㈠ 儲氫材料有哪些
儲氫合金是指在一定溫度和氫氣壓力下,能可逆地大量吸收、儲存和釋放氫氣的金屬間化合物。
水合物儲存氫氣具有很多的優點:首先,儲氫和放氫過程完全互逆,儲氫材料為水,放氫後的剩餘產物也只有水,對環境沒有污染,而且水在自然界中大量存在並價格低廉;其次,形成和分解的溫度壓力條件相對較低、速度快、能耗少。粉末冰形成氫水合物只需要幾分鍾,塊狀冰形成氫水合物也只需要幾小時;而水合物分解時,因為氫氣以分子的形態包含在水合物孔穴中,所以只需要在常溫常壓下氫氣就可以從水合物中釋放出來,分解過程非常安全且能耗少。因此,研究採用水合物的方式來儲存氫氣是很有意義的,美國、日本、加拿大、韓國和歐洲已經開始了初步的實驗研究和理論分析工作。
㈡ 儲氫合金的概念是什麼
一種新型合金,一定條件下能吸收氫氣,一定條件能放出氫氣:循環壽命性能優異,並可被用於大型電池,尤其是電動車輛、混合動力電動車輛、高功率應用等等。
20世紀60年代,材料王國里出現了能儲存氫的金屬和合金,統稱為儲氫合金(hydrogen storage metal),這些金屬或合金具有很強的捕捉氫的能力,它可以在一定的溫度和壓力條件下,氫分子在合金(或金屬)中先分解成單個的原子,而這些氫原子便「見縫插針」般地進入合金原子之間的縫隙中,並與合金進行化學反應生成金屬氫化物(metal hydrides),外在表現為大量「吸收」氫氣,同時放出大量熱量。而當對這些金屬氫化物進行加熱時,它們又會發生分解反應,氫原子又能結合成氫分子釋放出來,而且伴隨有明顯的吸熱效應。
分類
目前儲氫合金主要包括有鈦系、鋯系、鐵系及稀土系儲氫合金。
主要用途
氫氣分離、回收和凈化材料。
化學工業、石油精製以及冶金工業生產中,通常有大量的含氫尾氣排出,含氫量有些達到50~60%,而目前多是採用排空或者白白的燃燒處理。因此,對這部分加以回收利用,在經濟上有巨大的意義。另外,集成電路、半導體器件、電子材料和光纖等產業中,需要超高純氫體。利用儲氫合金對氫原子有特殊的親和力,而對其他氣體雜質擇優排斥的特性,即利用儲氫合金具有隻選擇吸收氫和捕獲不純雜質的功能,不但可以回收廢氣中的氫,而且可以使氫純度高於 99.9999%以上,價格便宜、安全,具有十分重要的社會效益和經濟意義。
製冷或採暖設備材料。
由於儲氫合金具有在吸氫化學反應時放出大量熱,而在放氫時吸收大量熱的特性,因此,人們可以利用儲氫合金的這種放熱——吸熱循環,可進行熱的儲存和傳輸,製造製冷或採暖設備。美國和日本競相採用儲氫合金製成太陽能和廢熱利用的冷暖房,其原理就是利用儲氫合金在吸氫時的放熱反應和釋放氫時的吸熱反應。我國北京有色金屬研究總院則利用儲氫合金儲放氫過程的吸放熱循環效應,製造了一台可以製冷到77K的製冷機,該機器可用於工業、醫療等行業需要低溫環境的場合。
鎳氫充電電池。
由於目前大量使用的鎳鎘電池(Ni-Cd)中的鎘有毒,使廢電池處理復雜,環境受到污染,因此它將逐漸被用儲氫合金做成的鎳氫充電電池(Ni-MH)所替代。從電池電量來講,相同大小的鎳氫充電電池電量比鎳鎘電池高約1.5~2倍,且無鎘的污染,現已經廣泛地用於移動通訊、筆記本計算機等各種小型攜帶型的電子設備。目前,更大容量的鎳氫電池已經開始用於汽油/電動混合動力汽車上,利用鎳氫電池可快速充放電過程,當汽車高速行駛時,發電機所發的電可儲存在車載的鎳氫電池中,當車低速行駛時,通常會比高速行駛狀態消耗大量的汽油,因此為了節省汽油,此時可以利用車載的鎳氫電池驅動電動機來代替內燃機工作,這樣既保證了汽車正常行駛,又節省了大量的汽油,因此,混合動力車相對傳統意義上的汽車具有更大的市場潛力,世界各國目前都在加緊這方面的研究。
