❶ 目前國內焊管用什麼樣成型法
焊管機組成型技術的發展按成型方法可以粗略地劃分為三個階段:早期的輥式成型技術;20世紀60年代後期的排輥成型技術;80年代後期的FFX成型技術。
❷ 直縫高頻電阻焊管成型工藝有哪些
1.在高頻焊管生產過程中 ,如何確保產品質量符合技術標準的要求和顧客的需要 ,則要對鋼管生產過程中影響產品質量的因素進行分析。通過對本公司 Φ76mm高頻焊接鋼管機組某月份不合格品的統計 ,認為在生產過程中影響鋼管產品質量的要素有原材料、焊接工藝、軋輥調節、軋輥材質、設備故障、生產環境及其它原因等七個方面。其中原材料占 32 .44% ,焊接工藝占 24 .85 % ,軋輥調節占 22 .72 % ,三者相加占 80 .01 % ,是主要環節。而軋輥材質、設備故障、生產環境及其它原因等四個方面的要素 ,對鋼管產品質量的影響佔19.99% ,屬相對次要環節。因此 ,在鋼管生產過程中 ,應對原材料、焊接工藝和軋輥調節三個環節進行重點控制。
2 原材料對鋼管焊接質量的影響 影響原材料質量的因素主要有鋼帶力學性能不穩定、鋼帶的表面缺陷及幾何尺寸偏差大等三個方面 ,因此 ,應從這三個方面進行重點控制。
1)鋼帶的力學性能對鋼管質量的影響焊接鋼管常用的鋼種為碳素結構鋼 ,主要的牌號有 Q195、Q215、Q235 SPCC SS400 SPHC等多種 。鋼帶屈服點和抗拉強度過高 ,將造成鋼帶的成型困難 ,特別是管壁較厚時 ,材料的回彈力大 ,鋼管在焊接時存在較大的變形應力 ,焊縫容易產生裂縫。當鋼帶的抗拉強度超過 635 MPa、伸長率低於 10 %時 ,鋼帶在焊接過程中焊縫易產生崩裂。當抗拉強度低於 30 0MPa時 ,鋼帶在成型過程中由於材質偏軟 ,表面容易起皺紋。可見 ,材料的力學性能對鋼管的質量影響很大 ,應從材料強度方面對鋼管質量進行有效地控制。
)鋼帶表面缺陷對鋼管質量的影響鋼帶表面缺陷常見的有鐮刀彎、波浪形、縱剪啃邊等幾種 ,鐮刀彎和波浪形一般出現在冷軋鋼帶軋制過程中 ,是由壓下量控制不當造成的。在鋼管成型過程中 ,鐮刀彎和波浪形會引起帶鋼的跑偏或翻轉 ,容易使鋼管焊縫產生搭焊 ,影響鋼管的質量。鋼帶的啃邊 (即鋼帶邊緣呈現鋸齒狀凹凸不平的現象 ) ,一般出現在縱剪帶上 ,產生原因是縱剪機圓盤刀刃磨鈍或不鋒利造成的。由於鋼帶的啃邊 ,時時出現局部缺肉 ,使鋼帶在焊接時易產生裂紋、裂縫而影響焊縫質量的穩定性。
