等焊接缺陷。
3 )擠壓輥是焊管機組的關鍵設備 ,其作用是將邊緣被加熱到焊接溫度的管體在擠壓輥的擠壓力作用下完成壓力焊接。在生產過程中 ,要控制擠壓輥開口角的大小。擠壓力過小時 ,焊縫金屬強度下降 ,受力後會產生開裂 ;擠壓力過大時 ,降低焊接強度 ,而且使外毛刺量增加 ,易造成搭焊等焊接缺陷。
4 )在焊管機組慢速起動的過程中 ,應密切注意各部位軋輥的轉動情況 ,隨時調節軋輥 ,以確保焊管的焊接質量和工藝尺寸符合規定的要求。
㈡ 高頻焊管生產線中影響鋼管質量的因素有哪些
在高頻焊管生產過程中 ,如何確保產品質量符合技術標準的要求和顧客的需要 ,則要對鋼管生產過程中影響產品質量的因素進行分析.通過對本公司 Φ76mm高頻焊接鋼管機組某月份不合格品的統計 ,認為在生產過程中影響鋼管產品質量的要素有原材料、焊接工藝、軋輥調節、軋輥材質、設備故障、生產環境及其它原因等七個方面.其中原材料占 32 .44% ,焊接工藝占 24 .85 % ,軋輥調節占 22 .72 % ,三者相加占 80 .01 % ,是主要環節.而軋輥材質、設備故障、生產環境及其它原因等四個方面的要素 ,對鋼管產品質量的影響佔19.99% ,屬相對次要環節.因此 ,在鋼管生產過程中 ,應對原材料、焊接工藝和軋輥調節三個環節進行重點控制.
2 原材料對鋼管焊接質量的影響 影響原材料質量的因素主要有鋼帶力學性能不穩定、鋼帶的表面缺陷及幾何尺寸偏差大等三個方面 ,因此 ,應從這三個方面進行重點控制.
1)鋼帶的力學性能對鋼管質量的影響焊接鋼管常用的鋼種為碳素結構鋼 ,主要的牌號有 Q195、Q215、Q235 SPCC SS400 SPHC等多種 .鋼帶屈服點和抗拉強度過高 ,將造成鋼帶的成型困難 ,特別是管壁較厚時 ,材料的回彈力大 ,鋼管在焊接時存在較大的變形應力 ,焊縫容易產生裂縫.當鋼帶的抗拉強度超過 635 MPa、伸長率低於 10 %時 ,鋼帶在焊接過程中焊縫易產生崩裂.當抗拉強度低於 30 0MPa時 ,鋼帶在成型過程中由於材質偏軟 ,表面容易起皺紋.可見 ,材料的力學性能對鋼管的質量影響很大 ,應從材料強度方面對鋼管質量進行有效地控制.
2)鋼帶表面缺陷對鋼管質量的影響鋼帶表面缺陷常見的有鐮刀彎、波浪形、縱剪啃邊等幾種 ,鐮刀彎和波浪形一般出現在冷軋鋼帶軋制過程中 ,是由壓下量控制不當造成的.在鋼管成型過程中 ,鐮刀彎和波浪形會引起帶鋼的跑偏或翻轉 ,容易使鋼管焊縫產生搭焊 ,影響鋼管的質量.鋼帶的啃邊 (即鋼帶邊緣呈現鋸齒狀凹凸不平的現象 ) ,一般出現在縱剪帶上 ,產生
請看你的私信里或我的資料里 。聯系方法,腰巴貳似溜捂叄零捂零貳
㈢ 求不銹鋼制管機的工作(成型)原理和各個模具的性能和調整方法,
不銹鋼工業制管機
使用說明書
INSTRUCTION
機組型號:
出廠編號:
出廠日期:200 年 月 日
電話:86-757-81162186
傳真:86-757-81162189
E-mail: [email protected]
目錄
一. 簡介…………………………………………….2
二. 用途與特性…………………………………….3
三. 成型機結構特點及作用保養………………….4
四. 吊裝及安裝…………………………………….6
五. 機型分類及組成……………………………….6
六. 機組結構及主要成型參數…………………….8
七. 成型調整………………………………………12
八. 制管機常見故障及檢查排除方法……………14
九. 保修條例及合格證……………………………16
十.機械圖片…………………………………….. 18
一.簡介
「百冠」牌焊管機械.模具
不銹鋼焊管技術的革命
不銹鋼焊管過程中經常發生拉傷、起皺、指甲紋、魚鱗紋、機械紋、手感、矩管管材成形面不平、角度不尖、凹角、圓管失圓、方管不方等缺陷。多年來,這些缺陷一直困擾著業內人士.也是模具行業最難攻克的難題.百冠人經過多年的潛心研究及實踐,現在終於生產出了」 百冠」牌高品質機械模具,解決了這些問題,給業內人士帶來了福音.
特別推薦:針對目前市場上201鋼板硬度過硬,管材拋光後不圓的現象, 百冠人經過半年多的精心研究,生產出的百冠牌模具杜絕了此類現象的發生,給廣大201用戶帶來了福音.
「百冠」牌模具----------更加合理的成型原理
超常規的成型面硬度
從而不僅解決了制管中的缺陷,更使其壽命較普通模具提高了很多倍. 「百冠」牌模具材料Cr12MoV,硬度可達到61~63HRC.按理論計算「百冠」牌模具三年可不需返修,大大地減少了用戶的麻煩和返修成本,獲得了用戶的廣泛好評.
百冠科技有限公司屬佛山市高新技術企業,多年來致力於不銹鋼焊管模具、不銹鋼裝飾(工業、復合)焊管機、拋光機、平口機、壓花機、內整平裝置、在線光亮固溶退火設備及其它不銹鋼生產配套設備的研發、生產和國內外銷售,對外承接OEM/ODM訂單合作。
「百冠」系列產品經過20 多位資深設計師、工程師多年的潛心研究和改良。「百冠」牌焊(制)管機採用超薄設計,重型裝置,最薄可焊至0.15mm,工業制管機最厚可焊10.00mm,工藝水平位處同行前列; 「百冠」模具,解決了在制管過程中產生的拉傷、起皺、指紋、機械紋、對角、凹角等現象,實現了模具上機後維修率為零。
百冠人奉行「以技取勝、精益求精」的企業理念,以 「科學、嚴謹、創新」的工作方式,開拓進取;以敏銳的市場洞察力,獵取業內最新資訊,以市場需求為導向,以客戶為中心;以一流的產品、一流的服務為客戶提供優質可靠產品,百冠熱烈歡迎社會各界人士加盟,共創美好未來!