㈢ 簡述儲氫材料的特點與應用前景
儲氫材料的特點與應用前景如下:
1、活化容易;
2、平衡壓力適中且平坦,吸放氫平衡壓差小;
3、抗雜質氣體中毒性能好;
4、適合室溫操作。
儲氫材料一類能可逆地吸收和釋放氫氣的材料。最早發現的是金屬鈀,1體積鈀能溶解幾百體積的氫氣,但鈀很貴,缺少實用價值。
不同儲氫方式的比較:
1、氣態儲氫
氣態儲氫的 缺點:能量密度低;不太安全
2、液態儲氫
液態儲氫的缺點: 能耗高;對儲罐絕熱性能要求高
3、固態儲氫
固態儲氫的優點:體積儲氫容量高;無需高壓及隔熱容器;安全性好,無爆炸危險;可得到高純氫,提高氫的附加值。
常見儲氫材料:
目前儲氫材料有金屬氫化物、碳纖維碳納米管、非碳納米管、玻璃儲氫微球、絡合物儲氫材料以及有機液體氫化物。下面僅就合金、有機液體以及納米儲氫材料三個方面對儲氫材料加以介紹。
1、合金儲氫材料
儲氫合金是指在一定溫度和氫氣壓力下,能可逆的大量吸收、儲存和釋放氫氣的金屬間化合物,其原理是金屬與氫形成諸如離子型化合物、共價型金屬氫化物、金屬相氫化物-金屬間化合物等結合物,並在一定條件下能將氫釋放出來。
2、液態有機物儲氫材料
有機液體氫化物貯氫是藉助不飽和液體有機物與氫的一對可逆反應, 即加氫和脫氫反應來實現的。加氫反應時貯氫,脫氫反應時放氫, 有機液體作為氫載體達到貯存和輸送氫的目的。
3、納米儲氫材料
納米儲氫材料分為兩種方式,一種是將原有的儲氫材料納米化,還有一種就是開發新的納米材料作為儲氫材料。
儲氫合金納米化提高儲氫特性主要表現在以下幾個方面原因:
(1)對於納米尺寸的金屬顆粒,連續的能帶分裂為分立的能級,並且能級間的平均間距增大,使得氫原子容易獲得解離所需的能量;
(2)納米顆粒具有巨大的比表面積,電子的輸送將受到微粒表面的散射,顆粒之間的界面形成電子散射的高勢壘,界面電荷的積累產生界面極化,而元素的電負性差越大,合金的生成焓越負,合金氫化物越穩定。金屬氫化物能夠大量生成,單位體積吸納的氫的質量明顯大於宏觀顆粒;
(3)納米貯氫合金比表面積大,表面能高,氫原子有效吸附面積顯著增多,氫擴散阻力下降,而且氫解反應在合金納米晶的催化作用下反應速率增加,納米晶具有高比例的表面活性原子,有利於反應物在其表面吸附,有效降低了電極表面氫原子的吸附活化能,因而具有高的電催化性能。;
(4)晶粒的細化使其硬度增加,貯氫合金的整體強度隨晶粒尺寸的增加而增強,這對於抗酸鹼及抗循環充放粉化,以及抵抗充放電形成的氧壓對貯氫基體的沖擊大有裨益,並且顯著提高了貯氫合金耐腐蝕性。是一類能可逆地吸收和釋放氫氣的材料。
最早發現的是金屬鈀,1體積鈀能溶解幾百體積的氫氣,但鈀很貴,缺少實用價值。20世紀70年代以後,由於對氫能源的研究和開發日趨重要。
首先要解決氫氣的安全貯存和運輸問題,儲氫材料范圍日益擴展至過渡金屬的合金。如鑭鎳金屬間化合物就具有可逆吸收和釋放氫氣的性質:
每克鑭鎳合金能貯存0.157升氫氣,略為加熱,就可以使氫氣重新釋放出來。LaNi5是鎳基合金,鐵基合金可用作儲氫材料的有TiFe,每克TiFe能吸收貯存0.18升氫氣。其他還有鎂基合金,如Mg2Cu、Mg2Ni等,都較便宜。
儲氫合金的應用方面很多,除了以上介紹的內容外,還在空調與製冷,熱泵、熱-壓感測器、加氫和脫氫反應催化劑等方面都可得到應用。
㈣ 儲氫合金都包括哪些金屬
主要包括元素周期表中鎳附近的金屬,如鉑、銠等。
㈤ 儲氫合金是一類能夠大量吸收___,並與___結合成的材料.