3)鋼帶幾何尺寸對鋼管質量的影響當鋼帶的寬度小於允許偏差時 ,焊接鋼管時的擠壓力減小 ,使得鋼管焊縫處焊接不牢固 ,出現裂縫或是開口管 ;當鋼帶的寬度大於允許偏差時 ,焊接鋼管時的擠壓力增加 ,在鋼管焊縫處出現尖嘴、搭焊或毛刺等焊接缺陷。所以 ,鋼帶寬度的波動 ,不但影響了鋼管外徑的精度 ,而且嚴重影響了鋼管的表面質量。對要求同一斷面壁厚差不超過規定值的鋼管 ,即要求壁厚均勻程度高的鋼管 ,鋼帶厚度的波動 ,會將同一卷鋼帶厚度差超出的允許值轉移到成品鋼管的壁厚差 ,使大批鋼管厚度超出允許偏差而判廢。厚度的波動不僅影響成品鋼管的厚度精度 ,同時 ,由於鋼帶的厚薄不一 ,使鋼管在焊接時 ,擠壓力和焊接溫度不穩定 ,造成了鋼管焊接時焊縫質量不穩定。此外 ,由於鋼材內部存在著夾層、雜質、沙眼等材料缺陷 ,也是影響鋼管質量的一個重要因素。因此 ,在鋼帶焊接前 ,要檢查每卷鋼帶的表面質量和幾何尺寸 ,對鋼帶質量不符合標准要求的 ,不要進行生產 ,以免造成不必要的損失。
3 高頻焊接對鋼管質量的影響 在鋼管高頻焊接過程中 ,焊接工藝及工藝參數的控制、感應圈和阻抗器位置的放置等對鋼管焊縫的焊接質量影響很大。
1) 鋼管焊縫間隙的控制鋼帶進入焊管機組經成型輥成型、導向輥定向後 ,形成有開口間隙的圓形鋼管管坯 ,調整擠壓輥的擠壓量 ,使得焊縫間隙控制在 1~ 3mm,並使焊口兩端保持齊平。焊縫間隙控製得過大 ,會使焊縫焊接不良而產生未熔合或開裂 ;焊縫間隙控製得過小 ,由於熱量過大 ,造成焊縫燒損 ,熔化金屬飛濺 ,影響焊縫的焊接質量。
2) 高頻感應圈位置的調控感應圈應放置在與鋼管同一中心線上 ,感應圈前端距擠壓輥中心線的距離 ,在不燒損擠壓輥的前提下 ,應視鋼管的規格而盡量接近。若感應圈距擠壓輥較遠時 ,有效加熱時間較長 ,熱影響區寬 ,使得鋼管焊縫的強度下降或未焊透 ;反之感應圈易燒毀擠壓輥。
3) 阻抗器位置的調控阻抗器是一個或一組焊管專用磁棒 ,阻抗器的截面積通常應不小於鋼管內徑截面積的 70 % ,其作用是使感應圈、管坯焊縫邊緣與磁棒形成一個電磁感應迴路 ,產生鄰近效應 ,渦流熱量集中在管坯焊縫邊緣附近 ,使管坯邊緣加熱到焊接溫度。阻抗器應放置在 V形區加熱段 ,且前端在擠壓輥中心位置處 ,使其中心線與管筒中心線一致。如阻抗器位置放置的不好 ,影響焊管的焊接速度和焊接質量 ,使鋼管產生裂紋。
4)高頻焊接工藝參數——輸入熱量的控制高頻電源輸入給鋼管焊縫部位的熱量稱為輸入熱量。將電能轉換成熱能時 ,其輸入熱量的公式為 :
Q=KI2 Rt (1)
式中 Q—輸入管坯的熱量 ;K—能量轉換效率 ; I—焊接電流 ;R—迴路阻抗 ; t—加熱時間。
加熱時間 :t=Lv (2)
式中 L—感應圈或電極頭前端至擠壓輥的中心距 ;v—焊接速度。