二.用途與特性
一.概述:
歡迎您使用「百冠「牌不銹鋼焊管機,我公司是佛山最大的不銹鋼焊管機及不銹鋼焊管模具,拋光機,復合管機及其他配套設備不銹鋼生產線的專業生產廠家之一。百冠人經過多年的不懈努力和經心研究,生產出的「百冠「牌制管機及模具,解決了在制管中經常發生的拉傷,起皺,指甲紋等現象,從而使「保林」牌制管機及模具在市場上占重要的地位。百冠人以「科學,嚴謹,創新」的工作方式,奉行「以技取勝,精益求精」的企業理念,不斷開拓進取。以敏銳的市場觸覺探索業內最新資訊,以市場需求為導向,以客戶為中心,用一流的產品,一流的服務為不銹鋼行業的發展和繁榮做出更大的貢獻,並熱忱歡迎社會各界人士來電咨詢洽談業務。
二.用途與特性
BG系列工業制管機主要用於工業用不銹鋼型材(圓管,方管,異型管,復合管)連續成型工藝,經過拆卷,清洗,成型,氬弧焊接,焊縫打磨,內整平,定徑校直,光亮固溶化處理,定徑校直,定尺切割等工序生產而成。這種工藝方法的特點是連續生產,效率高,材料浪費少,生產成本低。
BG系列制管機生產線主要由上料架,主機,切割機,成品架四大部件組成。
主機由床身,進料導錕,平錕支架,焊縫打磨頭,校直架,蝸輪減速箱,主拖動電機及電控系統,水冷系統等組成。
三.成型機結構特點及使用保養
一.結構特點:
1. 本機組電器配製,採用變頻調速。
2. 採用變頻調速技術,調速靈敏高,調速平穩,噪音小,功率損失少。
3. 成型機與定徑由一台電機集中驅動,結構緊湊,維護簡單,吊運,安裝,操作方便。
4. 採用十字架萬向節聯軸器傳動,傳動扭鉅大,壽命長,整齊,美觀,輕便。
5. 水平機架是傳動機架,經蝸輪蝸桿箱與聯軸器傳動。在蝸輪蝸桿箱與電機之間設有4檔變速箱(1個倒檔),使機組操作更方便,軋錕運動更平穩。
6. 水平機架為二錕式的側出錕式支架,當需要換錕時,松開外側支座固定螺栓,拉出外側支座,側面換錕,簡單方便。機架的壓下調整兩側單獨進行,調整靈活,方便,精度高。
7. 立錕在機座內可以同時或單獨作水平方向的調整,也可以分別作垂直方向的調整,比較方便,軋錕的軸承採用滾動軸承。
8. 上料架採用可旋轉的平行四連桿懸臂雙捲筒機構,可以在機組工作過程中上卷,接帶,這樣可以減少准備作業時間,使機組不設活套裝置也能連續生產。
9. 前兩架焊縫打磨機主軸中心線與軋制中心線呈+/-45夾角並可調整,從交錯的兩個方向對焊縫進行拋磨,後面一架焊縫打磨機主軸中心與軋制中心線呈90度夾角對焊縫進行直磨,使拋磨效果更佳。
二.保養檢查
成型機的保養檢查因使用頻度,環境條件等不同而有不同的內容(見表一)。表一為保養檢查的重點是定期檢查,並准備足夠消耗 用品,確保作業和生產的正常進行。
表一:成型機的保養檢查標准
檢查部位
檢查周期
保養檢查內容
驅動裝置,軸承等。
1/天
驅動裝置供油狀態
軋錕軸承部位供油狀態
萬向節
2-3提/次
萬向節頭供脂狀態
供油脂部位
周/次
月/次
(1) 變速箱內油量
(2) 蝸輪箱內油量
(3) 冷卻系統供給狀態
(4) 檢查油箱的油清潔度,乳化狀況,冷卻液的清潔度,發臭狀況(若有異常,檢查下列各處,換油)
1. 油封有無破損
2. 齒輪有無損壞
3. 管路有無泄露
軋錕
月/次
(1) 軋錕周圍的檢查
1.檢查軋錕鎖緊螺桿部位的損傷
2.錕軸表面的損傷及磨損
錕軸驅動裝置
年/次
(2)檢查錕軸的彎曲
錕軸驅動裝置
周/次
軸承的升溫
錕軸驅動裝置
2-3/周
蝸輪的磨損
錕軸驅動裝置
年/次
軸承的磨損
四.吊運及安裝
成型機需用吊車,鏟車等吊裝起運設備或滾桿搬運到指定地點。如用吊車時,吊車鋼索必須經負5噸以上的重量。吊運時將鋼索掛上四個吊鉤即可。吊運時要注意不使鋼索與設備直接接觸以免損壞油漆及部件。
為了使成型機工作平穩和精確,成型機必須安置在堅實的基礎上,成型機在地腳螺栓之前,必須用水平儀在縱橫兩個方向上調整,使成型機工作台水平,並保證前後床身的平錕支座在同一直線上,工作台水平誤差不大於0.04mm,平錕支座位置誤差不大於0.01mm。調整符合規范後墊好斜鐵,並均勻地旋緊地腳螺栓,然後在機座周圍澆灌混凝土固定。
五.機型分類及組成
一.機型分類:
目前我公司生產的不銹鋼工業焊管種類有Ф30型,Ф40型,Ф50型,Ф60型,Ф80型,Ф90型,Ф100型,同時可根據客戶要求進行設計生產。
二.機組組成:
1.放料架:採用雙工位軸承座可旋轉式設計,配置剎車輪。
機型
鋼帶內孔尺寸
鋼帶外徑尺寸
鋼帶最大承載量
Ф30型
Ф330-510mm
Ф1700mm以下
2.5T
Ф40型,小40型
Ф330-520mm
Ф1800mm以下
3.0T
Ф50型(單工位)
Ф410-530mm
Ф1800mm以下
3.5T
Ф60型(單工位)
Ф410-530mm
Ф1850mm以下
5T
Ф90型(單工位)
Ф420-540mm
Ф1850mm以下
8T
2.主機部分:由成型組,打磨組,定徑段組成。
(1)成型組;由6組水平牌坊及9組立牌組成(40,50,60機組)(排布:VHVHVHVVVHVHVHVVH)。其中後1組立牌及2組卧牌為焊接段。
(2)打磨組:由3個磨頭(電機採用3KW兩級電機)。磨頭採用雙立柱導軌式設計,底座可旋轉多角度打磨焊縫(VV)。
(3)定徑段:由4組水平牌坊及4組立牌組成(30,40,50機組)及2個校直架組成(排布:HVHVHVHTH1TH2V)
3.切割台:採用由金屬鋸自動切割,電機採用3-7.5KW兩級電機。
4.卸料架:由氣缸控制自動卸料,定尺寸長度:3 ~8.
