導航:首頁 > 合金材料 > 如何判斷合金在熔鹽中的溶解度

如何判斷合金在熔鹽中的溶解度

發布時間:2022-05-06 13:57:38

① 石墨 熔鹽 哈氏合金 三者接觸可以構成電池嗎對合金腐蝕大不大

電池
古希臘

不管製造這個粘土瓶的祖先是否知道有關靜電的事情,但可以確定的是古希臘人絕對知道。他們曉得如果磨擦一塊琥珀,就能吸引輕的物體。亞里斯多德(Aristotle)也知道有磁石這種東西,它是一種具有犟大磁力能吸引鐵和金屬的礦石。

1780年的一天,義大利解剖學家伽伐尼在做青蛙解剖時,兩手分別拿著不同的金屬器械,無意中同時碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,彷彿受到電流的刺激,而只用一種金屬器械去觸動青蛙,卻並無此種反就。伽伐尼認為,出現這種現象是因為動物軀體內部產生的一種電,他稱之為 「生物電」。伽伐尼於1791年將此實驗結果寫成論文,公布於學術界。

伽伐尼的發現引起了物理學家們極大興趣,他們競相重復枷伐尼的實驗,企圖找到一種產生電流的方法,義大利物理學家伏特在多次實驗後認為:伽伐尼的 「生物電」之說並不正確,青蛙的肌肉之所以能產生電流,大概是肌肉中某種液體在起作用。為了論證自己的觀點,伏特把兩種不同的金屬片浸在各種溶液中進行試驗。結果發現,這兩種金屬片中,只要有一種與溶液發生了化學反應,金屬片之間就能夠產生電流。

1799年,伏特把一塊鋅板和一塊銀板浸在鹽水裡,發現連接兩塊金屬的導線中有電流通過。於是,他就把許多鋅片與銀片之間墊上浸透鹽水的絨布或紙片,平疊起來。用手觸摸兩端時,會感到強烈的電流刺激。伏特用這種方法成功的製成了世界上第一個電池—— 「伏特電堆」。這個「伏特電堆」實際上就是串聯的電池組。它成為早期電學實驗,電報機的電力來源。

義大利物理學家伏打就多次重復了伽伐尼的實驗。作為物理學家,他的注意點主要集中在那兩根金屬上,而不在青蛙的神經上。對於伽伐尼發現的蛙腿抽搐的現象,他想這可能與電有關,但是他認為青蛙的肌肉和神經中是不存在電的,他推想電的流動可能是由兩種不同的金屬相互接觸產生的,與金屬是否接觸活動的或死的動物無關。實驗證明,只要在兩種金屬片中間隔以用鹽水或鹼水浸過的(甚至只要是濕和)硬紙、麻布、皮革或其它海綿狀的東西(他認為這是使實驗成功所必須的),並用金屬線把兩個金屬片連接起來,不管有沒有青蛙的肌肉,都會有電流通過。這就說明電並不是從蛙的組織中產生的,蛙腿的作用只不過相當於一個非常靈敏的驗電器而已。

1836年,英國的丹尼爾對 「伏打電堆」進行了改良。他使用稀硫酸作電解液,解決了電池極化問題,製造出第一個不極化,能保持平衡電流的鋅—銅電池,又稱「丹尼爾電池」。此後,又陸續有去極化效果更好的 「本生電池」和 「格羅夫電池」等問世。但是,這些電池都存在電壓隨使用時間延長而下降的問題。

1860年,法國的普朗泰發明出用鉛做電極的電池。這種電池的獨特之處是,當電池使用一段使電壓下降時,可以給它通以反向電流,使電池電壓回升。因為這種電池能充電,可以反復使用,所以稱它為「 蓄電池」。

然而,無論哪種電池都需在兩個金屬板之間灌裝液體,因此搬運很不方便,特別是蓄電池所用液體是硫酸,在挪動時很危險。

1887年,英國人赫勒森發明了最早的干電池。干電池的電解液為糊狀,不會溢漏,便於攜帶,因此獲得了廣泛應用。

將化學能、光能、熱能、核能等直接轉換為電能的裝置。有化學電池、太陽電池、溫差電池、核電池等。通常所說的電池指化學電池。

電池的性能參數主要有電動勢 、容量、比能量和電阻。電動勢等於單位正電荷由負極通過電池內部移到正極時,電池非靜電力(化學力)所做的功。電動勢取決於電極材料的化學性質,與電池的大小無關。電池所能輸出的總電荷量為電池的容量 ,通常用安培小時作單位。在電池反應中,1千克反應物質所產生的電能稱為電池的理論比能量。電池的實際比能量要比理論比能量小。因為電池中的反應物並不全按電池反應進行,同時電池內阻也要引起電動勢降,因此常把比能量高的電池稱做高能電池。電池的面積越大,其內阻越小 。

電池的種類很多,常用電池主要是干電池、蓄電池,以及體積小的微型電池 。此外,還有金屬-空氣電池、燃料電池以及其他能量轉換電池如太陽電池、溫差電池、核電池等。

干電池 一種使用最廣泛的化學電池。1865年法國人勒克朗謝在伏打電池的基礎上研製了一種碳/二氧化錳/氯化銨溶液/鋅體系的濕電池。經發展,干電池有 100餘種。除了鋅 - 錳干電池外,還有鎂 -錳干電池、鋅 - 氧化汞干電池、鋅-氧化銀干電池等 。由於干電池的氧化和還原反應的可逆性很差,用完後一般不能用充電方法使正、負極活性物質恢復到原來狀態,因此干電池又稱為一次電池。最常用的干電池是鋅-錳干電池,有糊式、紙板式、鹼式和疊層式幾種。

糊式鋅-錳干電池 由鋅筒 、電糊層、二氧化錳正極 、炭棒、銅帽等組成。最外面的一層是鋅筒,它既是電池的負

極又兼作容器,在放電過程中它要被逐漸溶解;中央是一根起集流作用的碳棒;緊緊環繞著這根碳棒的是一種由深褐色的或黑色的二氧化錳粉與一種導電材料(石墨或乙炔黑)所構成的混合物,它與碳棒一起構成了電池的正極體,也叫炭包。為避免水分的蒸發,干電池的上部用石蠟或瀝青密封 。鋅-錳干電池工作時的電極反應為鋅極:Zn→Zn2++2e

碳極:

紙板式鋅-錳干電池 在糊式鋅-錳干電池的基礎上改進而成。它以厚度為 70~100微米的不含金屬雜質的優質牛皮紙為基,用調好的糊狀物塗敷其表面,再經過烘乾製成紙板,以代替糊式鋅-錳干電池中的糊狀電解質層。紙板式鋅-錳干電池的實際放電容量比普通的糊式鋅 -錳干電池要高出2~3倍。標有「高性能」字樣的干電池絕大部分為紙板式。

鹼性鋅 -錳干電池 其電解質由汞齊化的鋅粉、35%的氫氧化鉀溶液再加上一些鈉羧甲基纖維素經糊化而成 。由於氫氧化鉀溶液的凝固點較低、內阻小 ,因此鹼性鋅 -錳干電池能在-20℃溫度下工作,並能大電流放電。鹼性鋅 - 錳干電池可充放電循環40多次,但充電前不能進行深度放電(保留60%~70%的容量),並需嚴格控制充電電流和充電期終的電壓。

疊層式鋅-錳干電池 由幾個結構緊湊的扁平形單體電池疊在一起構成。每一個單體電池均由塑料外殼、鋅皮、導電膜以及隔膜紙、炭餅(正極)組成。隔膜紙是一種吸有電解液的表面有澱粉層的漿層紙,它貼在鋅皮的上面;隔膜紙上面是炭餅。隔膜紙如同糊式干電池的電糊層,起隔離鋅皮負極和炭餅正極的作用。疊層式鋅 - 錳干電池減去了圓筒形糊式干電池串聯組合的麻煩,其結構緊湊、體積小、體積比容量大,但貯存壽命短且內阻較大,因而放電電流不宜過大。

蓄電池 通過充電將電能轉變為化學能貯存起來,使用時再將化學能轉變為電能釋放出來的一種化學電池。其轉變的過程是可逆的。當蓄電池已完全放電或部分放電後,兩電極板表面形成新的化合物,這時若用適當的反向電流通入蓄電池,就可以使在放電過程中形成的化合物還原為原先的活性物質,供下次放電再用,此過程叫充電,即將電能以化學能的形式貯存在蓄電池中。電池接通負載供給外電路電流的過程叫放電 。 蓄電池的充電和放電過程可以重復循環多次,故蓄電池又稱為二次電池 。 按所使用的電解質溶液的不同,蓄電池分為酸性和鹼性兩大類。按正負極板所使用的活性物質材料又有鉛蓄電池、鎘鎳、鐵鎳、銀鋅、鎘銀蓄電池等幾種。鉛蓄電池為酸性電池,後四種為鹼性電池。

鉛蓄電池 由正極板群、負極板群、電解液和容器等組成。充電後的正極板是棕褐色的二氧化鉛(PbO2),負極板

是灰色的絨狀鉛(Pb),當兩極板放置在濃度為27%~37%的硫酸( H2SO4 )水溶液中時 ,極板的鉛和硫酸發生化學反應,二價的鉛正離子( Pb2+)轉移到電解液中,在負極板上留下兩個電子( 2e- )。由於正負電荷的引力,鉛正離子聚集在負

極板的周圍,而正極板在電解液中水分子作用下有少量的二氧化鉛( PbO2 )滲入電解液,其中兩價的氧離子和水化合,使二氧化鉛分子變成可離解的一種不穩定的物質——氫氧化鉛〔Pb(OH4〕。氫氧化鉛由4價的鉛正離子(Pb4+)和4個氫氧根〔4(OH)-〕組成。4價的鉛正離子(Pb4+)留在正極板上,使正極板帶正電。由於負極板帶負電,因而兩極板間就產生了一定的電位差,這就是電池的電動勢。當接通外電路,電流即由正極流向負極。在放電過程中,負極板上的電子不斷經外電路流向正極板,這時在電解液內部因硫酸分子電離成氫正離子(H+)和硫酸根負離子(SO42-),在離子電場力作用下,兩種離子分別向正負極移動,硫酸根負離子到達負極板後與鉛正離子結合成硫酸鉛( PbSO2 )。在正極板上,由於電子自外電路流入,而與4價的鉛正離子(Pb4+)化合成 2價的鉛正離子( Pb2+),並立即與正極板附近的硫酸根負離子結合成硫酸鉛附著在正極上。鉛蓄電池正、負極板在放電過程中的化學反應為

隨著蓄電池的放電,正負極板都受到硫化,同時電解液中的硫酸逐漸減少,而水分增多,從而導致電解液的比重下降在實際使用中,可以通過測定電解液的比重來確定蓄電池的放電程度。在正常使用情況下,鉛蓄電池不宜放電過度,否則將使和活性物質混在一起的細小硫酸鉛晶體結成較大的體,這不僅增加了極板的電阻,而且在充電時很難使它再還原,直接影響蓄池的容量和壽命。鉛蓄電池充電是放電的逆過程。充電時總的化學反應為

鉛蓄電池的工作電壓平穩、使用溫度及使用電流范圍寬、能充放電數百個循環 、貯存性能好 ( 尤其適於乾式荷電貯

存)、造價較低,因而應用廣泛。採用新型鉛合金,可改進鉛蓄電池的性能。如用鉛鈣合金作板柵,能保證鉛蓄電池最

小的浮充電流、減少添水量和延長其使用壽命;採用鉛鋰合金鑄造正板柵 ,則可減少自放電和滿足密封的需要 。此外,

開口式鉛蓄電池要逐步改為密封式,並發展防酸、防爆式和消氫式鉛蓄電池。

鹼性蓄電池 與同容量的鉛蓄電池相比,其體積小,壽命長,能大電流放電,但成本較高。鹼性蓄電池按極板活性

材料分為鐵鎳、鎘鎳、鋅銀蓄電池等系列。以鎘鎳蓄電池為例,鹼性蓄電池的工作原理是:蓄電池極板的活性物質在充

電後,正極板為氫氧化鎳〔 Ni(OH)3 〕,負極板為金屬鎘( Cd );而 放 電 終 止時,正極 板轉 變為 氫 氧化 亞鎳〔 Ni(OH2)〕, 負極板轉 變 為氫 氧 化鎘〔Cd (OH) 2〕,電解液多選用氫氧化鉀( KOH)溶液。在充放電過程中總的化

由充放電過程中的化學反應可知,電解液僅作為電流的載體而濃度並不發生變化,因而只能根據電壓的變化來判斷

充放電的程度。鎘鎳密封蓄電池在充電過程中,正極析出氧氣,負極析出氫氣。由於鎘鎳密封蓄電池在製造時負極物質是過的,這就避免了氫氣的發生;而在正極上產生的氧氣,由於電化學作用被負極吸收,因此防止了氣體在蓄電池內部集聚,從而保證了蓄電池在密封條件下正常工作。鎘鎳蓄電池已有了幾十年的歷史,最初用作牽引、起動、照明及信號電源,現代用作內燃機車、飛機的起動及點火電源。60年代製成的密封式電池則用作人造衛星、攜帶式電動工具、應急裝備的電源。鎘鎳蓄電池改進的方向之一是採用雙極性結構,這種結構的內阻很小,適用於脈沖大電流放電,能滿足大功率設備的供電需要;此外,電極採用壓成式、燒結式和箔式。