當高頻輸入的熱量不足且焊接速度過快時 ,使得被加熱的管體邊緣達不到焊接的溫度 ,鋼鐵仍保持其固態組織而焊接不上 ,形成了未熔合或未焊透的裂紋 ;當高頻輸入熱量過大且焊接速度過慢時 ,使得被加熱的管體邊緣超過了焊接溫度 ,容易產生過熱甚至過燒 ,使焊縫擊穿 ,造成金屬飛濺而形成縮孔。從公式 (1)、(2)中可知 ,可以通過調整高頻焊接電流 (電壓 )或調整焊接速度的方法 ,來控制高頻輸入熱量的大小 ,從而使鋼管的焊縫既要焊透又不焊穿 ,獲得焊接質量優良的鋼管
4 軋輥調節對鋼管質量的影響 從鋼管廢品因果分析圖可看出 ,軋輥調節是屬鋼管的操作工藝。在生產過程中 ,軋輥損壞或磨損嚴重時 ,在機組上需要更換部分軋輥 ,或某個品種連續生產了足夠的數量 ,需要更換整套的軋輥。這時都應對軋輥進行調節 ,以獲得良好的鋼管質量。如軋輥調節得不好 ,易造成鋼管管縫的扭轉、搭焊、邊緣波浪、鼓包及管體表面有壓痕或劃傷 ,鋼管橢圓度大等缺陷 ,因此 ,換輥時應掌握軋輥調節的技巧。
1 )更換鋼管規格 ,一般都對整套軋輥進行更換。軋輥調節的方法是 :用鋼絲從機組入口到出口拉一條中心線 ,進行調整 ,使各架孔型在一條中心線上 ,並使成型底線符合技術要求。更換軋輥規格後 ,首先對成型輥、導向輥、擠壓輥、定徑輥作一次全面的調節 ,然後重點對成型輥的封閉孔型、導向輥、擠壓輥調節。
2 )導向輥的作用是控制鋼管的管縫方向和管坯底線高度 ,緩解邊緣延伸 ,控制管坯邊緣回彈 ,保證管縫平直而不扭轉進入擠壓輥。如導向輥調節不好 ,在鋼管的焊接過程中 ,易造成鋼管管縫的扭轉、搭焊、邊緣波浪等焊接缺陷。
3 )擠壓輥是焊管機組的關鍵設備 ,其作用是將邊緣被加熱到焊接溫度的管體在擠壓輥的擠壓力作用下完成壓力焊接。在生產過程中 ,要控制擠壓輥開口角的大小。擠壓力過小時 ,焊縫金屬強度下降 ,受力後會產生開裂 ;擠壓力過大時 ,降低焊接強度 ,而且使外毛刺量增加 ,易造成搭焊等焊接缺陷。
4 )在焊管機組慢速起動的過程中 ,應密切注意各部位軋輥的轉動情況 ,隨時調節軋輥 ,以確保焊管的焊接質量和工藝尺寸符合規定的要求。
❸ 焊管(焊接鋼管)加工工藝流程
帶鋼(卷板)開卷——帶鋼(卷板)平整——端部剪切及焊接——活套——版成形——焊接成型權——內外焊珠去除——預校正——感應熱處理——定徑及校直——渦流檢測——切斷——水壓檢查——酸洗——最終檢查——包裝處理——出廠銷售
❹ 直縫焊管的成型工藝
大口徑直縫焊管主要生產流程說明:
1. 板探:用來製造大口徑埋弧焊直縫鋼管的鋼板進入生產線後,首先進行全板超聲波檢驗;
2. 銑邊:通過銑邊機對鋼板兩邊緣進行雙面銑削,使之達到要求的板寬、板邊平行度和坡口形狀;
3. 預彎邊:利用預彎機進行板邊預彎,使板邊具有符合要求的曲率;
4. 成型:在JCO成型機上首先將預彎後的鋼板的一半經過多次步進沖壓,壓成J形,再將鋼板的另一半同樣彎曲,壓成C形,最後形成開口的O形
5. 預焊:使成型後的直縫焊鋼管合縫並採用氣體保護焊(MAG)進行連續焊接;