六,機組結構及主要成型參數
1. 制管機的制管范圍:
機型
壁厚
圓管
方/距管
Ф30型
0.3~2.0mm
Ф5~Ф25 mm
F10*10-20*20
Ф40型
0.3~3.0mm
Ф12~Ф50.8 mm
F10X10-F40X40
Ф50型
0.4~3.5mm
Ф31.8~Ф76 mm
F25X25-F75X45
Ф60型
0.6~4.5mm
Ф50.8~Ф114 mm
F38X38-F89X89
Ф100型
0.9~8.0mm
Ф129~Ф219 mm
F90X90-F180X180
2.定尺寸長度:3~8m 定尺精度: 〈8mm
3.制管機速度:3~18m/min
4.主機功率:雙電機
Ф30型: 4KW
Ф40型: 5.5KW
Ф50型: 7.5KW
Ф60型: 11KW
Ф70型: 18.5KW
Ф80型: 22KW
Ф90型: 35KW
Ф100型:37KW
註:本機組有兩種電器配製,一種是採用交流電磁調速,一種是採用變頻調速。
5. 打磨頭電機功率:3KW(30, 40, 50 ,60 ,70型),4KW(80,90,100型)。
6. 切割機電機功率:3KW(30,40,50,60型),5.5KW(70,80,90,100型)
7.主機外形尺寸:長(mm)*寬(mm)*高(mm)
Ф30型:5300*1000*1750 Ф40型:7300*1110*1750
Ф50型: 8700*1210*1800 Ф60型:12000*1320*1800
8. 主機重量: Ф30型:約5500Kg Ф40型:約6500Kg
Ф50型: 約7500Kg Ф60型:約10000Kg
圖一:30~40電機電氣接線圖與50~60機電氣接線圖
圖二 :50./.60機控制電氣線路圖
圖三:切割機電氣接線圖
七.成型調整
帶料通過成型機成型,要求成型為具有良好質量的管筒,供給焊機焊接成圓管,成型好壞,對焊接質量有直接的影響,在一定設備條件下,正確的調整操作是成型質量好壞的決定因素。
1. 對成型質量的基本要求包括:
A. 成型後的管坯具有正確的圓管型;
B. 管筒尺寸符合孔型設計的需要;
C. 管縫兩邊緣平直,沒有高低塔焊;
D. 管縫沒有扭轉現象;
E. 管縫兩綜緣沒有波浪和鼓包現象;
F. 調整開口角度達到所需要的程度(2~6度)
G. 管坯沒有軋錕壓傷和嚴重劃傷等表面缺陷。
2. 成型機的調整裝整
① 平錕調整
A. 壓下調整:通過轉動軸承座壓下螺絲的螺母,而使該壓下螺桿升降,帶動軸承升降,兩軸承座獨立調整。
B. 軸向調整
3. 在下軸承的一端留有定位面,用於定位下錕的位置。在上錕軸的兩端各安裝一組螺母,通過旋轉螺母使上錕移動,達到軸向調節的目的。
(2).立錕調整
A. 立錕錕軸的橫向調整:橫向調整採用兩套螺旋副調整,一套螺旋副調整的立錕錕軸的橫向位置,另一套螺旋副同步調整兩立錕的開閉。
B. 立錕錕軸高度調整:松開立錕錕軸與滑塊間鎖緊螺母旋動立錕錕軸,使之升高或下降,調好扣將螺母鎖緊,兩立錕錕軸單獨調節。
4. 成型調整的基本原則
A. 正確調整成型管坯的底線
成型管坯的底線由軋錕及設備本身保證。
B. 正確調整各機架孔型中心在一條直線上
下錕通過定位套與下錕軸位面定位,上錕通過下錕定位面找正定位。
C. 正確調整軋錕的水平位置
從橫向檢查成型各機架水平錕的上錕中心線是否水平,是否有一頭高,一頭低的傾斜現象,通過壓下裝置調整水平。
D. 正確調整各機架的錕軸
按照孔型和工藝規程調整各水平錕和立錕縫符合需要。錕縫過大,則造成變形不充分,鋼帶在孔型內左右滑動和扭轉,錕縫過小使成型負荷增加,機體損壞。
E.檢查軋錕直徑,孔型尺寸,形狀是否符合規定,檢查軋錕表面是否光潔有無缺陷。
F.軋錕安裝固定要緊固
軋錕安裝固定要緊固,不允許有軸向串動和徑向跳動,檢查軸承是否損壞,松動,檢查機架在床身的固定是否牢固,機蓋和機座的連接是否堅固。
G.軋錕是否轉動靈活
檢查軸承是否完好,間隙是否合適,軋錕轉動是否靈活。
5. 正常生產時的檢查
正常生產時就經常檢查:電機,變速箱和蝸輪箱是否過熱,運轉是否正常,萬向節,聯軸器是否正常,有無損壞,乳化液濃度是否合適,各機架軋錕是否得到充分冷卻,管坯運動情況,成型質量是否良好,隨時調整消除成型過程中所產生的缺陷和故障。
6. 成型缺陷及消除
成型管坯常見的缺陷有: 錯位,扭轉,鼓包,壓痕或劃傷等。
八.制管機常見故障及排除方法
故障
可能的原因
排除的方法
1.主電機的跳停
1. 負荷過大電機發熱
2.繼電器電流量控制太小
3. 電機出風口通風不好
4. 檔位太高
5. 線路老化漏電
1. 檢查機台轉動,看看是否有某一部位卡死及波箱油位是否太高或沒有油
2. 打開電箱將該電機的保護繼電器電流調大一點
3.查看電機出風口,看是否有雜物堵住出風口
4. 做大管厚管時,檔位應放至1檔或2檔,甚至倒檔
5.檢查線路如有問題給更換
2.磨頭高速箱發熱磨頭振動大
1. 長時間運轉而斷油
2. 千頁輪安裝偏心
3. 打磨軸彎曲
4. 磨頭拖板調節栓沒上緊
5. 電機軸承間隙大或風頁破損
1. 用清潔柴油對其進行清洗後
加上20#機油
2. 檢查千頁輪看內孔是否過大