金屬-空氣電池 以空氣中的氧氣作為正極活性物質,金屬作為負極活性物質的一種高能電池。使用的金屬一般是鎂、

鋁、鋅、鎘、鐵等;電解質為水溶液。其中鋅空氣電池已成為成熟的產品。

金屬 -空氣電池具有較高的比能量,這是因為空氣不計算在電池的重量之內。鋅空氣電池的比能量是現生產的電

池中最高的,已達 400瓦·小時/千克(Wh/kg),是一種高性能中功率電池,並正向高功率電池的方向發展。目前生產的金屬-空氣電池主要是一次電池;研製中的二次金屬-空氣 電 池 為 采 用 更 換 金 屬 電 極的 機 械 再 充 電電池 。 由於金屬 - 空 氣電池工作時要不斷地供應空氣,因此它不能在密封狀態或缺少空氣的環境中工作。此外,電池中的電解質溶液

易受空氣濕度的影響而使電池性能下降;空氣中的氧會透過空氣電極並擴散到金屬電極上,形成腐蝕電池引起自放電 。

燃料電池 只要連續供應化學原料就能發生化學反應 ,而將化學能轉變為電能的電解質電池。這些化學原料在電池內部(一種原料在正極而另一種在負極)發生反應時,必須防止它們直接反應,否則將產生化學短路,不能從反應中獲得電能。適用於燃料電池的化學反應主要是燃燒反應,進入實用階段的只有氫氧燃料電池。由於氫氧燃料電池要使用貴重金屬鉑作電極材料,成本過高,因此這種電池現在僅用作宇宙飛船的電源。燃料電池的轉換效率高、比能高,工作時無雜訊無污染,結構簡單。

其他能量轉換電池 主要有:①太陽電池。將太陽光的能量轉換為光能的裝置,由半導體製成。當太陽光照射電池表面時,半導體PN結的兩側形成電位差。其效率在10%以上。②溫差電池。將兩種金屬接成閉合迴路,並在兩接頭處保持不同溫度時,迴路中就會產生溫差電動勢,這種裝置稱作溫差電偶 。將溫差電偶串聯成溫差電堆時 ,即 構成 溫 差電池。也可用半導體材料製成溫差電池,其溫差效應較強。③核電池。將核能直接轉換成電能的裝置稱做核電池。通常由輻射β射線(高速電子流)的放射性源、收集這些電子的集電器以及絕緣體 3 部分組成。放射性源一端因失去負電而成為正極,集電器一端得到負電成為負極,兩電極間形成電位差。這種核電池電壓高,但電流小。

●現今的各種電池

1.化學電池

化學電池,是指通過電化學反應,把正極、負極活性物質的化學能,轉化為電能的一類裝置。經過長期的研究、發展,化學電池迎來了品種繁多,應用廣泛的局面。大到一座建築方能容納得下的巨大裝置,小到以毫米計的品種。無時無刻不在為我們的美好生活服務。現代電子技術的發展,對化學電池提出了很高的要求。每一次化學電池技術的突破,都帶來了電子設備革命性的發展。現代社會的人們,每天的日常生活中,越來越離不開化學電池了。現在世界上很多電化學科學家,把興趣集中在做為電動汽車動力的化學電池領域。

2.干電池和液體電池

干電池和液體電池的區分僅限於早期電池發展的那段時期。最早的電池由裝滿電解液的玻璃容器和兩個電極組成。後來推出了以糊狀電解液為基礎的電池,也稱做干電池。

現在仍然有「液體」電池。一般是體積非常龐大的品種。如那些做為不間斷電源的大型固定型鉛酸蓄電池或與太陽能電池配套使用的鉛酸蓄電池。對於移動設備,有些使用的是全密封,免維護的鉛酸蓄電池,這類電池已經成功使用了許多年,其中的電解液硫酸是由硅凝膠固定或被玻璃纖維隔板吸付的。

3.一次性電池和可充電電池

一次性電池俗稱「用完即棄」電池,因為它們的電量耗盡後,無法再充電使用,只能丟棄。常見的一次性電池包括鹼錳電池、鋅錳電池、鋰電池、銀鋅電池、鋅空電池、鋅汞電池和鎂錳電池。

可充電電池按製作材料和工藝上的不同,常見的有鉛酸電池、鎳鎘電池、鎳鐵電池、鎳氫電池、鋰離子電池。其優點是循環壽命長,它們可全充放電200多次,有些可充電電池的負荷力要比大部分一次性電池高。普通鎳鎘、鎳氫電池使用中,特有的記憶效應,造成使用上的不便,常常引起提前失效。

4.燃料電池

燃料電池是一種將燃料的化學能透過電化學反應直接轉化成電能的裝置

5.染料敏化太陽能電池電池

●電池的安全性測試項目有哪些?

內部短路測試

持續充電測試

過充電

大電流充電

強迫放電

墜落測試

從高處墜落測試

穿透實驗

平面壓碎實驗

切割實驗

低氣壓內擱置測試

熱虐實驗

浸水實驗

灼燒實驗

高壓實驗

烘烤實驗

電子爐實

一般分為:1、2、3、5、7號,其中5號和7號尤為常用,所謂的AA電池就是5號電池,而AAA電池就是7號電池!AA、AAA都是說明電池型號的。

例如:

AA就是我們通常所說的5號電池,一般尺寸為:直徑14mm,高度49mm;

AAA就是我們通常所說的7號電池,一般尺寸為:直徑11mm,高度44mm。

以下是來自本站:鎳氫電池論壇網友補充

另附電池知識若干:

說說常見的「AAAA,AAA,AA,A,SC,C,D,N,F」這些型號

AAAA型號少見,一次性的AAAA勁量鹼性電池偶爾還能見到,一般是電腦筆裡面用的。標準的AAAA(平頭)電池高度41.5±0.5mm,直徑8.1±0.2mm。

AAA型號電池就比較常見,一般的MP3用的都是AAA電池,標準的AAA(平頭)電池高度43.6±0.5mm,直徑10.1±0.2mm。

AA型號電池就更是人盡皆知,數碼相機,電動玩具都少不了AA電池,標準的AA(平頭)電池高度48.0±0.5mm,直徑14.1±0.2mm。

只有一個A表示型號的電池不常見,這一系列通常作電池組裡面的電池芯,我經常給別人換老攝像機的鎳鎘,鎳氫電池,幾乎都是4/5A,或者4/5SC的電池芯。標準的A(平頭)電池高度49.0±0.5mm,直徑16.8±0.2mm。