6. 內焊:採用縱列多絲埋弧焊(最多可為四絲)在直縫鋼管內側進行焊接;
7. 外焊:採用縱列多絲埋弧焊在直縫埋弧焊鋼管外側進行焊接;
8. 超聲波檢驗Ⅰ:對直縫焊鋼管內外焊縫及焊縫兩側母材進行100%的檢查;
9. X射線檢查Ⅰ:對內外焊縫進行100%的X射線工業電視檢查,採用圖象處理系統以保證探傷的靈敏度;
10. 擴徑:對埋弧焊直縫鋼管全長進行擴徑以提高鋼管的尺寸精度,並改善鋼管內應力的分布狀態;
11. 水壓試驗:在水壓試驗機上對擴徑後的鋼管進行逐根檢驗以保證鋼管達到標准要求的試驗壓力,該機具有自動記錄和儲存功能;
12. 倒棱:將檢驗合格後的鋼管進行管端加工,達到要求的管端坡口尺寸;
13. 超聲波檢驗Ⅱ:再次逐根進行超聲波檢驗以檢查直縫焊鋼管在擴徑、水壓後可能產生的缺陷;
14. X射線檢查Ⅱ:對擴徑和水壓試驗後的鋼管進行X射線工業電視檢查和管端焊縫拍片;
15. 管端磁粉檢驗:進行此項檢查以發現管端缺陷;
16. 防腐和塗層:合格後的鋼管根據用戶要求進行防腐和塗層。
❺ 焊管的工藝,都有什麼特點
焊管流程中相關設備性能能力介紹
1.開卷機:板寬為400-1250mm,可拆內徑¢610-760mm,外徑¢1200-1800(max2000mm)mm,材質≤X70(標准APISpec5L)
2.夾送矯平機:鋼帶寬度400-1250mm;鋼帶厚度4-14mm;
3.剪焊機:鋼帶寬度400-1250mm,鋼帶厚度4-14mm,材質X70;
4.水平螺旋活套:進料圓直徑¢12000mm,出料圓直徑¢4600mm,出料圓上帶鋼螺旋角5.363°,入口速度40-180m/min,出口速度8-25m/min;
5.精矯平機:鋼帶寬度430-1250mm,鋼帶厚度4-14mm,矯平輥直徑¢180mm,輥身長1350mm。
6.圓盤切邊機:刀盤直徑¢480mm,剪切方式拉剪;
7.成型機:鋼管外徑¢127-¢381(5〃-15〃)鋼管壁厚4-14mm,鋼管長度6-14m,高頻直縫連接焊輥壓冷彎(W成型)
8.焊接機組:鋼管直徑¢127-¢381mm,壁厚4-14mm.
9.定徑機組:鋼管直徑¢127-¢381mm,壁厚4-14mm;
10.滾壓切割:切割范圍¢127-¢381,壁厚4-14mm,切割速度30m/min。
11.平頭倒棱機:加工范圍¢127-¢381,壁厚4-14mm,處理能力2根/min
12.靜水壓試驗機:適應范圍¢127-¢381,最大試驗壓力25Mpa,處理速度1.5根/min,
13.在線超聲波探傷機:適應范圍,管徑¢127-¢381,垂直線性優於3%,水平線性優於1%,動態范圍≥35dB,缺陷檢出率≥95%,靈敏度餘量優於35dB.
