⑴ 鈦合金都有哪些分類類型
鈦是同素異構體,熔點為1668℃,在低於882℃時呈密排六方晶格結構,稱為α鈦;在882℃以上呈體心立方晶格結構,稱為β鈦。利用鈦的上述兩種結構的不同特點,添加適當的合金元素,使其相變溫度及相分含量逐漸改變而得到不同組織的鈦合金(titaniumalloys)。室溫下,鈦合金有三種基體組織,鈦合金也就分為以下三類:α合金,(α+β)合金和β合金。中國分別以TA、TC、TB表示。
α鈦合金
它是α相固溶體組成的單相合金,不論是在一般溫度下還是在較高的實際應用溫度下,均是α相,組織穩定,耐磨性高於純鈦,抗氧化能力強。在500℃~600℃的溫度下,仍保持其強度和抗蠕變性能,但不能進行熱處理強化,室溫強度不高。
β鈦合金
它是β相固溶體組成的單相合金,未熱處理即具有較高的強度,淬火、時效後合金得到進一步強化,室溫強度可達1372~1666MPa;但熱穩定性較差,不宜在高溫下使用。
α+β鈦合金
它是雙相合金,具有良好的綜合性能,組織穩定性好,有良好的韌性、塑性和高溫變形性能,能較好地進行熱壓力加工,能進行淬火、時效使合金強化。熱處理後的強度約比退火狀態提高50%~100%;高溫強度高,可在400℃~500℃的溫度下長期工作,其熱穩定性次於α鈦合金。
三種鈦合金中最常用的是α鈦合金和α+β鈦合金;α鈦合金的切削加工性最好,α+β鈦合金次之,β鈦合金最差。α鈦合金代號為TA,β鈦合金代號為TB,α+β鈦合金代號為TC。
鈦合金按用途可分為耐熱合金、高強合金、耐蝕合金(鈦-鉬,鈦-鈀合金等)、低溫合金以及特殊功能合金(鈦-鐵貯氫材料和鈦-鎳記憶合金)等。典型合金的成分和性能見表。
熱處理鈦合金通過調整熱處理工藝可以獲得不同的相組成和組織。一般認為細小等軸組織具有較好的塑性、熱穩定性和疲勞強度;針狀組織具有較高的持久強度、蠕變強度和斷裂韌性;等軸和針狀混合組織具有較好的綜合性能。
⑵ 鈦合金線材表面黑黑的塗層是什麼,是經過怎樣的表面處理 熱處理過程中怎麼去除
一般為陽極氧化
⑶ 塗層分類
一、常見塗層種類及其性能和應用范圍
塗層材料氮化鉻(CrN)
氮化鈦(TiN)
碳氮化鈦(TiCN)
氮化鋁鈦+碳化鎢
碳膜
硬度
HV
1700
2200
3000
3000
摩擦系數0.5
0.4
0.4
0.1
內應力-1.5
-2.5
-4.0
-1.7
處理溫度(℃)
400
450
450
450
耐氧化溫度(℃)
700
600
750
850
鍍膜厚度(微米)
1~6+
1~4
1~4
鍍膜顏色銀白色
金黃色
灰色
灰黑色
鍍膜結構單層膜
單層膜
多層膜
多層膜
特點
附著性好、耐氧化、
耐腐蝕
應用范圍最廣泛
高硬度、耐磨耗、
韌性良好
綜合了TiAlN
和
WC/C
兩種特性,
確保加工品質
應用范圍
適於切削銅類金
屬、成型、膜具及
零件,較傳統鍍鉻
耐磨,並可防止塑
料射出、壓鑄粉末
燒結等黏著沾粘現
象。
車、銑刀片、鑽頭、
銑刀、絲攻、切齒
刀工具、沖棒、成
型模具、沖壓模、
射出及壓鑄模具配
件、耐磨耗零件、
機械部件、裝飾品
均可適用。是切削
鐵金屬、塑料成型
模具以及抗磨耗工
件的良好選擇。
適用於需要高速切
削、高進給且切削
和成型刃口處常受
沖擊的切割、成型、
沖剪工具,比TiN
更具耐磨性和高溫
穩定性。但需要注
意被鍍材的材質及
表明狀況。
適合高速、高硬度
材料切削。鍍上此
膜層的高速鋼與鎢
鋼的工具可以有效
保護切刃的磨耗亦
使切屑順利排出,
能增進鑽孔攻牙及
鋼材鋁合金乾式切
削的效果與效率
塗層材料碳化鈦(TiC)
碳化鎢碳膜
(WC/C)
氮化鋁鈦(TiAlN)