SC型號也不常見,一般是電池組裡面的電池芯,多在電動工具和攝像機以及進口設備上能見到,標準的SC(平頭)電池高度42.0±0.5mm,直徑22.1±0.2mm。

C型號也就是二號電池,用途不少,標準的C(平頭)電池高度49.5±0.5mm,直徑25.3±0.2mm。

D型號就是一號電池,用途廣泛,民用,軍工,特異型直流電源都能找到D型電池,標準的D(平頭)電池高度59.0±0.5mm,直徑32.3±0.2mm。

N型號不常見,我還不知道啥東西裡面用,標準的N(平頭)電池高度28.5±0.5mm,直徑11.7±0.2mm。

F型號電池,現在是電動助力車,動力電池的新一代產品,大有取代鉛酸免維護蓄電池的趨勢,一般都是作電池芯(個人見解:其實個太大,不好單獨使用,呵呵)。標準的N(平頭)電池高度89.0±0.5mm,直徑32.3±0.2mm。

大家注意到,(平頭)字樣,指的是電池正極是平的,沒有突起,使用做電池組點焊使用的電池芯,一般同等型號尖頭的(可以用作單體電池供電的),在高度上就多了0.5mm。以此類推,我不逐一解釋。還有,電池很多的時候並不是規規矩矩的「AAA,AA,A,SC,C,D,N,F」這些主型號,前面還時常有分數「1/3,2/3,1/2,2/3,4/5,5/4,7/5」,這些分數表示的是池體相應的高度,例如「2/3AA」就是表示高是一般AA電池的2/3的充電電池;再如「4/5A」就是表示高是一般A電池的4/5的充電電池。

還有一種型號表示方法,是五位數字,例如,14500,17490,26500,前兩位數字是指池體直徑,後三位數字是指池體高,例如14500就是指AA電池,即大約14mm直徑,50mm高

充電池的記憶效應

此效應對於早期使用鎳鎘電池最為明顯,當每次充電時,在負極有氫氧化鎘與電極作用,產生金屬鎘而沈積於負電極表面,放電時,負電極表面的金屬鎘反應形成氫氧化鎘,這是溶解沈積的反應,當充放電不完全時,電極內的鎘金屬會慢慢地產生大結晶體而使以後的化學反應受到阻礙,導致電容量在實質的表現上減少此即所謂產生的緣由。

鎳鎘電池因具有強烈的記憶效應很容易因充放電不良,而造成可用容量降低,須約在使用十次後,做一次完全充放電,若已有記憶效應時,則可以連續做三次至五次完全充放電來釋放記憶。

鎳氫電池因記憶效應較弱,因此約在使用過約五十次時,做一次完全充放電即可。而鋰電池因沒有記憶效應,所以千萬不要放電,否則只會破壞電池結構,損耗電池的使用壽命。
參考資料:
1.
2.https://secure.wikimedia.org/wikipedia/zh/wiki/%E7%94%B5%E6%B1%A

② 選擇性腐蝕的定義和簡介

selective corrosion
如黃銅脫鋅。而在多相合金中任何一相發生優先溶解,稱之為組織的選擇性腐蝕。鑄鐵因腐蝕而發生鐵素體的溶解以及碳化物和石墨在表面上富集是這類腐蝕的實例。由於腐蝕後剩下一個已優先除去某種合金組分的組織結構,所以也常稱為去合金化。去合金化後材料總的尺寸變化不大,但金屬已失去了強度,因而易於發生危險事故。
除水溶液腐蝕介質外,在其他介質中以及高溫腐蝕的條件下,也會發生選擇性腐蝕。原子能反應堆中常用的液態金屬介質,會對合金中某些組分有選擇地溶解,造成金屬材料表面層內這些成分貧化,也屬於選擇性腐蝕。
熔鹽體系是引起選擇腐蝕的危險介質,合金中比較活潑的組分在熔鹽介質中的選擇性溶解,常與高溫氧化同時發生。在較高溫度的熔鹽體系內,合金中較活潑的元素和空位形成雙向擴散,空位向內運動時聚集形成空腔,出現了克肯達耳效應(見金屬中的擴散)。雖然腐蝕的溶解量不大,但對材料的高溫力學性能影響很大。燃氣輪機的轉子葉片受熱應力較大,容易因此造成破壞事故。晶界(見界面)上的選擇性腐蝕,其危險性更大。

③ 化學化學!!!