14.離線超聲波探傷機:適應范圍,管徑¢127-¢381,垂直線性優於3%,水平線性優於1%,動態范圍≥35dB,缺陷檢出率≥95%,靈敏度餘量優於35dB.,
15.中頻熱處理器:功率600KW2台,加熱溫度:500℃-1200℃,頻率1KHZ-2KHZ,速度6-25m/min,加熱寬度≥20mm,材質X70,套管J55。
16.屏顯式液壓萬能試驗機:WEW-600C,採用計算機控制,適用於金屬材料的拉伸彎曲,壓縮(壓扁),剪切等試驗最大載荷600KW。
17.擺錘式沖擊試驗試驗機:JB-300B,最大沖擊能量300J。
❻ 鋼鐵成型的方法有哪些
1.單半徑成型法
單半徑輥式成型法有圓周彎曲成型法、邊緣彎曲成型法和中心彎曲成型法三種,單半徑成型法是:孔型由一個單半徑組成,成型機水平輥、立輥交替布置,帶鋼從水平輥、立輥中間經過,逐漸將平板彎曲成圓管。
2.圓周彎曲成型法
帶鋼整個寬度方向上同時彎曲變形,各架成型的彎曲半徑逐漸減小;邊緣彎曲成型法是從帶鋼邊部開始彎曲,彎曲半徑恆定,逐步增加變形角,以減小帶鋼中間部分的寬度,直到鋼帶成圓封閉;中心彎曲成型法是從帶鋼中心部分開始彎曲變形,彎曲半徑恆定,逐漸向兩側邊緣擴展,直到成圓封閉。
3.雙半徑成型法(綜合彎曲成型法)
採用兩種以上的基本變形法進行組合變形,但應用較多的是邊緣成型法+圓周成型法。管坯邊緣與圓周綜合變形的成型法,它以擠壓輥孔型半徑或成品管半徑為邊緣彎曲半徑,將鋼帶邊緣彎曲到某一變形角,並在以後各成型架次基本保持不變,而帶鋼中間部分的彎曲成型則按圓周彎曲成型法進行變形分配。該方法成型過程較穩定,變形均勻,邊緣相對伸長小,成型質量好。
4.W成型法
粗成型段第1架或前幾架採用W反彎彎曲成型,帶鋼邊緣部分正向彎曲,中間部分反向彎曲,增加了邊緣部分彎曲弧長,使邊緣變形充分,管坯在成型過程中高度差較小,使邊緣相對延伸大為減小,避免了邊緣縱向伸長引起的鼓包,同時縮小了圓周速度差。
5.排輥成型
為了避免一般連續式成型機組上帶鋼成型時發生的帶鋼邊緣相對延伸和縱向回彈變形,在水平成型輥之間連續配置許多小輥,以代替一般的水平成型輥,使帶鋼邊緣能夠沿一條平滑的自然變形路程進行。這些裝在一個籠式框架里的小輥就成為排輥。一般排輥式成型機由1架預彎輥、1套排輥裝置、2架精軋輥組成。適用於較薄壁鋼管的成型。
6.CTA成型
是排輥成型的一種。1987年由奧地利鋼鐵聯合公司研製。圓管成型系統由2個通用的預彎機架、1個彎邊機架和1個專門的CTA裝置4部分組成。CTA裝置由許多排輥連續作用,鋼帶穿過成型機後被連續、光滑的軋製成開口約為32°的開縫管,即排輥成型工藝,最後再進入精軋機架,在上輥帶有導向環的精軋孔型中完成精成型。機架調整自動化程度高,是直緣成型技術的一種方法。前三部分均可共用,可節省換輥時間,減少軋輥消耗,提高生產效率。
7.FF成型
20世紀80年代中期,由日本中田機械製造所研製開發。其粗成型段永一套共用冷彎成型輥即可完成機組所生產的各種規格。精成型段與傳統精成型機架相同。粗成型縱向變形採用下山法,水平機架第一架為W孔型,以後各架為雙半徑孔型。邊緣及其附近的彎曲採用具有漸開線曲率的成型輥來實現,即不同外徑的鋼管用同一套成型輥的不同曲率半徑的部位進行軋制。水平機架和立輥機架都由3個自由度,使管坯在成型過程中始終保持邊緣彎曲良好,中部彎曲藉助邊緣彎曲力和中間助力輥來實現。該法管坯變形壓力小,成型質量好易於焊接。
8.FFX成型(柔性成型)
由日本中田機械製造研究所在FF成型技術的基礎上改進的新技術。其變形重點在粗成型段的邊部,使邊部彎曲達到鋼帶寬度的30%左右,同時在粗成型段均勻地完成鋼帶全部變形量的80%以上,且粗成型段每架成型輥孔型均採用一組連續變化的多曲率曲線,這段曲線上含有所能生產焊管的孔型,使粗成型只要一套成型輥就可以生產不同規格的產品,減少了成型架次和換輥時間。