3. 拆下打磨軸進行校正或更換
4. 檢查磨頭拖板上的四個調節螺栓是
否上緊檢查電機後端風頁看是否破損
3.磨頭上下調節時過緊
1.上下調節絲桿彎曲變形
2. 兩根導柱生銹
3. 上壓條螺紋磨損
1. 拆下校正更換
2. 用柴油清洗後用砂紙進行
打磨後加上清潔黃油
4.主電機運轉,傳動部分不轉
1.加檔變速箱,損壞
2.減速箱之間連接鏈輪磨損
3.鏈輪內的鍵磨損
1. 檢查變速箱看是否亂檔
2. 檢查變速箱輸出端,看花鍵是否磨損
3. 檢查鏈輪鏈條,如有磨損給予更換
5.減速箱發熱,油封開裂
1.減速箱內油太多
2.對應的水平錕壓的太緊
3.兩邊沒有壓平
1. 打開放油孔將油放掉一部分
2. 檢查一下水平錕的餓下壓情況,
兩滑塊一定要平
6.切割台夾具不夾或夾松,料架氣缸不動作
夾具拖板進了切割炭氣缸動作不靈,氣壓不穩
1. 用柴油清洗夾具拖板
2. 檢查空壓機氣路,氣壓是否正常,氣表壓力是否達到要求(0.6),壓力不夠,可將氣表上方黑色螺帽向上拉起向左轉,將壓力調好,壓力內要加上氣缸專用油且定期排水。
3. 檢查氣路是否裝錯
4. 檢查電磁閥上方線圈是否燒壞
5. 檢查行程開關是否動作
6. 檢查相應氣缸調節缸體上的兩個銅螺栓。
九:保修服務規定
一:保修期限承諾:
產品
保修期限(自購機械之日起)
國家三包政策
BL售後規定
不銹鋼制管機
1年免費保修
1年免費保修
特殊說明:
①上述服務承諾僅適用於2008年1月起生產之制管機系列產品;
②保修憑據:依產品購買發票或隨機保修卡說明書為憑據實施保修。若未有購機發票或保修卡,說明書,我司均依產品交貨日期為准計算保修期。
二:保修服務規定:
1. 服務實施基準:
遵循2002年3月27日國家質量監督檢驗檢疫總局會議和2002年6月27日信息產業部的10次會議審核通過的《機械商品修理更換退貨責任規定》
2. 全國服務:
百冠機械實行全國范圍聯保,無論在中華人民共和國境內(不包括港、澳、台地區)何處購買的百冠機械,出現問題需要更換或維修時,離客戶最近的代銷點均可提供服務。
3. 保修憑據:
參照國家三包政策執行在保修期內,凡屬產品本身質量引起的故障,顧客憑已填寫完整的保修卡正本
或購機發票,可享受BL產品承諾之免費保修服務,若無上述憑據,只能依產品生產日期為准,享受免
費保修服務。 請妥善保管購百冠機械發票或保修卡說明書,遺失不補!
4. 有償服務規定:
參照國家三包規定:屬於下列情況之一者,不實行三包,但可以實行收費維修:
4.1超過三包有效期的。
4.2未按產品使用說明書的要求使用、維護、保管而造成損壞的。
4.3非承擔三包修理者拆動造成的損壞的。
4.4無有效三包憑證或有效發票的(有效三包憑證為隨機保修卡或購機發票)。
4.5擅自塗改三包憑證的。
4.6三包憑證上的產品型號或編號與商品實物不相符合的。
4.7無廠名、廠址、生產日期、產品合格證的。
4.8因不可抗力造成損壞的。
以上只供參考,具體規定以BL公司現行規定為基準。
三:上門服務規定:
BL可向消費者提供局部城市限定范圍的上門服務,分有償上門與無償上門服務兩種。
1. 無償上門服務規定(限定范圍內:國內):
新制管機,拋光機,模具等保林公司的產品,在國內都有無償上門服務;不收任何費用。
2. 生產者應當承擔以下責任和義務:
(一)不銹鋼機械商品應當隨機配有產品的中文使用說明;產品使用說明應按照國家標准GB5296.1
《消費品 使用說明》的規定編寫;明示基本功能的操作程序;三包憑證應當符合本規定《機械商品三包憑證》的要求。
(二)應當自行設置或者指定具有維修資質的修理單位負責三包有效期內的修理,並提供修理者單位的名稱、 地址、聯系電話等;修理者名稱、地址、聯系電話撤銷或者變更的,應當及時告知消費者;
(三)按有關修理代理合同或者協議的約定,提供合格的、足夠的修理配件,滿足維修的需求;
(四)按有關修理代理合同或者協議的約定,提供三包有效期內發生的修理費用;維修費用在產品流通的各個環節不得截留,應當全部支付給修理者;
(五)按有關修理代理合同或者協議的約定,提供技術資料,技術培訓等技術支持;
(六)妥善處理消費者的投訴、查詢,並及時提供咨詢服務。
四:本規定自2008年1月1日起實行。
十.機械圖片
2.50.60制管機總圖
3.40制管機總圖
㈣ 萬急:高頻焊接原理
焊管高頻焊接原理
作者:江南五里湖
高頻焊接起源於上世紀五十年代,它是利用高頻電流所產生的集膚效應和相鄰效應,將鋼板和其它金屬材料對接起來的新型焊接工藝。高頻焊接技術的出現和成熟,直接推動了直縫焊管產業的巨大發展,它是直縫焊管(ERW)生產的關鍵工序。高頻焊接質量的好壞,直接影響到焊管產品的整體強度,質量等級和生產速度。
作為焊管生產製造者,必須深刻了解高頻焊接的基本原理;了解高頻焊接設備的結構和工作原理;了解高頻焊接質量控制的要點。
1 高頻焊接的基本原理
所謂高頻,是相對於50Hz的交流電流頻率而言的,一般是指50KHz~400KHz的高頻電流。高頻電流通過金屬導體時,會產生兩種奇特的效應:集膚效應和鄰近效應,高頻焊接就是利用這兩種效應來進行鋼管的焊接的。那麼,這兩個效應是怎麼回事呢?