鹽類熔化形成的熔體,是由陽離子和陰離子組成的離子熔體。中國明代李時珍在《本草綱目》一書中記有硝石(硝酸鉀)受熱熔成液體,是有關熔鹽的最早文獻記載之一。19世紀初英國化學家戴維(H.Davy)最早用熔鹽電解法製取金屬。用該法可以製取許多種化學性質較活潑的金屬。如鋁、鎂、稀土金屬、鈉、鋰、鈣、釷、鈾、鉭等。19世紀末以來用冰晶石-氧化鋁系熔鹽電解煉鋁和用含氯化鎂的氯化物熔鹽系電解煉鎂都已進行大規模工業生產。鋁、鈦等金屬可用可溶性陽極熔鹽電解(電積)方法精煉。在冶金工業中,熔鹽還用作合金電渣熔煉用爐渣、輕合金熔煉和焊接用熔劑、合金熱處理鹽浴爐的介質等。原子能工業和核燃料冶金技術的發展,給熔鹽的應用開拓了新的園地。除了核燃料製取和核燃料後處理可以使用熔鹽電解質或反應介質外,採用氟化鋰-氟化鈹-氟化釷熔鹽系為核燃料的熔鹽反應堆,有希望成為利用釷作核燃料的新能源。熔鹽載熱劑用於化工、冶金生產,也有希望用於原子能工業。以熔鹽為電解質的燃料電池和蓄電池是有希望的化學電源。
由於熔鹽是冶金工業中的常用物料,熔鹽物理化學已成為冶金過程物理化學的重要分支。
熔鹽的結構 熔鹽由陽離子和陰離子組成。離子間的相互作用力包括靜電作用力(它是服從庫侖定律的長程作用力)、近程排斥力和范德華力(一譯范德瓦爾斯力)。作為初級近似,可用靜電硬球模型描述熔鹽結構。即認為陰、陽離子都是帶電而具有一定半徑的硬球,而將范德華力忽略不計或作為校正項。由於靜電作用,熔鹽中每個離子均為異號離子所包圍。X射線衍射實驗結果表明:和晶體結構相比,熔鹽中陰、陽離子最近距離非但沒有增大,反而略有減少,但每個離子的第一近鄰數(配位數)卻比晶體中顯著減少。這說明熔鹽中存在不規則分布的縫隙或空位。兩種熔鹽互相混溶後形成的熔鹽溶液,其結構亦大體相似。根據離子間相互作用的勢能方程式,可用計算機模擬熔鹽中離子的運動和排布,進而計算熔鹽或熔鹽溶液的許多物理化學性質。
熔鹽的物理化學性質和相圖 熔鹽和熔鹽溶液的物理化學性質的研究,不僅有助於對熔鹽和熔鹽溶液結構的了解,而且為尋找生產技術上有用的熔鹽系提供了依據。合適的熔鹽電解液的選擇是熔鹽電解工藝取得成功的一個關鍵。熔鹽系的熔點(相平衡)、密度、表面張力或界面張力、粘度、電導率等性質,對電解生產都有重要影響。熔鹽相圖的研究,對於了解熔鹽間的相互作用和制定熔鹽電解工藝都很重要。常用的熔鹽相圖測量方法是目測、變溫法和差熱分析法。藉助計算機利用熱力學函數計算熔鹽相圖,已成為熔鹽相圖測量的輔助手段。熔鹽相圖的類型與熔鹽間相互作用的類型有關。有些價型、離子半徑很接近的熔鹽在液相中形成近乎理想的溶液,在凝固後則形成連續式固溶體。例如氯化鉀-氯化銣系。價型或離子半徑相差較大時,多形成低共熔點的相圖。例如氯化鉀-氯化鋰系。有的熔鹽相圖有穩定或不穩定的中間化合物。少數熔鹽系液相不完全混溶,形成液相分層體系。
除價型、離子半徑很接近的熔鹽往往形成近乎理想的溶液外,大多數熔鹽系的混合熱不為零。許多熔鹽溶液可用規則溶液理論計算熱力學性質。
金屬和氣體在熔鹽中的溶解 許多熔鹽和液體金屬間有一定的相互溶解度。金屬在熔鹽中的溶液有時稱為「金屬霧」(metal fog)。這是由於過去曾經將這種溶液誤認為膠體溶液之故。「金屬霧」對電解冶煉極為不利,因為它使陰極析出的金屬溶解損失,從而降低了電流效率。不同的金屬在不同的熔鹽系中溶解度相差很懸殊。鹼金屬、鈣、稀土金屬、鎘、鉍等在其本身鹵化物熔鹽中有較大的溶解度,而鎵、鉈、錫、鉛等則溶解度很小。
許多氣體也能溶於熔鹽。陽極氣體的溶解並和陰極的金屬作用,是影響熔鹽電解時電流效率的重要因素。
熔鹽的電化學研究 熔鹽的電化學性質對熔鹽電解技術至關重要。熔鹽電導率、熔鹽中金屬的電極電勢和電化順序以及熔鹽電解的機理和電極過程等等,都是熔鹽電化學的研究內容。熔鹽的電極電勢測定是研究熔鹽溶液熱力學性質的有效手段;也是研究熔鹽電解和金屬在熔鹽中的腐蝕作用的重要依據。熔鹽導電機理和遷移數測量、熔鹽電解電極表面的擴散和極化研究,以及固態金屬在陰極析出時的結晶過程的研究,都是了解和掌握熔鹽電解原理的重要方面。陽極效應是熔鹽電解的特徵現象。當電解成分和電流密度達到某種閾值時,陽極效應使槽電壓突然急劇升高,並伴有某些特殊的外觀徵象。在熔鹽的工業電解情況下,陽極效應造成電能損失,但它同時可用作電解槽工作的一個標志,對陽極效應的機理,目前尚無統一的看法。

④ 為什麼只能在高溫熔鹽中電解生產而不能在水溶液中電解生產金屬鋁

您好:
我是華威熔鹽泵客服,關於熔鹽或熔鹽泵相關問題,都可以問我
具體要看鋁合金的成分來定。一般來說,如果熔鹽比較純凈,含氯離子比較少的話,對鋁合金的腐蝕是比較小的。更多問題請參見華威熔鹽泵官網www.hwpump.com

⑤ 影響氣體在鋼中溶解度的因素有哪些

氣體在金屬中的溶解度主要與溫度、氣體壓力及金屬成分有關。(1) 溫度的影響主要看氣體在金屬中的溶解反應是吸熱還是放熱。氫、氮在鋼中的溶解反 應均為吸熱,因此溫度升高可大大地提高它們在鋼中的溶解度。特別是當發生晶型轉變或由固態變液態時,氫、氮的溶解度都會發生明顯變化。且氫、氮在 y-Fe中的溶解度大於它們在crFe及心Fe中的溶解度。(2) 氣體分壓力的影響雙原子氣體在金屬中的溶解度與氣體分壓力的平方根成正比。氫、氮均為 雙原子氣體,它們在鋼液中的溶解度與它們的氣相分壓力的平方根呈直線關 系。因此,在鋼的熔煉、澆注過程中都必須設法降低有害氣體的分壓力,這樣 可有效地降低氣體在金屬中的溶解度。(3)合金成分對溶解度的影響在多元素合金中,合金成分也影響氣體的溶解度。在鐵液中、硅含量的增加而減少,隨含錳量的增加而增大,因此,鑄鐵 比鑄鋼的吸氣能力小。

⑥ 怎樣才能輕易辨別出鋁合金還是鈦合金呢

第一個辦法是測重量。同樣尺寸的鋁門最輕,鈦門稍重,鋼門最重。可以用鋁鋼混合做出和鈦合金一樣重的門。很容易判斷門里有沒有鋼。拿塊磁鐵來看它能不能吸到門上。鈦合金沒有磁性,不會吸磁鐵。

第二個方法是看顏色。找一個不起眼的小角,用砂紙磨掉表面一層氧化膜或漆使下面的金屬完全暴露出來。仔細觀察金屬的顏色。拿一個空可樂易拉罐(鋁制的),把表面的漆磨掉,拿來和門作比較。鋁合金是淺灰色,鈦合金是深灰色,而且看起來比鋁更有光澤。

