A. 铸钢件为啥会有裂纹
铸钢件有裂纹是常见的缺陷之一,也是危害最大的缺陷。1、成型过程中形成的裂纹专又分为热裂属和冷裂 2、气割,碳刨,焊补时形成的裂纹。
防止措施:1、铸件设计和工艺上采取措施改变和减少局部热节 2、工艺上采取放裂纹,冷铁 3、提高钢水质量,减少夹杂物 4、气割,碳刨,焊补采用预热,后热去应力措施。
B. 焊接时低合金钢出现焊接问题应采取哪些措施,焊接方法,焊接工艺参数、焊接材料有哪些,是怎么焊前预热的
一、焊接时低合金钢出现焊接问题
强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是:
1、热影响区的淬硬倾向 含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV钢等,淬硬倾向很小。随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。
2、冷裂纹 低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟的性质,危害性很大。例如,材料为18MnMoNb钢壁厚 115mm 的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。
低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。
3、热裂纹 一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。
强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。
4、粗晶区脆化 热影响区中被加热至 1100℃ 以上的粗晶区,当焊接线能量过大时,粗晶区的晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。
13 试述低合金高强钢焊接时的主要工艺措施。
⑴预热 预热是防止裂纹的有效措施,并且还有助于改善接头性能。但预热会恶化劳动条件,使生产工艺复杂化,过高的预热温度还会降低接头韧性。因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。
⑵焊接线能量的选择 含碳低的热轧钢(09Mn2、09MnNb钢等)以及含碳量偏下限的16Mn钢焊接时,因为这些钢的冷裂淬硬、脆化等倾向小,所以对焊接线能量没有严格的限制。焊接含碳量偏高的16Mn钢时,为降低淬硬倾向,焊接线能量应偏大一点。对于含V、Nb、Ti的钢种,为降低热影响区粗晶脆化所造成的不利影响,应选择较小的焊接线能量。如15MnVN钢的焊接线能量应控制在40~45kJ/cm以下。
对于碳及合金元素含量较高而屈服点为490MPa的正火钢(如18MnMoNb钢等),因淬硬倾向大,应选择较大的焊接线能量,但当采用焊前预热时,为了避免过热倾向,可以适当地减少线能量。
⑶后热及焊后热处理 后热是指焊接结束或焊完一条焊缝后,将焊件立即加热至150~250℃范围内,并保温一段时间,使接头中的氢扩散逸出,防止延迟裂纹产生。
对于厚壁容器、高刚性的焊接结构以及一些在低温、耐蚀条件下工作的构件,焊后应及时进行消除应力的高温回火,其目的是消除焊接残余应力,改善组织。
焊后立即进行高温回火的焊件,无需再进行后热处理。
二、16Mn钢的焊接工艺
16Mn钢属于碳锰钢,碳当量为0.345%~0.491%,屈服点等于343MPa(强度级别属于343MPa级)。16Mn钢的合金含量较少,焊接性良好,焊前一般不必预热。但由于16Mn钢的淬硬倾向比低碳钢稍大,所以在低温下(如冬季露天作业)或在大刚性、大厚度结构上焊接时,为防止出现冷裂纹,需采取预热措施。不同板厚及不同环境温度下16Mn钢的预热温度,见表8。
16Mn钢手弧焊时应选用E50型焊条,如碱性焊条E5015、E5016,对于不重要的结构,也可选用酸性焊条E5003、E5001。对厚度小、坡口窄的焊件,可选用E4315、E4316焊条。
焊接16Mn钢的预热温度
焊件厚度 (mm) 不同气温下的预热温度计(℃)
16以上 不低于- 10℃ 不预热,- 10℃ 以下预热100~150℃
16~24 不低于- 5℃ 不预热,- 5℃ 以下预热100~150℃
25~40 不低于 0℃ 不预热, 0℃ 以下预热100~150℃
40以上 均预热100~150℃
16Mn钢埋弧焊时H08MnA焊丝配合焊剂HJ431(开I形坡口对接)或H10Mn2焊丝配合焊剂HJ431(中板开坡口对接),当需焊接厚板深坡口焊缝时,应选用H08MnMoA焊丝配合焊剂HJ431。
16Mn钢是目前我国应用最广的低合金钢,用于制造焊接结构的16Mn钢均为16MnR和16Mng钢。
三、18MnMoNb钢的焊接工艺
18MnMoNb钢的屈服点等于490MPa(属于490MPa级钢),由于碳及合金钢元素的含量都较高,所以淬火硬倾向及冷裂倾向均比16Mn钢大。焊接工艺要点:
1)除电渣焊外,焊前对焊件应采取预热措施,预热温度控制在150~ 180℃ 。对于刚度较大的接头,预热温度应提高至180~ 230℃ 。焊后或中断焊接时,应立即进行250~ 350℃ 的后热处理。