儲氫合金是一類能夠大量吸收氫氣,並與氫氣結合成的材料.
故答案為:氫氣;氫氣.
㈥ 儲氫合金的其他資料
某些金屬具有很強的捕捉氫的能力,在一定的溫度和壓力條件下,這些金屬能夠大量「吸收」氫氣,反應生成金屬氫化物,同時放出熱量。其後,將這些金屬氫化物加熱,它們又會分解,將儲存在其中的氫釋放出來。這些會「吸收」氫氣的金屬,稱為儲氫合金。
儲氫合金的儲氫能力很強。單位體積儲氫的密度,是相同溫度、壓力條件下氣態氫的1000倍,也即相當於儲存了1000個大氣壓的高壓氫氣。
由於儲氫合金都是固體,既不用儲存高壓氫氣所需的大而笨重的鋼瓶,又不需存放液態氫那樣極低的溫度條件,需要儲氫時使合金與氫反應生成金屬氫化物並放出熱量,需要用氫時通過加熱或減壓使儲存於其中的氫釋放出來,如同蓄電池的充、放電,因此儲氫合金不愧是一種極其簡便易行的理想儲氫方法。
目前研究發展中的儲氫合金,主要有鈦系儲氫合金、鋯系儲氫合金、鐵系儲氫合金及稀土系儲氫合金。
儲氫合金不光有儲氫的本領,而且還有將儲氫過程中的化學能轉換成機械能或熱能的能量轉換功能。儲氫合金在吸氫時放熱,在放氫時吸熱,利用這種放熱-吸熱循環,可進行熱的儲存和傳輸,製造製冷或採暖設備。
儲氫合金還可以用於提純和回收氫氣,它可將氫氣提純到很高的純度。例如,採用儲氫合金,可以以很低的成本獲得純度高於99.9999%的超純氫。
儲氫合金的飛速發展,給氫氣的利用開辟了一條廣闊的道路。
儲氫合金,當其用於電池,具有高放電(功率)性能和優異的放電性能,此外,裂化很少,循環壽命生能優異,並可被用於大型電池,尤其是電動車輛、混合動力電動車輛、高功率應用等等。該儲氫合金具有伴隨著儲氫容量(H/M)變化的相變,並且當其儲氫容量 (H/M)落入0.3~0.7或0.4~0.6范圍內時,該儲氫合金處於單一相或接近單一相的狀態。
㈦ 儲氫材料有哪些高中
主要有:
1、鎂系貯氫合金。主要有鎂鎳、鎂銅、鎂鐵、鎂鈦等合金。具有貯氫能力大(可達材料自重的5.1%~5.8%)、價廉等優點,缺點是易腐蝕所以壽命短,放氫時需要250℃以上高溫。
2、稀土系貯氫合金。主要是鑭鎳合金,其吸氫性好,容易活化,在40℃以上放氫速度好,但成本高。
氫
是一種化學元素,元素符號H,在元素周期表中位於第一位。氫通常的單質形態是氫氣,無色無味無臭,是一種極易燃燒的由雙原子分子組成的氣體,氫氣是最輕的氣體。醫學上用氫氣來治療疾病。
氫氣的爆炸極限為4.0~74.2%(氫氣的體積占混合氣總體積比)。