(1)比硬度,一塊是鋁一塊是鈦合金,只要二塊材料相互劃畫。劃傷的一塊是鋁。因為鈦比鋁硬度高。

(2)比耐酸,鋁遇酸馬上起化學反應,鈦耐酸性很好。

(3)比耐鹼,鋁遇鹼也就起化學反應,鈦耐鹼性很好。

(3)比強度,用手鉗、剪刀破壞鋁很生力,鈦很費力。

(4)比顏色,在一張白紙上劃幾下鋁馬上留下黑色劃痕,鈦看不見劃痕。

(6)如何判斷合金在熔鹽中的溶解度擴展閱讀

鈦合金的缺點

鈦及鈦合金主要限制是在高溫與其它材料的化學反應性差。此性質迫使鈦合金與一般傳統的精煉、熔融和鑄造技術不同,甚至經常造成模具的損壞,使的鈦合金的價格變的十分昂貴。

因此它們剛開始大多用在飛機結構、航空器,以及用在石油和化學工業等高科技工業。由於太空科技的發達、人民生活質量的提升,所以鈦合金也漸漸地用來製成民生用品,造福人民的生活,只是這些產品價格仍然偏高,多屬於高價位的產品,這是鈦合金無法發揚光大的最大缺點。

⑦ 鑄造鋁合金熔煉中配料計算公式

配料計算公式為:

投料量=總投料量x元素含量

因為各種材料均存在燒損,並且各元素都可通過後期添加中間合金進行調整,所以可以不考慮各元素燒損率。

(7)如何判斷合金在熔鹽中的溶解度擴展閱讀

鋁合金精煉主要是去除合金液中的氣體和非金屬夾雜物。鋁合金中的氣體主要是氫(佔85%以上),夾雜物主要是氧化鋁。

由於氫在液態和固態鋁合金中的飽和溶解度相差近20倍,在鋁合金凝固過程中極易析出氫,使鑄件產生針孔。

夾雜物和氣體是相互作用的,在工業純鋁中每100 g鋁合金液中氫含量高於0.1 m L時,就會出現氣孔,而在高純鋁中每100 g鋁合金液中含氫量高達0.4 m L時,才會出現氣孔。可見除氣必須除渣,而除渣是除氣的基礎。

⑧ 介質熔鹽,溫度600度-700度,管道和設備用什麼材質合金

一:對應牌號:MONEL400銅鎳抗腐蝕鎳合金

二:化學成分:碳C: ≤0.3 ,鎳NiNi: 63~67,鋁AL:≤0.50,鐵Fe ≤ 2.5,錳Mn: ≤1.50,硅Si:≤1.00,磷P:≤0.015,硫Si: ≤0.020,銅Cu:≤0.75

三:應用范圍應用領域:常年現貨庫存 圓棒 板材 無縫管 卷帶!

合金是一種多用途的材料,在許多工業領域都能應用如動力工廠中的無縫輸水管、蒸汽管,海水交換器和蒸發器,海水使用設備的泵軸和螺旋槳以及核工業用於製造鈾提煉和同位素分離的設備,製造生產鹽酸設備使用的泵和閥等。在材料領域中,合金可以用來製作無縫管、圓管、焊帶、帶材等等。

四:物理性能:密度g/cm3(8.83g) 熔點℃(1300~1390)抗拉強度σb/MPa(480) 屈服強度σp0.2/MPa (170) 延伸率σ5 /%(35)

五:概況:合金在氟氣、鹽酸、硫酸、氫氟酸以及它們的派生物中有極優秀的耐蝕性。同時在海水中比銅基合金更具耐蝕性。酸介質:在濃度小於85%的硫酸中都是耐蝕的。Monel400是可耐氫氟酸中為數極少的重要材料之一。水腐蝕:Monel400合金在多數水腐蝕情況下,不僅耐蝕性極佳,而且孔蝕、應力腐蝕等也很少發現,腐蝕速度小於0.025mm/a。高溫腐蝕:在空氣中連續工作的zui高溫度一般在600℃左右,在高溫蒸汽中,腐蝕速度小於0.026mm/a。氨: 由於合金鎳含量高,故可耐585℃以下無水氨和氨化條件下的腐蝕。