集膚效應 是指以一定頻率的交流電流通過同一個導體時,電流的密度不是均勻地分布於導體的所有截面的,它會主要向導體的表面集中,即電流在導體表面的密度大,在導體內部的密度小,所以我們形象地稱之為:「集膚效應」。集膚效應通常用電流的穿透深度來度量,穿透深度值越小,集膚效應越顯著。這穿透深度與導體的電阻率的平方根成正比,與頻率和磁導率的平方根成反比。通俗地說,頻率越高,電流就越集中在鋼板的表面;頻率越低,表面電流就越分散。必須注意:鋼鐵雖然是導體,但它的磁導率會隨著溫度升高而下降,就是說,當鋼板溫度升高的時候,磁導率會下降,集膚效應會減小。
鄰近效應 是指高頻電流在兩個相鄰的導體中反向流動時,電流會向兩個導體相近的邊緣集中流動,即使兩個導體另外有一條較短的邊,電流也並不沿著較短的路線流動,我們把這種效應稱為:「鄰近效應」。鄰近效應本質上是由於感抗的作用,感抗在高頻電流中起主導的作用。鄰近效應隨著頻率增高和相鄰導體的間距變近而增高,如果在鄰近導體周圍再加上一個磁心,那麼高頻電流將更集中於工件的表層。
這兩種效應是實現金屬高頻焊接的基礎。高頻焊接就是利用了集膚效應使高頻電流的能量集中在工件的表面;而利用了鄰近效應來控制高頻電流流動路線的位置和范圍。電流的速度是很快的,它可以在很短的時間內將相鄰的鋼板邊部加熱,熔融,並通過擠壓實現對接。
2 高頻焊接設備的結構和工作原理
了解了高頻焊接原理,還得要有必要的技術手段來實現它。高頻焊接設備就是用於實現高頻焊接的電氣—機械繫統,高頻焊接設備是由高頻焊接機和焊管成型機組成的。其中高頻焊接機一般由高頻發生器和饋電裝置二個部分組成,它的作用是產生高頻電流並控制它;成型機由擠壓輥架組成,它的作用是將被高頻電流熔融的部分加以擠壓,排除鋼板表面的氧化層和雜質,使鋼板完全熔合成一體。
高頻發生器 過去的焊管機組上使用高頻發生器是三迴路的:高頻發電機組;固體變頻器;電子高頻振盪器,後來基本上都改進為單迴路的了。調節高頻振盪器輸出功率的方法有多種,如自耦變壓器,電抗法,晶閘管法等。
饋電裝置 這是為了向管子傳送高頻電流用的,包括電極觸頭,感應圈和阻抗器。接觸焊中一般採用耐磨的銅鎢合金的電極觸頭,感應焊中採用的是紫銅制的感應圈。阻抗器的主要元件是磁心,它的作用是增加管子表面的感抗,以減少無效電流,提高焊接速度。阻抗器的磁心採用鐵氧體,要求它的居里點溫度不低於310°,居里點溫度是磁心的重要指標,居里點溫度越高,就能靠得離焊縫越近,靠得越近,焊接效率也越高。
近年來,世界上一些大公司開始採用了固態模塊式結構,大大提高了焊接可靠性,保證了焊接質量。如EFD公司設計的WELDAC G2 800高頻焊機由以下部分組成:整流及控制單元(CRU),逆變器,匹配及補償單元(IMC),CRU與IMC間的直流電纜,IMC到線圈或接觸組件。
機器的兩個主要部分是CRU及IMC。CRU包括一個帶有主隔絕開關及一個全橋二極體整流器的整流部分(它把交流電轉換為直流電),一個帶有控制裝置及外部控制設備界面的控制器。IMC包括逆變器模塊,一個匹配變壓器以及一個用於為感應線圈提供必需的無功功率的電容組。
主供電電壓(3相480V),通過主隔絕開關被送到主整流器中。在主整流器中,主電壓被轉換為640V的直流電並且通過母線與主直流線纜相連接。直流電通過由數個並聯電纜組成的直流電輸送線被送到IMC。DC線纜在IMC單元母線上終止。逆變部分的逆變器模塊通過高速直流保險同DC母線以並聯方式連接在一起。DC電容也與DC母線連接在一起。
每個逆變器模塊構成一個全橋IGBT三極體逆變器。三極體的驅動電路則在逆變器模塊內的一個印刷電路板上。直流電由逆變器變為高頻交流電。根據具體的負載,交流電的頻率范圍在100-150KH范圍之間。為根據負載對逆變器進行調整,所有逆變器都以並聯方式同匹配變壓器連接。變壓器有數個並聯的主繞組,及一個副繞組。變壓器的匝數比是固定的。
輸出電容由數個並聯電容模塊組成。電容器以串聯方式同感應線圈相連接,因此輸出電路也是串聯補償的。電容器的作用是根據感應線圈對無功功率的要求進行補償,及通過此補償來使輸出電路的共振頻率達到所要求的數值。
頻率控制系統被設計用來使三極體始終工作在系統的共振頻率上。共振頻率通過測量輸出電流的頻率確定。此頻率隨即被用來作為開通三極體的時基信號。三極體驅動卡向每個逆變器模塊上的每個三極體發送信號來控制三極體何時開通,何時關斷。
感應加熱系統的輸出功率控制是通過控制逆變器的輸出電流來控制的。上述控制是通過一個用來控制三極體驅動器的功率控制卡完成的。
輸出功率參考值由IMC操縱面板上的功率參考電位計給出,或者由外部控制面板輸出給控制系統。此數值被傳送給系統控制器後,將與由整流單元測量系統測量出的 DC功率數值相比較。控制器包括一個限定功能,它可以根據參考功率值與DC功率測量值的比較結果計算出一個新的輸出電流設定值。控制器計算出來的輸出功率設定值被送到功率控制卡,此控制卡將根據新的設定值來限定輸出電流。
報警系統根據IMC中報警卡的輸入信號及IMC,CRU中的各類監視設備發出的信號來工作。報警將顯示在工作台上。
控制及整流器單元(CRU)
逆變器,匹配及補償單元 (IMC)
直流線纜 輸出功率匯流排,線圈及接觸頭連接
冷卻系統安裝在一個自支撐鋼框架內,所有部件聯結成為一個完整的單元。系統包括:帶有電機的循環泵,熱交換器(水/水),補償容器,輸出過程端(次輸出)壓力表,主進水口溫度控制閥門,控制閥以及電氣櫃。主進水口端的熱交換器使用未處理的支流水作為冷卻用水,次端的熱交換器則使用凈化後的中性飲用水作為冷卻水。未處理的水由恆溫閥門控制,它用來測量次輸出端的溫度。鋼框架可以用螺栓固定在門上。