類鑽膜(DLC)
硬度
HV
3500+
1000(微硬度50g
重)
3000~3500
2500(微硬度50g
重)
摩擦系數>0.1(TiC
on
TiC)
0.1
0.4
0.1~0.2
內應力
-1.0
-1.5
N/A
處理溫度(℃)
250
450
耐氧化溫度(℃)
300
800
350
鍍膜厚度(微米)
1~4
1~5
鍍膜顏色灰色
灰黑色
暗紫色
灰黑色
鍍膜結構
薄膜
多層膜
單層膜
特點高硬度
極佳的潤滑性,耐
負載能力佳
極佳抗氧化性、耐
磨耗
潤滑性佳,降低摩
耗
應用范圍
鑽孔、沖模
有極低如鑽石般的
摩擦系數,應用在
傳動部件、零件。
也可用於非鐵金
屬,如銅、鋁、石
墨的切削
可塗覆在鑄鐵、不
銹鋼、鎳基高溫合
金、鈦合金、碳化
鎢、高爾夫球頭、
模具等基材上。適
用於高速、乾式或
半乾式切削和切削
硬化鋼。
切鋁
金金
數
零良
沒有辦法復制過來,如果你需要的話,我可以給你pdf文檔,給我發Email或者是Hi我、
⑷ 鈦合金能噴漆嗎
不知道您說的是裝修的那一種,表面鍍鈦的還是像上海代遠金屬製品有限公司所做的一般工內業上用的容TA1 TA2 TC4 鈦合金。像這些鈦合金棒材,我們是扒皮磨光狀態交貨一般,而板材及管材就是酸洗表面,灰白色。所以說這種情況下很少聽到說要噴漆。
⑸ 鈦合金有什麼優良性能
以鈦為基加入其他合金元素組成的合金稱作鈦合金。鈦合金具有密度低、比強度高、抗腐蝕性能好、工藝性能好等優點,是較為理想的航天工程結構材料。
研究范圍:
鈦合金可分為結構鈦合金和耐熱鈦合金,或α型鈦合金、β型鈦合金和α+β型鈦合金。研究范圍還包括鈦合金的成形技術、粉末冶金技術、快速凝固技術、鈦合金的軍用和民用等。
應用:
鈦合金是一種新型結構材料,它具有優異的綜合性能,如密度小(~4.5g cm-3),比強度和比斷裂韌性高,疲勞強度和抗裂紋擴展能力好,低溫韌性良好,抗蝕性能優異,某些鈦合金的最高工作溫度為550ºC,預期可達700ºC。因此它在航空、航天、化工、造船等工業部門獲得日益廣泛的應用,發展迅猛。輕合金、鋼等的(σ0.2/密度)與溫度的關系,鈦合金的比強高於其他輕金屬、鋼和鎳合金,並且這一優勢可以保持到500ºC左右,因此某些鈦合金適於製造燃氣輪機部件。鈦產量中約80%用於航空和宇航工業。例如美國的B-1轟炸機的機體結構材料中,鈦合金約佔21%,主要用於製造機身、機翼、蒙皮和承力構件。F-15戰斗機的機體結構材料,鈦合金用量達7000kg ,約占結構重量的34%。波音757客機的結構件,鈦合金約佔5%,用量達3640 kg。麥克唐納 道格拉斯(Mc-Donnell-Dounlas)公司生產的DC10飛機,鈦合金用量達5500kg,占結構重量的10%以上。在化學和一般工程領域的鈦用量:美國約占其產量的15%,歐洲約佔40%。由於鈦及其合金的優異抗蝕性能,良好的力學性能,以及合格的組織相容性,使它用於製作假體裝置等生物材料。
特點:
鈦金屬的密度較小,為4.5g/cm3,僅為鐵的60%,通常與鋁、鎂等被稱為輕金屬,其相應的鈦合金、鋁合金、鎂合金則稱為輕合金。世界上許多國家都認識到鈦合金材料的重要性,相繼對鈦合金材料進行研究開發,並且得到了實際應用。 鈦是二十世紀五十年代發展起來的一種重要的結構金屬,鈦合金因具有比強度高、耐蝕性好、耐熱性高、易焊接等特點而被廣泛用於各個領域,尤其是強度高、易焊接性能有利於高爾夫桿頭的製造。