⑨ 怎麼看合金相圖

那就拿鋁的說吧
一.Al-Mg-Si系合金的基本特點: 6063鋁合金的化學成份在GB/T5237-93標准中為0.2-0.6%的硅、0.45-0.9%的鎂、鐵的最高限量為0. 35%,其餘雜質元素(Cu、Mn、Zr、Cr等)均小於0.1%。這個成份范圍很寬,它還有很大選擇餘地。
6063鋁合金是屬鋁-鎂-硅系列可熱處理強化型鋁合金,在AL-Mg-Si組成的三元系中,沒有三元化合物,只有兩個二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si偽二元截面為分界,構成兩個三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如圖一、田二所示:
在Al-Mg-Si系合金中,主要強化相是Mg2Si,合金在淬火時,固溶於基體中的Mg2Si越多,時效後的合金強度就越高,反之,則越低,如圖2所示,在α(Al)-Mg2Si偽二元相圖上,共晶溫度為595℃,Mg2Si的最大溶解度是1.85%,在500℃時為1. 05%,由此可見,溫度對Mg2Si在Al中的固溶度影響很大,淬火溫度越高,時效後的強度越高,反之,淬火溫度越低,時效後的強度就越低。有些鋁型材廠生產的型材化學成份合格,強度卻達不到要求,原因就是鋁捧加熱溫度不夠或外熱內冷,造成型材淬火溫度太低所致。
在Al-Mg-Si合金系列中,強化相Mg2Si的鎂硅重量比為1.73,如果合金中有過剩的鎂(即Mg:Si>1. 73),鎂會降低Mg2Si在鋁中的固溶度,從而降低Mg2Si在合金中的強化效果。如果合金中存在過剩的硅,即Mg:Si<1.73,則硅對Mg2Si在鋁中的固溶度沒有影響,由此可見,要得到較高強度的合金,必須Mg:Si<1.73。 二.合金成份的選擇 1.合金元素含量的選擇
6063合金成份有一個很寬的范圍,具體成份除了要考慮機械性能、加工性能外,還要考慮表面處理性能,即型材如何進行表面處理和要得到什麼樣的表面。例如,要生產磨砂料,Mg/Si應小一些為好,一般選擇在Mg/Si=1-1.3范圍,這是因為有較多相對過剩的Si,有利於型材得到砂狀表面;若生產光亮材、著色材和電泳塗漆材,Mg/Si在1.5-1.7范圍為好,這是因為有較少過剩硅,型材抗蝕性好,容易得到光亮的表面。
另外,鋁型材的擠壓溫度一般選在480℃左右,因此,合金元素鎂硅總量應在1.0%左右,因為在500℃時,Mg2Si在鋁中的固溶度只有1.05%,過高的合金元素含量會導致在淬火時Mg2Si不能全部溶入基體,有較多的末溶解Mg2Si相,這些Mg2Si相對合金的強度沒有多少作用,反而會影響型材表面處理性能,給型材的氧化、著色(或塗漆)造成麻煩。
2.雜質元素的影響
①鐵,鐵是鋁合金中的主要雜質元素,在6063合金中,國家標准中規定不大於0.35,如果生產中用一級工業鋁錠,一般鐵含量可控制在0.25以下,但如果為了降低生產成本,大量使用回收廢鋁或等外鋁,鐵就根容易超標。Fe在鋁中的存在形態有兩種,一種是針狀(或稱片狀)結構的β相(Al9Fe2Si2),一種為粒狀結構的α相(Al12Fe3Si),不同的相結構,對鋁合金有不同的影響,片狀結構的β相要比粒狀結構α相破壞性大的多,β相可使鋁型材表面粗糙、機械性能、抗蝕性能變差,氧化後的型材表面發青,光澤下降,著色後得不到純正色調,因此,鐵含量必須加以控制。
為了減少鐵的有害影響可採取如下措施。
a)熔煉、鑄造用所有工具在使用前塗涮塗料,盡可能減少鐵溶人鋁液。
b)細化晶粒,使鐵相變細,變小,減少其有害作用。
c)加入適量的鍶,使β相轉變成α相,減少其有害作用。
d)對廢雜料細心挑選,盡可能的減少鐵絲、鐵釘、鐵屑等雜物進入熔鋁爐造成鐵含量升高。
②其它雜質元素
其它雜質元素在電解鋁錠中都很少,遠遠低於國家標准,在使用回收廢雜鋁時就可能超過標准;在生產中,不但要控制每個元素不能超標,而且要控制雜質元素總量也不能超標,當單個元素含量不超標,但總量超標時,這些雜質元素同樣對型材質量有很大影響。特別需要提出強調的是,實踐證明,鋅含量到0.05時(國標中不大於0.1)型材氧化後表面就出現白色斑點,因此鋅含量要控制到0.05以下。 三.6063鋁合金的熔煉 1.控制好熔煉溫度
鋁合金熔煉是生產優質鑄棒的最重要工藝環節之一,若工藝控制不當,會在鑄捧中產生夾渣、氣孔,晶粒粗大,羽毛晶等多種鑄造缺陷,因此必須嚴加控制。
6063鋁合金的熔煉溫度控制在750-760℃之間為佳,過低會增大夾渣的產生,過高會增大吸氫、氧化、氮化燒損。研究表明,鋁液中氫氣的溶解度在760℃以上急劇上升,當熱減少吸氫的途徑還有許多,如烘乾溶煉爐和熔煉工具,防止使用熔劑受潮變質等。但熔煉溫度是最敏感因素之一,過離的熔煉溫度不但浪費能源,增加成本,而且是造成氣孔,晶粒粗大,羽毛晶等缺陷的直接成因。
2.選用優良的熔劑和適當的精煉工藝
熔劑是鋁合金熔煉中使用的重要輔助材料,目前市場上所售熔劑中主要成份為氯化物,氟化物,其中氯化物吸水性強,容易受潮,因此,熔劑的生產中必須烘乾所用原料,徹底除去水份,包裝要密封,運輸、保管中要防止破損,還要注意生產日期,如保管日期過長,同樣會發生吸潮現象,在6063鋁合金的熔煉中,使用的除渣劑、精煉劑、覆蓋劑等熔劑如果吸潮,都會使鋁液產生不同程度的吸氫。
選擇好的精煉劑,選擇合適的精練工藝也是非常重要的,目前6063鋁合金的精煉絕大多數採用噴粉精煉,這種精煉方法能使精煉劑與鋁液充分接觸,可使精煉劑發揮最大效能。雖然這個特點是顯而易見的,但是精煉工藝也必須注意,否則得不到應有效果,噴粉精煉中所用氮氣壓力以小為好,能滿足吹出粉劑為佳,精煉中如果使用的氮氣不是高純氯(99.99%N2),吹入鋁液的氮氣越多,氟氣中的水份使鋁液產生的氧化和吸氫越多。另外,氟氣壓力高,侶液產生的翻卷波浪大,增大產生氧化夾渣的可能性。如果精煉中使用的是高純氮,精煉壓力大,產生的氣泡大,大氣泡在鋁液中的浮力大,氣泡迅速上浮,在鋁液中的停留時間短,除氫效果並不好,浪費氮氣,增加成本。因此氮氣應少用,精煉劑應多用,多用精煉劑只有好處,沒有壞處。噴粉精煉的工藝要點是用盡可能少的氣體,噴進鋁液盡可能多的精煉劑。
3.晶粒細化
晶粒細化是鋁合金熔鑄中暈重要的工藝之一,也是解決氣孔、晶粒粗大、光亮晶、羽毛晶、裂紋等鑄造缺陷的最有效措施之一。在合金鑄造中,均是非平衡結晶,所有的雜質元素(當然也包括合金元素)絕大部分集中分布在晶界,晶粒越小,晶界面積就越大,雜質元素(或合金元素)的均勻度就越高。對雜質元素而言,均勻度高,可減少它的有害作用,甚至將少量雜質元素的有害變為有益;對合金元素麵言,均勻度高,可發揮合金元素更大的合金化艘能,達到充分利用資源的目的。
細化晶粒、增大晶界面積、增大元素均勻度的作用可通過下面的計算加以說明。
假設金屬塊1與2有同樣的體積V,均由立方體晶粒構成,金屬塊1的晶粒邊長為2a,2的邊長為a,那麼金屬塊1的晶界面積為: 金屬塊2的晶界面積為: 金屬塊2的晶界面積是金屬塊1的2倍。
由此可見合金晶粒直徑減小一倍,晶界面積就要增大—倍,晶界單位面積上的雜質元素將減少一倍。
在6063鋁合金的生產中,對磨砂料來說,由於要通過腐蝕使型材產生均勻砂面,那麼合金元素及雜質元素的均勻分布就顯得尤為重要。晶粒越細,合金元素(雜質元素)的分布越均勻,腐蝕後得到的砂面就越均勻。 四.6063鋁合金的澆鑄 1.選擇合理的澆鑄溫度
合理的澆鑄溫度也是生產出優質鋁棒的重要因素,溫度過低,易產生夾渣、針孔等鑄造缺陷。溫度過高,易產生晶粒粗大、羽毛晶等鑄造缺陷。
做了晶粒細化處理後的6063鋁合金液,鑄造溫度可適當提高,一般可控制在720-740℃之間,這是因為:①鋁液經晶粒細化處理後變粘,容易凝固結晶。②鋁棒在鑄造中結晶前沿有一個液固兩相過度帶,較高的鑄造溫度有較窄的過度帶,過度帶窄有利於結晶前沿排出的氣體逸出,當然溫度不可過高,過高的鑄造溫度會縮短晶粒細化劑的有效時間,使晶粒變得相對較大。
2.有條件時,充分預熱,烘幹流槽、分流盤等澆鑄系統,防止水分與鋁液反應造成吸氫。
3.鑄造中,盡可能的避免鋁液的紊流和翻卷,不要輕易用工具攪動流槽及分流盤中的鋁液,讓鋁液在表面氧化膜的保護下平穩流人結晶器結晶,這是因為工具攪動鋁液和液流翻卷都會使鋁液表面氧化膜破裂,造成新的氧化,同時將氧化膜捲入鋁液。經研究表明,氧化膜有極強的吸附能力,它含有2%的水份,當氧化膜捲入鋁液後,氧化膜中的水份與鋁液反應,造成吸氫和夾渣。
4.對鋁液進行過濾,過濾是除去鋁液中非金屬夾渣最有效的方法,在6063鋁合金的鑄造中,一般用多層玻璃絲布過濾或陶瓷過濾板過濾,無論是採取何種過濾方法,為了保證鋁液能正常的過濾,鋁液在過濾前應除去表面浮渣,因為表面浮渣易堵塞過濾材料的過濾網孔,使過濾不能正常進行,除去鋁液表面浮渣的最簡單方法是在流槽中設置一擋渣板,使鋁液在過濾前除去浮渣。 五.6063鋁合金的均化處理 1.非平衡結晶
如圖三所示,是由A、B兩種元素構成的二元相圖的一部分,成份為F的合金凝固結晶,當溫度下降到T1時,固相平衡成份應為G,實際成份為G』,這是因為在鑄造生產中,冷卻凝固速度快,合金元素的擴散速度小於結晶速度,即固相成份不是按CD變化,而是按CD』變化,從而產生了晶粒內化學成份的不平衡現象,造成了非平衡結晶。
2.非平衡結晶產生的問題
鑄造生產出的鋁合金棒其內部組織存在兩方面的問題:①晶粒間存在鑄造應力;②非平衡結晶引起的晶粒內化學成份的不平衡。由於這兩個問題的存在,會使擠壓變得困難,同時,擠壓出的產品在機械性能、表面處理性能方面都有所下降。因此,鋁棒在擠壓前必須進行均勻化處理,消除鑄造應力和晶粒內化學成份不平衡。
3.均勻化處理
均勻化處理就是鋁棒在高溫(低於過燒溫度)下通過保溫,消除鑄造應力和晶粒內化學成份不平衡的熱處理。Al-Mg-Si系列的合金過燒溫度應該是595℃,但由於雜質元素的存在,實際的6063鋁合金不是三元系,而是一個多元系,因此,實際的過燒溫度要比595℃低一些,6063鋁合金的均勻化溫度可選在530-550℃之間,溫度高,可縮短保溫時間,節約能源,提高爐子的生產率。
4.晶粒大小對均勻化處理的影響
由於固體原子之間的結合力很大,均勻化處理是在高溫下合金元素從晶界(或邊沿)擴散到晶內的過程,這個過程是很慢的。容易理解,粗大晶粒的均化時間要比細晶粒的均勻化時間長得多,因而晶粒越細,均勻化時間就越短。
5.均勻化處理的節能措施
均勻化處理需要在高溫下通過較長時間保溫,對能源需求大,處理成本高,因此,目前絕大多數型材廠對鋁棒未進行均勻化處理。其最重要的原因就是均勻化處理需要較高成本所致。降低均勻化處理成本的主要措施有:
①細化晶粒
細化晶粒可有效的縮短保溫時間,晶粒越細越好。
②加長鋁棒加熱爐,按均勻化和擠壓溫度分段控制,滿足不同工藝要求。這一工藝主要好處是:
a)不增加均勻化處理爐。
b)充分利用鋁捧均勻化後的熱能,避免擠壓時再次加熱鋁棒。
c)鋁捧加熱保溫時間長,內外溫度均勻,有利於擠壓和隨後的熱處理。
綜上所述,生產出優質6063鋁合金鑄棒,首先是根據生產的型材選擇合理的成分,其次是嚴格控制熔煉溫度、澆鑄溫度,做好晶粒細化處理、合金液的精煉、過濾等工藝措施,細心操作,避免氧化膜的破裂與捲入。最後,對鋁棒進行均勻化處理,這樣就可生產出優質鋁棒,為生產優質型材提供一個可靠的物質基礎。
先看水平線,每條水平線都表示一個恆溫轉變,然後根據和水平線中間相接的相的位置和兩端相連相的狀態來判斷轉變的類型,最後再根據相區接觸法則作進一步的判斷,最好把相圖分開來分別研究就會相對簡單,如果整個一起來看那就有點難了.