3高頻焊接質量控制的要點
影響高頻焊接質量的因素很多,而且這些因素在同一個系統內互相作用,一個因素變了,其它的因素也會隨著它的改變而改變。所以,在高頻調節時,光是注意到頻率,電流或者擠壓量等局部的調節是不夠的,這種調整必須根據整個成型系統的具體條件,從與高頻焊接有關聯的所有方面來調整。
影響高頻焊接的主要因素有以下八個方面:
第一, 頻率
高頻焊接時的頻率對焊接有極大的影響,因為高頻頻率影響到電流在鋼板內部的分布性。選用頻率的高低對於焊接的影響主要是焊縫熱影響區的大小。從焊接效率來說,應盡可能採用較高的頻率。100KHz的高頻電流可穿透鐵素體鋼0.1mm, 400KHz則只能穿透0.04mm,即在鋼板表面的電流密度分布,後者比前者要高近2.5倍。在生產實踐中,焊接普碳鋼材料時一般可選取 350KHz~450KHz的頻率;焊接合金鋼材料,焊接10mm以上的厚鋼板時,可採用50KHz~150KHz那樣較低的頻率,因為合金鋼內所含的鉻,鋅,銅,鋁等元素的集膚效應與鋼有一定差別。國外高頻設備生產廠家現在已經大多採用了固態高頻的新技術,它在設定了一個頻率范圍後,會在焊接時根據材料厚度,機組速度等情況自動跟蹤調節頻率。
第二, 會合角
會合角是鋼管兩邊部進入擠壓點時的夾角。由於鄰近效應的作用,當高頻電流通過鋼板邊緣時,鋼板邊緣會形成預熱段和熔融段(也稱為過梁),這過梁段被劇烈加熱時,其內部的鋼水被迅速汽化並爆破噴濺出來,形成閃光,會合角的大小對於熔融段有直接的影響。
會合角小時鄰近效應顯著,有利提高焊接速度,但會合角過小時,預熱段和熔融段變長,而熔融段變長的結果,使得閃光過程不穩定,過梁爆坡後容易形成深坑和針孔,難以壓合。
會合角過大時,熔融段變短,閃光穩定,但是鄰近效應減弱,焊接效率明顯下降,功率消耗增加。同時在成型薄壁鋼管時,會合角太大會使管的邊緣拉長,產生波浪形折皺。現時生產中我們一般在2°--6°內調節會合角,生產薄板時速度較快,擠壓成型時要用較小的會合角;生產厚板時車速較慢,擠壓成型時要用較大的會合角。有廠家提出一個經驗公式:會合角×機組速度≮100,可供參考。
第三, 焊接方式
高頻焊接有兩種方式:接觸焊和感應焊。
接觸焊是以一對銅電極與被焊接的鋼管兩邊部相接觸,感應電流穿透性好,高頻電流的兩個效應因銅電極與鋼板直接接觸而得到最大利用,所以接觸焊的焊接效率較高而功率消耗較低,在高速低精度管材生產中得到廣泛應用,在生產特別厚的鋼管時一般也都需要採用接觸焊。但是接觸焊時有兩個缺點:一是銅電極與鋼板接觸,磨損很快;二是由於鋼板表面平整度和邊緣直線度的影響,接觸焊的電流穩定性較差,焊縫內外毛刺較高,在焊接高精度和薄壁管時一般不採用。
感應焊是以一匝或多匝的感應圈套在被焊的鋼管外,多匝的效果好於單匝,但是多匝感應圈製作安裝較為困難。感應圈與鋼管表面間距小時效率較高,但容易造成感應圈與管材之間的放電,一般要保持感應圈離鋼管表面有5~8 mm的空隙為宜。採用感應焊時,由於感應圈不與鋼板接觸,所以不存在磨損,其感應電流較為穩定,保證了焊接時的穩定性,焊接時鋼管的表面質量好,焊縫平整,在生產如API等高精度管子時,基本上都採用感應焊的形式。
第四, 輸入功率
高頻焊接時的輸入功率控制很重要。功率太小時管坯坡口加熱不足,達不到焊接溫度,會造成虛焊,脫焊,夾焊等未焊合缺陷;功率過大時,則影響到焊接穩定性,管坯坡口面加熱溫度大大高於焊接所需的溫度,造成嚴重噴濺,針孔,夾渣等缺陷,這種缺陷稱為過燒性缺陷。高頻焊接時的輸入功率要根據管壁厚度和成型速度來調整確定,不同成型方式,不同的機組設備,不同的材料鋼級,都需要我們從生產第一線去總結,編制適合自己機組設備的高頻工藝。
第五, 管坯坡口
管坯的坡口即斷面形狀,一般的廠家在縱剪後直接進入高頻焊接,其坡口都是呈「I」形。當焊接材料厚度大於8~10mm以上的管材時,如果採用這種「I」形坡口,因為彎曲圓弧的關系,就需要融熔掉管坯先接觸的內邊層,形成很高的內毛刺,而且容易造成板材中心層和外層加熱不足,影響到高頻焊縫的焊接強度。所以在生產厚壁管時,管坯最好經過刨邊或銑邊處理,使坡口呈「X」形,實踐證明,這種坡口對於均勻加熱從而保障焊縫質量有很大關系。
坡口形狀的選取,也影響到調節會合角的大小。
焊接接頭口設計在焊接工程中設計中是較薄弱的環節,主要是許多鋼結構件的結法治坡口設計不是出自焊接工程技術人員之手,硬性套標准和工藝性能較差的坡口屢見不鮮。坡口形式對控制焊縫內部質量和焊接結構製造質量有著很重要作用。坡口設計必須考母材的熔合比,施焊空間,焊接位置和綜合經濟效益等問題。應先按下式計算橫向收縮值ΔB。
ΔB=5.1Aω/t+1.27d
式中Aω——焊縫橫截面積,mm³ ,t——板厚,mm,d——焊縫根部間隙,mm。 找出ΔB與Aω的關系後,即可根據兩者關系列表分析,處理數據,進行優化設計,最後確定矩形管對接焊縫破口形式(圖2)。
第六, 焊接速度
焊管機組的成型速度受到高頻焊接速度的制約,一般來說,機組速度可以開得較快,達到100米/每秒,世界上已有機組速度甚至於達到400米/每秒,而高頻焊接特別是感應焊只能在60米/每秒以下,超過10mm的鋼板成型,國內機組生產的成型速度實際上只能達到8~12米/每秒。
焊接速度影響焊接質量。焊接速度提高時,有利於縮短熱影響區,有利於從熔融坡口擠出氧化層;反之,當焊接速度很低時,熱影響區變寬,會產生較大的焊接毛刺,氧化層增厚,焊縫質量變差。當然,焊接速度受輸出功率的限制,不可能提得很高。