9.TPF三點彎曲成型
根據直縫焊管變性規律採用部分成型法,第一道採用「W」成型彎曲帶鋼邊緣;第二道水平輥彎曲帶鋼中部使帶鋼為「U」形;第三道水平輥彎曲「U」形的兩直線邊,使其接近雙半徑截面並送入立輥組隊帶鋼進行圓化變形。
10.UO成型
將鋼板邊部預先按要求彎曲後採用U成型機和O成型機兩次模壓成型,在O成型發生環向的壓縮變形(0.2%~0.4%),使開口管周向殘余應力均勻化。然後將O形管坯焊接後冷擴徑。其特點是產能大,年產能為30~100萬噸,適合單一規模大批量生產,投資較大。
11.JCO成型
漸進式折彎壓力成型首先將鋼板的一半壓成J形,再將鋼板的另一半壓成J形,經多次壓縮後形成C形,最後從中部壓形成開口的O形管坯。然後將O性管環節後冷擴徑。鋼管生產靈活性大,特別適合生產中直徑的厚壁管,且投資較少。
12.RB成型(輥彎成型)
鋼板在三輥和四輥之間經多次滾壓彎曲,最終彎曲成所需的圓筒形狀。該工藝出現較早,多用於生產外徑較大(可達4500mm)、長度較短(3~6m)的壓力容器、結構管及水管,尺寸精度較差,產能較低。
13.螺旋焊管前擺式成型
成型器前鋼帶整體擺動,以調整成型角。機組不設活套,佔地少,但只能間斷生產(卷對卷或對頭停車)。
14.螺旋焊管後擺式成型
成型器後鋼管大橋擺動,以調整成型角。通常設有活套,保證連續生產,佔地較多,設備較多。
❼ 焊管的製作流程是什麼
帶鋼上料,開卷——剪切——對焊——矯平——成型——鋸切——輸出輥道——檢查打包版——焊管入庫 給你個權網站看看上邊有介紹的www.wxddbb.com 希望對你有幫助
❽ 不銹鋼焊管是怎麼生產的,工藝流程
1、原材料檢驗 Raw material inspection
2、分條 Splitting
3、成形 Shaping
4、焊接 Welding
5、切斷 Cutting
6、熱處理 Heat treatment
7、整形 Straightening
8、平端 Plane end
9、渦流探傷 Eddy current
10、水壓試驗 Hydraulic test
11、內拋光 Lnner polishing
12、外拋光 Outer polishing
13、終端檢驗 Terminal test
14、出廠 Delivery
❾ 不銹鋼焊管是怎樣生產的,工藝流程
不銹鋼焊管生產工藝流程圖
1、原材料檢驗 Raw material inspection
2、分條 Splitting
3、成形 Shaping
4、焊接 Welding
5、切版斷 Cutting
6、熱處理 Heat treatment
7、整形 Straightening
8、平端 Plane end
9、渦權流探傷 Eddy current
10、水壓試驗 Hydraulic test
11、內拋光 Lnner polishing
12、外拋光 Outer polishing
13、終端檢驗 Terminal test
14、出廠 Delivery
❿ 高頻焊管生產工藝是怎樣的
高頻焊管生產工藝流程主要取決於產品品種,從原料到成品需要經過一系列工序專,完成這些工藝過程需要屬相應的各種機械設備和焊接、電氣控制、檢測裝置,這些設備和裝置按照不同的工藝流程要求有多種合理布置。
高頻焊管典型流程:縱剪——開卷——帶鋼矯平——頭尾剪切——帶鋼對焊——活套儲料——成型——焊接——清除毛刺——定徑——探傷——飛切——初檢——鋼管矯直——管段加工——水壓試驗——探傷檢測——列印和塗層——成品。