閱讀全文

與如何判斷合金在熔鹽中的溶解度相關的資料

熱點內容
20鋼筋標准一根多少米 瀏覽:886
鋼結構焊縫6是什麼意思 瀏覽:695
鈦合金和鋁合金哪個做門窗更好 瀏覽:473
目前鋼鐵為什麼會漲價 瀏覽:544
鋼管里架怎麼算 瀏覽:342
鎢鋼如何和普通鋼焊接在一起 瀏覽:338
跟骨取鋼板多久能脫拐 瀏覽:758
如何解讀不銹鋼管規格尺寸 瀏覽:903
18年5月鋼材價格是多少 瀏覽:68
河北潤宏鋼鐵貿易有限公司怎麼樣 瀏覽:150
請問鋼筋里的元素有哪些 瀏覽:96
鋼鐵雄心2怎麼改國家介紹 瀏覽:343
鋼鐵雄心4省份id是什麼意思 瀏覽:316
鋼鐵雄心4怎麼查看國力排行 瀏覽:745
鋼鐵俠裡面伊森原名叫什麼 瀏覽:879
1kg鋼板密度是多少 瀏覽:669
山東海冶鋼管有限公司怎麼樣 瀏覽:335
花園地下室鋼材用量是多少 瀏覽:626
合金牙一般多少錢 瀏覽:219
q235無縫方矩管廠 瀏覽:649