第一個實用的鈦合金是1954年美國研製成功的Ti-6Al(鋁)-4V(礬)合金。Ti-6Al-4V合金在耐熱性、強度、塑性、韌性、成形性、可焊性、耐蝕性和生物相容性方面均達到較好水平。Ti-6Al-4V合金使用量已佔全部鈦合金的75~85%。許多其它合金可以看作是Ti-6Al-4V合金的改型。 目前,世界上已研製出的鈦合金有數百種,最著名的合金有二十至三十種,例如,有Ti-6Al-4V</SPAN>、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、Ti-811、Ti-6242、Ti-1023、Ti-10-5-3、Ti-1100、BT9、BT20、IMI829、IMI834等;用於球桿製造的有10-2-3,SP700,15-3-3-3(通常所說的β鈦),22-4,DAT51。
鈦合金可以分為α、α+β、β型合金及鈦鋁金屬間化合物(TixAl,此處x=1或3)四類。下表列出了四類典型鈦合金及特點。
類別
典型合金
特點
α
Ti-5Al-2.5Sn
Ti-6Al-2Sn-4Zr-2Mo
強韌性一般,焊接性能好
抗氧化強,蠕變強度較高
較少應用在高爾夫球刊刊頭製造上
α+β
Ti-6Al-4V
Ti-6Al-2Sn-4Zr-6Mo
強韌性中上,可熱化處理強,可焊
疲勞性能好,多應用於鑄造刊頭
如鐵桿、球道木等
β
Ti-13V-11Cr-3Al
Sp700
Ti-15va-3Cr-3Al-3Ni
強度高,熱處理強化能力強
可鍛性及冷成型性能好
可適用多種焊接方式
TixAl
Ti3Al(α2)及TiAl(Y0
使用溫度渴望達到900度,但室溫塑韌性差
⑹ 如何在鈦合金或其他金屬表面獲得陶瓷塗層
將不同的生物活性陶瓷材料或生物活性陶瓷材料與其它材料以不同比例混合是完善塗層性能,尤其是調整塗層與金屬基體之間熱膨脹系數以形成良好結合的有效方法。國內外有很多研究者就這方面做了大量研究。如採用簡單的塗覆2燒結法將6P57和6P68玻璃粉均勻混合作為塗層,以達到塗層的熱膨脹系數和Ti26Al24V相匹配的目的,並將Bioglass和HA顆粒均勻嵌入塗層表面,其目的是增加塗層的生物活性,同時也保證塗層與基體良好的結合強度。但是,Bioglass和HA顆粒的表面覆蓋率應限制在20%以內,因為顆
粒過多會造成應力集中最終導致裂紋的產生
等採用復合電沉積2水熱法在鈦基體上形成了羥基磷灰石和鈦微粒兩相分布均勻的復合塗層,塗層中鈦微粒的質量分數為6413%~8817%,也達到了調整塗層熱膨脹系數的目的。雖然目前等離子噴塗羥基磷灰石是最為普遍的方法並且已經應用於臨床,但是仍然存在許多不足
⑺ 鈦合金都有哪些表面硬化處理
鈦合金錶面硬化處理有很多方法.
因為鈦合金錶面硬化屬於功能塗層,一般表面顏色會有改變.
不變色是什麼意思?為什麼有這種要求?
鈦合金錶面硬化的基礎上保持金屬白色是不可能的。
不過可以在鈦合金錶面做黑色陶瓷膜,耐磨性很好,亞光灰黑色。
⑻ 鈦合金硬質塗層怎麼去除手印
用弱酸清洗 HF:HNo3:HO2=1:1:98 清洗後用清水沖干凈,加酒精清洗熱風吹乾。
鈦合金錶面處理方法主要有:
1、噴砂:鈦鑄件的噴砂處理一般選用白剛玉粗噴較好,噴砂壓力一般控制在0.45Mpa以下,時間為15~30秒,用於去除鑄件表面的粘砂、表面燒結層和部分和氧化層。其餘的表面反應層結構宜採用化學酸洗的方法快速去除。
2、 酸洗:酸洗能夠快速完全去除表面反應層,而表面不會產生其他元素的污染。HF-HCl系和HF-HNO3系酸洗液都可用於鈦的酸洗,但 HF-HCl系酸洗液吸氫量較大,而HF-HNO3系酸洗液吸氫量小,可控制HNO3的濃度減少吸氫,並可對表面進行光亮處理,一般HF的濃度在3%~5 %左右,HNO3的濃度在15%~30%左右為宜。