2)为保证接头性能和质量,应适当控制焊接线能量,如手弧焊时,焊接线能量应控制在24kJ/cm以下;埋弧焊时,焊接线能量应控制在35kJ/cm以下。但焊接线能量不能过小,否则焊接接头易出现淬硬组织和降低韧性。同时,层间温度应控制在预热温度和 300℃ 之间。
4)焊后应进行热处理。电渣焊接头热处理的方式是900~ 980℃ 正火加630~ 670℃ 回火。手弧焊及埋弧焊接头进行消除焊接残余应力的高温回火处理,回火温度比一般钢材回火温度低 30℃ 左右。
18MnMoNb钢手弧焊时应选用E60型焊条,如碱性焊条E6015、E6016,
18MnMoNb钢埋弧焊时H08Mn2MoA焊丝配合焊剂HJ431。
以上是两种典型的低合金钢的焊接方法,焊接工艺参数、焊接材料选择的焊接要点望阅读后能得到一些启发,以后在焊接低合金钢是能派上用处。希望你能早日掌握此技术,祝你成功。
C. 低合金高强钢的焊接经常会出现冷裂纹、热裂纹问题,有没有什么改善措施呢
钢结构焊接常出现的另一质量问题是产生焊接裂纹。分为热裂纹和冷裂纹两类。
热裂纹是指高温下所产生的裂纹,又称高温裂纹或结晶裂纹,通常产生在焊缝内部,有时也可能出现在热影响区,表现形式有:纵向裂纹、横向裂纹、根部裂纹弧坑裂纹和热影响区裂纹。其产生原因是由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层形式存在从而形成偏析,凝固以后强度也较低。当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开,形成裂纹。此外,如果母材的晶界上也存在有低熔点共晶和杂质,当焊接拉应力足够大时,也会被拉开。总之,热裂纹的产生是冶金因素和力学因素共同作用的结果。
针对其产生原因,其预防措施如下:
限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素和有害杂质的含量,特别应控制硫、磷的含量和降低含碳,一般用于焊接的钢材中硫的含量不应大于0.045%,磷的含量不应大于0.055%;另外钢材含碳量越离,焊接性能越差,一般焊缝中碳的含量控制在0.10%以下时,热裂纹敏感性可大大降低。二是调整焊缝金属的化学成分,改善焊缝组织,细化焊缝品粒,以提高其塑性,减少或分散偏析程度,控制低熔点共品的有害影响。三是采用碱性焊条或焊剂,以降低焊缝中的杂质含摄,改善结晶时的偏析程度。适当提高焊缝的形状系数,采用多层多道焊接方法,避免中心线偏析,也可防止中心线裂纹。另外在操作时采用合理的焊接顺序和方向,采用较小的焊接线能超,整体预热和锤击法,收弧时填满弧坑等工艺措施,也能预防热裂纹的产生。
冷裂纹一般是指焊缝在冷却过程中温度降到马氏体转变温度范围内(300~200℃以下)产生的裂纹。可以在焊接后立即出现,也可以在焊接以后的较长时间才发生,故也称为延迟裂纹。其形成的基本条件有3个:焊接接头形成淬硬组织;扩散氢的存在和浓集;存在着较大的焊接拉伸应力。
冷裂纹的预防措施主要有几方面:
一是选择合理的焊接规范和线能,改善焊缝及热影响区组织状态,如焊前预热、控制层间温度、焊后缓冷或后热等以加快氢分子逸出;
二是采用碱性焊条或焊剂,以降低焊缝中的扩散氧含量。
三是焊条和焊剂在使用前应严格按照规定的要求进行烘干(低氢焊条300℃~350℃保温lh;酸性焊条l00℃~l50℃保温lh;焊剂200℃~250°保温2h),认真清理坡口和焊丝,汰除油污、水分和锈斑等脏物,以减少氢的来源。
四是焊后及时进行热处理。一种是进行退火处理,以消除内应力,使淬火组织回火,改善其韧性;二是进行消氢处理,使氢从焊接接头中充分逸出。除此之外,选材上提高钢材质量,减少钢材中的层状夹杂物,工艺上采取可降低焊接应力的各种措施,也都是必要的。
D. 铸钢件:低碳钢铸件、中碳钢铸件、高碳钢铸件铸造工艺有什么不同
低碳钢铸件、中碳钢铸件、高碳钢铸件铸造工艺区别:
一、冒口设计区别
高碳钢体积收缩率大专,设计冒口相对属较大;中碳钢次之,低碳钢体积收缩率最小;
二、浇注温度区别
高碳钢浇注温度低,中碳钢次之,低碳钢浇注温度最高;
三、凝固方式区别
高碳钢呈整体凝固趋势,低碳钢为逐层凝固,中碳钢处于中间凝固状态。所以,高碳钢补贴距离短,需加大工艺补贴,以强化补缩通道,实现顺序凝固;
四、线收缩率不同
高碳钢线收缩率小,低碳钢收缩率大,中碳钢在中间。随含碳量增加线收缩率逐渐减小。
五、钢水含氧量不同
低碳钢含氧量高,高碳钢含氧量低,中碳钢含氧量处于中间。脱氧时低碳钢加Al量最大,依次是中碳钢、高碳钢。
E. 大型铸钢件冷裂纹的产生原因及防止方法
热裂纹是铸件在凝固末期或凝固后不久尚处于强度和塑性很低状态下,因铸件固态收缩受阻而引起的裂纹。热裂纹是铸钢件、可锻铸铁件和某些轻合金铸件生产中常见的铸造缺陷之一。热裂纹在晶界萌生并沿晶界扩展,其形状粗细不均,曲折而不规则。裂纹的表面呈氧化色,无金属光泽。铸钢件裂纹表面近似黑色,而铝合金则呈暗灰色。外裂纹肉眼可见,可根据外形和断口特征与冷裂区分。
热裂纹又可分为外裂纹和内裂纹。在铸件表面可以看到的热裂纹称为外裂纹。外裂纹常产生在铸件的拐角处、截面厚度急剧变化处或局部疑固缓慢处、容易产生应力集中的地方。其特征是表面宽内部窄,呈撕裂状。有时断口会贯穿整个铸件断面。热裂纹的另一特征是裂纹沿晶粒边界分布。内裂纹一般发生在铸件内部最后凝固的部位裂纹形状很不规则,断面常伴有树枝晶,通常情况下,内裂纹不会延伸到铸件表面。