國內機組操作經驗顯示,2~3 mm的鋼管焊接速度可達到40米/秒,4~6mm的鋼管焊接速度可達到25米/秒,6~8 mm的鋼管焊接速度可達到12米/秒,10~16 mm的鋼管焊接速度在12米/秒以下。接觸焊時速度可高些,感應焊時要低些。
第七, 阻抗器
阻抗器的作用是加強高頻電流的集膚效應和相鄰效應,阻抗器一般採用M-XO/N-XO類鐵氧化體製造,通常做成Φ10mm×(120--160)mm規格的磁棒,捆裝於耐熱,絕緣的外殼里,內部通以水冷卻。
阻抗器的設置要與管徑相匹配,以保證相應的磁通量。要保證阻抗器的磁導率,除了阻抗器的材料要求以外,同時要保證阻抗器的截面積與管徑的截面積之比要足夠的大。在生產API管等高等級管子時,都要求去除內毛刺,阻抗器只能安放在內毛刺刀體內,阻抗器的截面積相應會小很多,這時採取磁棒的集中扇面布置的效果要好於環形布置。
阻抗器與焊接點的位置距離也影響焊接效率,阻抗器與管內壁的間隙一般取6~15 mm,管徑大時取上限值;阻抗器應與管子同心安放,其頭部與焊接點的間距取10~20 mm,同理,管徑大時取大的值。
第八, 焊接壓力
焊接壓力也是高頻焊接的主要參數。理論計算認為焊接壓力應為100~300MPa,但實際生產中這個區域的真實壓力很難測量。一般都是根據經驗估算,換算成管子邊部的擠壓量。不同的壁厚取不同的擠壓量,通常2mm以下的擠壓量為:3~6 mm時為0.5t~ t;6~10 mm時為0.5t;10 mm以上時為0.3t~0.5t。
API鋼管生產中,常出現焊縫灰斑缺陷,灰斑缺陷是難熔的氧化物,為達到消除灰斑的目的,寶鋼等廠家多採取了加大擠壓力,增加焊接餘量的方法,6mm以上鋼管的擠壓餘量達0.8~1.0的料厚,效果很好。
高頻焊接常見的問題及其原因,解決方法:
《1》焊接不牢,脫焊,冷疊;
原因:輸出功率和壓力太小;
解決方法:1 調整功率;2 厚料管坯改變坡口形狀;3 調節擠壓力
《2》焊縫兩邊出現波紋;
原因:會合角太大,
解決方法:1 調整導向輥位置;2 調整實彎成型段;3 提高焊接速度
《3》焊縫有深坑和針孔;
原因:出現過燒
解決方法:1 調整導向輥位置,加大會合角;2 調整功率;3提高焊接速度
《4》焊縫毛刺太高;
原因:熱影響區太寬
解決方法:1提高焊接速度;2 調整功率;
《5》夾渣;
原因:輸入功率過大,焊接速度太慢
解決方法:1 調整功率;2 提高焊接速度
《6》焊縫外裂紋;
原因:母材質量不好;受太大的擠壓力
解決方法:1 保證材質;2 調整擠壓力
《7》錯焊,搭焊
原因:成型精度差;
解決方法:調整機組成型模輥;
高頻焊接是焊管生產中的關鍵工序,由於系統性的影響因素,至今還需要我們在生產第一線中探索經驗,每一台機組都有它的設計和製造差別,每一個操作者也有不同的習慣,也就是說有,機組和人一樣,都有自己的個性。我們將這些資料提供給大家,是為了讓我們更好得了解高頻焊接的基本原理,從而更好地結合自己的生產實踐,總結出適合於自己機組的操作規程。
附:API標准關於管子焊接質量的規定
(美國石油學會)API—5L/5CT焊縫標准
API-5CT標准規定:
10.5 壓扁試驗
10.5.4 第1組試驗方法----非整體熱處理的管子
試樣應在平行板間壓扁。在每組壓扁試樣中,一個試樣應在90°位置壓扁,另一個試樣應在0°位置壓扁。試樣應壓扁至相對管壁相接觸為止。在板間距離不小於表 C.23或表E.23規定值時,試樣任何部位不應產生裂紋或斷裂。在整個壓扁過程中,不應出現不良的組織結構、焊縫未熔合、分層、金屬過燒或擠出金屬等現象。
10.5.5 第1和第2組試驗方法----整體熱處理的管子
試樣應在平行板間壓扁,且焊縫處於彎曲程度最大處。由檢驗人員決定,還應使焊縫位於距彎曲程度最大處90°位置進行壓扁試驗。試樣應壓扁至相對管壁相接觸為止。在板間距離不小於表C.23或表E.23規定值時,試樣任何部位不應產生裂紋或斷裂。在整個壓扁過程中,不應出現不良的組織結構、焊縫未熔合、分層、金屬過燒或擠出金屬等現象。
API-5L標准規定:
6.2.2 壓扁試驗驗收標准
壓扁試驗驗收標准如下:
a) 鋼級高於A25級的電焊鋼管以及規格小於12-3/4的激光焊鋼管。
1)對於規定壁厚等於或大於0.500in(12.7mm),且鋼級為X60或更高鋼級的鋼管原始外徑(OD)的三分之二的焊縫應不出現開裂。對所有其他鋼級和規定壁厚的鋼管,壓扁到鋼管原始外徑的1/2時,焊縫不應出現開裂。
2)對D/t大於10的鋼管繼續壓扁到鋼管原始外徑(OD)的三分之一,除焊縫之外不應出現焊縫或斷裂。
3)對所有D/t的鋼管,繼續壓扁,直到鋼管的管壁貼合為止,在整個壓扁試驗過程中,不得出現分層或過燒金屬的現象。
b)對A25鋼級的焊接鋼管,壓扁到鋼管原始外徑的四分之三焊縫應不出現開裂。繼續壓扁到到鋼管原始外徑的60%,除焊縫之外的金屬應不出現焊縫或斷裂。
注1:對於所有壓扁試驗,規格小於2-3/8的鋼管,焊縫包括熔合線兩側各1/4in(6.4mm)范圍內的金屬,規格不小於2-3/8的鋼管焊縫包括熔合線兩側各1/2in(12.7mm)范圍內的金屬
注2:對於經過熱減徑機的電焊鋼管,在熱減徑前進行壓扁試驗,壓扁試驗的原始外徑由製造廠確定。其他情況下,原始外徑為規定外徑。
表C.23 電焊管壓扁試驗板間距離
鋼級 D/t 最大板間距離mm
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子規定外徑,mm。
t——管子規定壁厚,mm。