3、交流微弧氧化:通過微弧放電區瞬間高溫高壓燒結直接把基體金屬變成氧化物陶瓷,並獲得較厚的氧化物膜。對鈦合金錶面微弧氧化膜,獲得膜的硬度高並與金屬基體結合良好,改善了鈦合金錶面的抗磨損、抗腐蝕、耐熱沖擊及絕緣等性能,在許多領域具有應用前景。
4、離子注入:主要優點是:a)膜與基體結合好,抗機械、化學作用不剝落能力強;b)注入過程不要求升高基體溫度,從而可保持工件幾何精度;c)工藝重復性好等。許多研究者報道了氮離子注入對Ti6Al4V合金錶面成分、組織結構、硬度及摩擦學性能有良好改善效果。TiC也是超硬相,故鈦合金經離子注入碳也同樣可以強化鈦合金錶面。
5、等離子滲氮與噴丸處理:利用直流脈沖等離子電源裝置對鈦合金錶面滲氮處理,採用噴丸形變強化(SP)對滲氮層進行後處理, 在鈦合金錶面獲得由TiN、Ti2N、Ti2A1N等相組成的滲氮層,該改性層能夠顯著地提高鈦合金常規磨損和微動磨損(FW)抗力,但降低了基材的FF抗力。滲氮層的減摩和抗磨性能與SP引入的表面殘余壓應力協同作用,使鈦合金FF抗力超過了SP單獨作用。
6、激光熔覆:利用激光熔覆技術可獲得優良的塗層,為燃氣渦輪發動機零件的修復開創了一條新途徑,熔覆合金粉末是CoCrW和WC的機械混合物,提高了高溫耐磨和抗腐蝕性能,優點是制備時間短,質量穩定,並消除了由於熱影響可能產生的裂紋問題。
7、表面合金化—加弧輝光離子滲鍍技術:可以在鈦合金的表面直接形成合金層,合金層是具有特殊物理、化學性能的表面滲鍍結合層。其特點是不存在膜基結合力問題,無污染,滲速快,根據不同的要求可以在不同的工藝條件得到不同濃度分布、不同滲層厚度的合金層。利用該技術在鈦合金錶面無氫滲碳,可使表面硬度提高數倍,摩擦系數降低到0.08,滲鉭可以提高鈦合金的耐蝕性。
⑼ 鈦合金塗層的炒鍋壽命如何
純正的鈦合金根本不可能拿來做鍋子。賣家忽悠人的噱頭而已。
從專業的角度說,一般被稱為「某某合金」的金屬材料,那麼這種合金材料其中「某某」這種元素的含量是很高的,一般在50%25以上。就像「鈦合金」一樣,其中鈦元素的含量絕對是50%25以上。鈦合金不能做鍋子的原因有幾點,都是材料本身的特性決定的。1、鈦合金有個特性「熱傳導系數低」,通俗的講就是「傳熱速度慢」。傳熱慢怎麼炒菜啊?鍋底都燒紅了,鍋邊還是冷的。
2、鈦合金是機械加工行業內公認的最難加工的材料之一,其加工成本相當高,是其材料成本的數十倍甚至百倍,這是鈦合金製品賣得貴的原因之一。假設用鈦合金做一口鍋,重1-2公斤,鈦合金材料500元一公斤,加工費算十倍,光加工費就幾千上萬了,這口鍋價格不菲啊。
3、鈦合金在特定情況下會燃燒。條件是:細小的鈦合金碎屑,在200度左右的溫度就會燃燒。鈦合金密度較低(約是鋼材的三分之一到二分之一間),材料較軟,鍋鏟和鍋接觸難免會鏟些金屬碎屑,家用的天然氣灶溫度能到達300度。一些大型企業加工鈦合金時都是用液氮作加工冷卻的,可想而知鈦合金不是那麼容易加工的。
建議使用鐵鍋或是鋼鍋,其實鐵鍋是最好的,健康環保。
⑽ 鈦合金絲加工工藝有那些
鈦及鈦合金絲由於具有良好的耐蝕性、比強度高、無磁性、與人體的親和性好和形狀記憶功能等特點, 因而不但廣泛應用於航空航天等高技術領域, 而且正越來越多地進入各種民用領域。例如在航天領域廣泛應用的鈦合金絲緊固件, 不僅可以達到減重、耐腐蝕的目的, 而且是鈦合金、碳纖維復合材料等結構件必需的連接件;汽車領域採用鈦合金絲製成的彈簧, 同鋼彈簧相比, 可減重60%~70%;醫療領域採用的鈦合金絲由於具有無毒、質輕、耐生物腐蝕及良好的生物相容性等特性而受到醫生及患者的青睞;在海水養殖方面, 用鈦絲織成的養殖網使用15 年後仍毫無損壞。
鈦及鈦合金屬於難加工材料, 由於鈦的屈強比較高, 一般為0.70~0.95, 彈性較好, 變形抗力大, 而其彈性模量相對較低, 故加工時變形抗力大, 回彈性也較嚴重;而且在加工過程中的粘著問題對製品的表面質量也產生了極為惡劣的影響。目前, 鈦合金絲材的制備工藝通過不斷改進、完善,並採用各種新興技術使鈦合金絲材產品的質量迅速提高, 種類不斷增加, 應用領域進一步擴大。拉拔仍是現今生產鈦合金絲所採用的最普遍方法,通常絲材的生產工藝流程為: 原料→鑄錠熔煉→鍛造→軋制→拉拔→熱處理→檢驗→成品。本文以絲材的生產工藝流程為主線, 重點介紹絲材的拉伸工藝, 簡單介紹絲坯的制備工藝(熔煉、鍛造、軋制)以及絲材加工技術。
1 絲坯制備工藝
1.1 熔煉工藝
鈦是非常活潑的金屬, 在液態下與氧、氮、氫及碳的反應相當快, 因此鈦合金熔煉必須在較高的真空度或惰性氣體(Ar 或Ne)保護下進行。熔煉技術主要有真空自耗電極電弧爐熔煉、真空自耗電極凝殼爐熔煉、電子束冷床爐熔煉、等離子冷床爐熔煉、真空感應爐熔煉等。從耗電量、熔化速度、成本技術經濟指標對比來看, 前兩種仍是目前最經濟適用的熔煉方法。但真空電弧熔煉對消除鈦合金中高密度夾雜和低密度夾雜的能力有限, 而冷床爐熔煉在這方面有獨特的優勢。熔煉鑄錠的質量將影響後續加工工藝以及成品質量, 可通過精選原材料, 選擇合理的熔煉工藝參數(熔煉電流、電弧電壓、真空度、漏氣率、冷卻速度、攪拌磁場強度), 嚴格控制工藝過程, 得到高質量的鑄錠。由於絲材尺寸較小, 加工工藝比較復雜, 對合金內部冶金缺陷(偏析、夾雜)的敏感性增加, 因此熔煉工藝對精確控製成分, 減少合金中的雜質含量, 確保絲材優良的性能非常關鍵。
1.2 鍛造工藝
鍛造的目的是改善組織、提高金屬的綜合性能, 為軋制工序提供坯料。其工序基本流程為: 鑄錠→加熱→開坯鍛造→冷卻→表面清理→變形坯料→加熱→鍛棒→檢驗→成品。
鑄錠和變形坯料的加熱應選擇合適的加熱溫度、加熱速度和加熱時間, 並控制好爐內氣氛, 才能保證產品質量。加熱溫度應選擇變形塑性好、鍛件質量高、變形抗力低的溫度范圍。鑄錠的開坯加熱是在(α+β)/β相變點以上100~200℃(β鈦合金除外)的范圍內; 經過鍛造變形的坯料, 粗大的鑄造組織已得到一定程度的破碎, 內部組織得到改善, 塑性提高, 因此再鍛造加熱溫度可隨退火次數增加而逐漸降低; 成品前的鍛造加熱, 為防止β脆性的發生, 獲得良好的組織及綜合性能, 對於α合金和α+β合金應在相變點以下的溫度進行, 對於β合金, 實際上是在β區加熱和鍛造的。由於鈦的導熱系數低, 在室溫下為0.0397K/cm·s·℃, 約是中碳鋼的1/4, 在高溫時卻又相近。因此, 在較低溫度加熱時應採用慢速, 避免加熱過程中表層與中心層形成很大溫度差。在高溫時, 鈦的導熱系數增加, 可採用稍快的速度加熱。
鍛造加工中, 變形溫度、變形量以及變形速度對鍛件質量有重要的影響, 必須正確控制。如前所說, 一般將鍛前的鑄錠加熱到相變點以上, 因為在此溫度下變形抗力低、塑性高, 但若鑄錠開坯的變形量過低, 鑄態組織將不能得到有效地破碎, 其性能較差, 也將直接影響到後續加工。鍛造過程中,若變形量選擇不當將嚴重影響合金的組織與性能。如TC4 合金, 當加熱溫度高於相變點之上, 而變形量不夠大時, 往往得到粗大的片狀或針狀α間β組織, 也稱粗大魏氏組織。這種組織的強度變化不大, 但塑性顯著下降。當變形量增大時則出現歪扭程度不同的條狀α+β組織, 稱為網籃狀組織。這種組織的高溫性能和斷裂韌性有所改善, 而塑性有所下降。應當選擇合適的變形量, 得到較細小的具有一定量的等軸初生α加轉變的β組織。這種組織的綜合性能較好。變形速度對鍛件質量也有很重要的影響, 當變形速度過快時, 不僅使變形抗力提高, 而且變形熱效應使鍛件局部或整體溫度過高, 得到的鍛件組織和綜合性能較差。最後須指出的是: 變形溫度、變形速度和變形量絕不是孤立的影響鍛件的質量。例如加熱溫度稍高, 但是用足夠大的變形量和較低的變形速度也可以得到較好的組織和性能。