(a) 如果壓扁試樣失效於12或6點位置,壓扁試驗應繼續進行,直到剩餘試樣在3或9點位置失效。12或6點位置上的早期失效不應作為拒收依據。
(b) 見A.5(SR11)。壓扁應至少為0.85D。
表E.23 電焊管壓扁試驗板間距離
鋼級 D/t 最大板間距離in
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子規定外徑,in。
t——管子規定壁厚,in。
(a)如果壓扁試樣失效於12或6點位置,壓扁試驗應繼續進行,直到剩餘試樣在3 或9點位置失效。12或6點位置上的早期失效不應作為拒收依據。
(b)見A.5(SR11)。壓扁應至少為0.85D。
㈤ 為什麼焊管機組焊管機組要進行調整
因為在生產過程中,機台會遇到偏差的問題,以及拉傷管子。這是需要調機師傅進行調整,才能生存好的鋼管。
㈥ 高頻焊管機生產時怎樣判斷帶鋼料硬
在線焊縫質量快速檢測
1.1 上料檢測
對進入焊管成型機組的鋼帶重點檢測其尺寸與板邊質量,確保板寬、壁厚及入料方向等滿足工藝要求。一般使用數顯卡尺、數顯壁厚千分尺及捲尺等工具快速測量板寬及壁厚等尺寸,應用比對圖譜或專用工具快速檢測板邊質量。一般根據爐號或分卷號確定檢測頻次,並對板料首尾等部位測量並記錄。如條件允許,還須對鋼帶邊緣進行探傷,以確保鋼帶及其加工邊緣無分層或裂紋等缺陷。同時,邊緣加工好的原料,運送到焊管生產線時也必須防止鋼帶邊緣的機械損傷。
1.2 成型檢測
板帶成型的關鍵是使帶鋼邊緣不產生過大的拉應力,以免形成波浪彎。成型機組安裝調試中的相關檢測項目包括成型、精整及定徑各輥型尺寸與間隙、帶鋼周長變數、帶邊捲曲、焊接角、板邊對接方式、擠壓量等的快速檢測與記錄等。常使用數顯卡尺、角度尺、塞尺、捲尺、皮尺及相應專用工具等進行快速測定,確保各控制變數處於生產工藝規范要求的范圍內。
1.3 焊前檢測
調整好成型機組各項參數並記錄後,焊前檢測主要確定內外毛刺刀具、阻抗器及感應器等的規格與位置,成型液狀態及氣壓數值等環境因素,以滿足工藝規范確定的開機要求。相關測量主要根據操作者經驗,輔以捲尺或專用器具,快速測定並記錄。
1.4 焊中檢測
焊接中重點關注焊接功率、焊接電流電壓、焊接速度等主要參數的數值。一般由機組中相應感測器或輔助儀器直接讀取並記錄。按相關操作規程,保證主要焊接參數符合工藝規范要求即可。
1.5 焊後檢測
焊後檢測需要關注焊接火花狀態及焊後毛刺形貌等焊接現象,一般焊接時擠壓輥處焊縫顏色、火花狀態、內外毛刺形貌、去毛刺後熱區顏色及壁厚變數等均屬重點檢測項目,主要依據操作者實際生產經驗,肉眼監測並輔以相關比對圖譜快速測定並記錄,並保證相關參數滿足工藝規范要求。
1.6 金相檢測
相比其他檢測環節,因金相檢測難以在現場進行,一般耗時較長,直接影響了生產效率,因此,優化金相檢驗流程,提高檢驗效率,實現快速測評具有重要的現實意義。
1.6.1 取樣環節優化
在取樣點的選擇上,一般有成品管取樣、飛鋸點取樣及定徑前取樣等,考慮到冷卻定徑對焊縫質量影響不大,建議定徑前取樣。在取樣方式上,一般採用氣割、金屬鋸或手動砂輪片等方式,因定徑前取樣空間狹小,建議優選電動砂輪片切取試樣。對於厚壁管,氣割取樣效率更高,各公司亦可設計相關專用工具提高取樣效率。在取樣尺寸上,為減小檢測面積以提高制樣效率,在確保焊縫完整的前提下,試樣一般取20 mm×20 mm及以上尺寸。對於正置式顯微鏡,取樣時應盡可能保證檢測面與其對面平行,以便進行聚焦測量。
1.6.2 制樣環節優化
制樣環節一般採用手工磨拋金相試樣,因絕大多數焊管硬度較低,可選用60目、200目、400目和600目的砂紙水磨後,用3.5 μm金剛石噴霧顆粒帆布粗拋,去除肉眼可見劃痕,再使用水或酒精潤濕的呢子拋光布精拋,得到潔凈光亮檢驗面後,直接用電吹風熱風吹乾完成。在相關設備狀況良好,砂紙等准備得當,各工序銜接便捷的情況下,5 min內即可完成制樣。
1.6.3 腐蝕環節優化
焊縫金相檢驗主要檢測焊縫區域熔合線中心寬度及流線角度,實踐中採用過飽和苦味酸水溶液加熱至70℃左右腐蝕至光亮消除即可取出,並在水流中用脫脂棉擦除腐蝕面污漬後,再用酒精沖洗並用電吹風熱風吹乾。為提高配製效率,可將苦味酸倒入大燒杯中加水及少許洗潔精或洗手液(起表面活性作用)攪拌均勻後製成常溫下過飽和水溶液 (底部有明顯結晶沉澱)放置備用,實際使用時,攪拌泛起底部沉澱後,將懸浮液倒入加熱用小燒杯即可使用。為提高腐蝕效率,試驗前可根據生產送樣時間點,提前將腐蝕液加熱至規定溫度並保溫待用,如需進一步加快腐蝕,可提高加熱溫度至85℃左右。操作熟練的試驗員在1 min內即可完成腐蝕工序。如要求組織及晶粒度的測量,則也可選用4%硝酸酒精溶液快速腐蝕。
1.6.4 檢測環節優化
㈦ 想知道焊管設備為什麼會出現漏焊管現象
原因比較多。比如:焊qiang位置沒有對准;氬氣不多,焊火不集中;鋼管沒有清理干凈;焊管設備的電流沒有調節好等等都會造成漏焊管現象,希望【揚州新飛翔焊管機械】的回答對你有幫助。
㈧ 不銹鋼焊管機焊縫時不時出現缺口怎麼解決
冠傑科技為你解答:焊管機經過長期的工作,會出現以下九點常見焊接缺陷:版
1、夾雜物(黑色權過燒氧化物)
2、預弧(白色過燒氧化物)
3、融合不足(開縫)
4、邊部熔合不足(邊緣波浪)
5、中部熔合不足(中部冷焊)
6、粘焊(冷焊)
7、鑄焊(脆性焊)
8、氣孔(針孔)
9、跳焊
㈨ 焊管機的原理是什麼
原料(帶鋼卷)-上料-剪切對焊(手工焊)-儲料倉-喂入成型-高頻焊接-去外毛刺-冷卻水套-定徑矯直-飛鋸切斷-落料(人工堆垛包紮)