1.3 軋制工藝
軋制加工主要為絲材拉伸提供絲坯, 進一步改善合金組織, 提高金屬的綜合性能。同鍛造工藝一樣, 對絲材的組織以及表面質量都有重要的影響。其主要工藝參數有: 加熱溫度、軋制速度和熱軋加工率。
(1) 加熱溫度
經鍛造加工後, 坯料組織均勻性和緻密性已經大大提高, 故加熱溫度可略低於鍛造溫度。α+β型合金的軋前加熱溫度一般都稍低於(α+β)/β相變溫度, 即在(α+β)相區進行加熱, 使軋制過程在(α+β)相區完成, 保證產品的組織性能較好; α型合金的加熱溫度也在(α+β)相區內, 此時熱加工性能良好且室溫性能較好; β型合金的加熱溫度在高於β相變轉變溫度以上進行, 使其變形在β相區完成, 此時合金的變形抗力小、塑性較好。不同的加熱溫度對合金的組織性能有很大影響, 如對TC9 棒材在1050 ℃軋制時, 由於其軋制溫度在β轉變溫度以上, 得到的是針狀組織, 性能較差。在α+β相區(980 ℃以下)軋制時, 得到的是等軸組織, 其性能較好。
(2) 軋制速度
目前, 鈦及其合金軋制時, 由於產量不大, 鈦製品長度較短, 大多採用手工操作, 所以不適宜高速軋制。而且軋速過快將造成軋件快速升溫, 影響最終產品組織性能。理論計算表明: 軋制速度大於12m/s後, 軋件升溫與軋制速度成正比增加; 當軋制速度大於30m/s 時, 終軋溫度與加熱溫度無關。
(3) 熱軋加工率
由於變形量的不同, 合金的組織和性能有明顯的差別。如在920 ℃下熱軋的TC4 棒材, 在28%變形量下軋制, 其組織基本上是α相被β相網格分割成等軸狀, 這種組織性能較差;在變形量為44%時, β相網格已被破碎, α相粒度較大, 這種組織性能也較差; 在變形量為66%~78%時, 有大致相同的組織, 以α相為基體, 加上細小分散的α+β組織, 這種組織性能較好。
為充分加工與細化組織, 提高材料性能, 在20世紀70年代,發明了步進軋制工藝,它是一種將軋制和鍛造兩種變形特點結合在一起的加工方式, 具有鍛造的大變形和軋制的高速度等特點。借鑒國外少數先進國家絲材的制備工藝流程為:鑄錠→開坯鍛造→熱連軋成線材。秦伯祥等人研究了採用合金鋼熱連軋機組, 生產大卷重10mm純鈦高速線材工藝, 並對產品組織、性能、外形、尺寸公差進行了分析討論, 研究表明, 用該方法生產的產品力學性能良好, 組織均勻一致, 而且表面質量良好。
2 拉伸工藝
2.1 拉伸溫度
對冷加工性能差的鈦合金常用熱拉伸進行加工, 拉伸溫度對絲材的組織、性能、間隙元素含量以及表面質量均有重要影響。朱恩科等人對Ti2Cu鈦合金絲材拉伸方法的研究結果表明, Ti2Cu 鈦合金絲材不適宜冷拉伸, 而熱拉伸方法能夠順利拉制出合格的Ti2Cu 鈦合金絲材。在拉伸過程中C、O、N 和H 的增加量, 可以通過鹼、酸洗和真空退火消除。圖1 為在冷拉伸與熱拉伸下Ti2Cu 鈦合金絲材的拉伸性能,可以看出,冷拉伸時,絲材的抗拉強度隨直徑減小而增加, 伸長率隨直徑減小而迅速降低。熱拉伸在8mm~6.19mm區間抗拉強度隨直徑減小迅速增加, 伸長率顯著下降, 這是由於只發生了部分再結晶, 硬化作用大於軟化作用; 在6.19 mm~1.15mm 區間抗拉強度和伸長率基本保持不變, 這是由於變形造成的硬化和回復再結晶引起的軟化作用達到了動態平衡。
2.2 拉伸道次加工率
熱拉伸時, 道次加工率的大小主要取決於加工溫度和絲材直徑。對於在室溫下的冷拉伸, 道次加工率主要取決於氧化、塗層的質量和潤滑劑的好壞。表1為室溫下拉伸時, 隨直徑變化道次加工率分配的一般規范。
2.3 拉伸應力
在拉伸時, 拉伸應力應小於被拉出金屬材料的屈服強度, 這是實現拉伸過程的基本條件。影響拉伸應力的因素很多, 如拉伸溫度、拉伸速度、加工率以及模具的圓錐角等等。加工率的增加、拉伸溫度的降低、圓錐角過大或過小都將引起拉伸應力的增大; 在直線拉伸時, 拉伸速度對拉伸應力無顯著改變, 而在絲材以直線式通過模孔後向牽引絞盤上纏繞時, 拉伸速度超過一定范圍將引起拉伸應力的增大。為減小拉伸過程中的拉伸應力,可通過潤滑、減小變形量、提高金屬變形塑性等方法。為此, 人們研究了多種加工技術, 其中包括輥模拉伸、超聲振動拉伸等方法。
2.4 拉伸潤滑
由於鈦合金拉伸時具有粘附模具的傾向, 造成拉絲困難, 因此除了必須採用良好的潤滑劑之外, 還應採取塗層、氧化等其他增強潤滑措施。鈦合金拉伸前大多進行氧化、塗層處理。採用的塗料有石墨乳、鹽石灰、鈣基塗層等等, 選擇塗層的依據是不僅與所加工的絲材要結合緊密, 與潤滑劑之間要有良好的浸潤性, 而且要便於清除。拉伸工藝條件不同, 使用的潤滑劑也不相同。在鈦絲拉伸工藝中, 採用的潤滑劑有工業皂粉、石墨乳以及肥皂粉與其他材料的混合物, 應選擇與塗層有良好浸潤性、熱穩定性較好的潤滑劑。如在TB2 鈦合金絲材加工中, 塗層選擇鈣基塗層, 輔以自製潤滑劑(HTK-SM), 可以獲得令人滿意的絲材表面。為增強潤滑效果, 還常採用增壓模來提高絲材的表面質量。
2.5 拉伸模
拉絲模具材質主要有硬質合金、天然金剛石、合成金剛石、聚晶金剛石。細絲生產中常用單晶天然金剛石模。天然金剛石模具雖然造價高, 但經久耐用, 尺寸變化小, 不易出現粘拉磨損、絲材劃傷等。為使待加工的絲材順利通過模具, 實現變形的目的, 形成所需的規格尺寸, 要求加工後的模具形狀有利於潤滑並減少斷絲現象, 有利於產生的變形熱量散發得快。由於經過一段時間的拉伸,模具表面發生磨損現象, 即表面因摩擦、撕裂等使模具表面有物質脫落, 會因此劃傷絲材表面。因此需要提高模具光潔度, 減少模具缺陷, 加強對模
具的管理控制。
2.6 表面處理
在絲材拉伸過程中, 表面處理也是影響絲材表面質量及組織性能的影響因素。其方式有酸洗、機械拋光、電解拋光、磷化、氧化、電鍍等。西北有色金屬研究院與有研億金新材料股份有限公司分別對鈦鉭合金絲與鈦鎳合金絲進行了表面處理的研究, 結果表明, 酸洗、機械拋光與電解拋光拉伸試樣均表現為韌性斷裂, 但電解拋光由於減少了試樣表面裂紋源而有效改善了鈦鎳合金絲材的力學性能, 而酸洗由於減少了表面夾雜物對拉伸的影響, 表現出了比機械拋光更好的綜合性能。磷化、氧化處理由於其磷化層和氧化層具有較高的硬度, 可以有效地保證絲材拉伸過程中表面不被劃傷, 但在拉伸過程中會出現表面和心部變形不協調性, 容易在表面出現裂紋, 導致材料斷裂。電鍍後的絲材雖然表面光潔, 但由於易發生氫脆現象, 試樣表現為脆性斷裂, 材料的力學性能顯著降低。
2.7 熱處理工藝
鈦及鈦合金絲熱處理時應用最多的是退火,包括中間退火和成品退火, 其目的是提高絲材繼續拉伸的加工塑性和達到所要求的成品性能。在制定退火工藝時, 不僅要考慮生產的具體條件, 更重要的應考慮金屬的力學性能與變形程度、退火溫度之間的關系。如工業純鈦, 隨著加工率的增加, 伸長率下降, 而抗拉強度升高, 說明冷加工硬化快, 因此必須進行中間退火。絲材成品的退火溫度應根據所要求的成品性能來選擇, 以達到最佳的性能匹配。如Ti-2Al-2.5Zr 絲材的優選真空退火溫度在700~850 ℃, 在這區間內, 伸長率和抗拉性能均能達到絲材的要求。表2與表3為鈦及鈦合金絲的一般退火規范, 可以看出, 絲材的退火制度還應考慮絲材的尺寸。實際應用中, 應根據合金成分以及加工工藝, 進行試驗研究, 來選擇最佳退火工藝。
除退火工藝外, 為達到各種用途所需要的性能, 還常常需要進行固溶時效等熱處理。如眼鏡架用Ti-22V-4Al 合金絲, 經780℃×30min 退火處理, 其組織均勻, 伸長率達20%以上; 再經520℃×4 h 時效處理, 維氏硬度達到2800MPa, 可達到眼鏡架用絲材對材料硬度的技術要求。
3 加工技術
傳統的固定模拉伸(即常規拉伸)有著本身固有的缺陷, 其突出問題是模具與變形金屬接觸面的摩擦以及伴隨產生的熱效應。為此, 人們發明了多種加工技術來解決上述問題。
(1) 輥模拉伸: 該技術結合了傳統的軋制與拉伸的特點, 減少了拉拔力, 增加了道次加工率,降低了加工硬化程度。由於輥模拉伸是在由非傳動的、自由旋轉的輥輪組成的孔型中拉伸, 將固定模拉伸時材料與模孔的大部分滑動摩擦轉變為非常小的滾動摩擦, 從而大幅度減小拉伸摩擦力。輥模拉伸的缺點是尺寸精度沒有固定模拉伸高, 適用於粗拉絲, 而在細拉絲中用固定模拉伸進行精整。
(2) 超聲振動拉伸: 該方法是從20世紀50年代發展起來的,拉伸時,對拉伸模施以超聲振動,可以有效降低拉伸力, 提高道次加工率。
(3) 無模拉伸: 該工藝是採用感應線圈或激光使絲材局部加熱軟化, 並施加張力使絲材變細。其優點是不需要拉伸模和潤滑劑, 變形率大, 效率高, 缺點是成品尺寸均勻性差, 質量不穩定。
(4) 增壓模拉伸: 該工藝是指在拉伸模前安裝增壓噴嘴裝置, 在絲材拉伸時, 能造成自動增壓強制潤滑效果的方法。其優點是斷絲頻率減少4/5、拉絲模壽命提高20 倍以上、改善表面質量等。
(5) 鍍層- 包套集束拉伸: 該方法首先在鈦絲表面鍍一層低碳鋼, 再將鍍好的鈦絲集束裝入低碳鋼管內, 然後進行集束拉伸加工並進行中間退火, 加工到最終尺寸後, 用硫酸酸洗將低碳鋼包套和鍍層除去。其優點是效率高、生產成本低。
(6) 包套- 碎屑擠壓: 該工藝是日本東北大學開發的, 主要用於TiNi 形狀記憶合金絲的加工,可提高產品質量、降低生產成本。首先通過包覆軋制制備由不同金屬片組成的多層復合片材, 各種金屬層的厚度比取決於所確定的化學成分, 然後把軋成的包覆片切成碎屑, 將切成的碎屑裝填到容器中製成坯料, 並將坯料擠壓成細棒, 接著再加工成細絲, 最後通過熱擴散處理, 將復合絲轉化成想要得到的金屬間化合物絲材。
(7) 四輥絲材軋機連軋生產絲材: 這種軋機是由四個軋輥組成一個圓的孔形, 工作時由一個主動輥帶動另外三個輥轉動。多個這樣的機架組成連軋機組可進行鈦合金絲材的生產, 從而大幅度提高了絲材的生產率和成品率。
4 結語
鈦及鈦合金絲材應用廣泛, 但其昂貴的價格是阻礙其應用的主要障礙, 需要開發並普及絲材制備新工藝, 以降低絲材加工成本。國外對絲材加工技術研究報道較多, 並且採用了很多新技術,因此國外的鈦合金絲材產品質量好、規格多。而國內鈦合金絲材生產技術仍然較落後, 生產流程長、效率低、成本高是目前需要解決的問題。因此我國應加大對鈦合金絲材加工的研究投入, 盡快提高在該領域的技術水平和裝備水平, 生產出質優價廉的鈦合金絲材產品, 以適應市場的需求。