『壹』 实验五 硅的测定
铁矿石中硅的测定主要有重量法、比色法和容量法。重量法有盐酸脱水,氢氟酸挥发除硅的重量法(GB/T 6730.10—1986)以及动物胶凝聚法、聚环氧乙烷凝聚法、盐酸蒸干脱水法等;比色法主要是亚铁还原-硅钼蓝分光光度法(GB/T 6730.9-2006);容量法主要有酸溶-氟硅酸钾容量法等。
一、亚铁还原-硅钼蓝分光光度法
1.原理
试样用碳酸钠-硼酸混合熔剂熔融,以稀硫酸浸取。在0.2~0.25mol/L的酸度下,使硅酸与硼酸铵形成黄色硅钼杂多酸,然后加入草酸消除磷、砷的干扰,用硫酸亚铁铵将硅钼杂多酸还原为硅钼蓝。在波长760nm处,测量吸光度,借此测定硅的含量。
本方法适用于天然铁矿石、铁精矿和造块,包括烧结产品中硅含量的测定,测定范围(质量分数):0.1%~5%。
2.试剂及配制
(1)混合熔剂:取3份无水碳酸钠与1份硼酸研细混匀。
(2)硫酸。
(3)硫酸(5+95)。
(4)草酸溶液(50g/L)。
(5)硫酸亚铁铵液(30g/L):称取3g硫酸亚铁铵[(NH4)2Fe(SO4)2·6H2O],喊肢棚加入1mL硫酸(1+1),用水稀释至100mL,溶郑则解后过滤使用。该溶液有效期为一周。
(6)钼酸铵溶液(50g/L):储存于塑料瓶中。
(7)硅标准溶液:称取0.2140g预先于1000℃灼烧至恒量的二氧化硅(99.9%以上)置于预先盛有4g混合熔剂的铂坩埚中,仔细混匀,再覆盖1g混合熔剂,盖上铂盖,于900~950℃马弗炉中熔融分解30min,取出,冷却,在塑料烧杯中用热水浸取。用水洗出坩埚及盖,冷却至室温,移入500mL容量瓶中,用水稀释至刻度,混匀,立即移入塑料瓶中保存。此为硅储备溶液,200μg/mL。
移取100mL硅储备溶液于500mL容量瓶中,用水稀释至刻度,混匀,立即移入塑料瓶中保存。此为硅标准溶液,40μg/mL。
3.分析步骤
准确称取0.2000g试样,置于预先盛有4.0g混合熔剂的铂坩埚中,仔细混匀,再覆盖1.0g混合熔剂,盖上铂盖,于900~950℃马弗炉中熔融分解15~30min,取出,稍冷,饥乎于400mL烧杯中,用200mL硫酸(5+95)浸取,洗出铂坩埚及盖,冷却至室温,移入250mL容量瓶中,用水稀释至刻度,混匀,备用。如有沉淀需干过滤。分取5mL试液(当硅含量小于1%时,分取10mL)两份于100mL容量瓶中,一份用作显色液,一份用作参比液。在显色液一份中加5mL钼酸铵溶液,加30mL水混匀,放置15min。加10mL草酸溶液,混匀,溶液清亮后在30s内加入10mL硫酸亚铁铵溶液,用水稀释至刻度,混匀。在参比液中依次加入10mL草酸溶液,5mL钼酸铵溶液,10mL硫酸亚铁铵溶液,用水稀释至刻度,混匀。将上述试液于分光光度计760nm波长处,测量其吸光度,减去空白实验溶液的吸光度后,在标准曲线上查出试液中的硅量。
标准曲线的制备:分取0、1、3、5、7、9mL硅标准溶液于100mL容量瓶中,以下操作步骤同试样,测量吸光度,绘制标准曲线。
4.结果计算
以下式计算试样中硅的含量:
矿物加工工程专业实验教程
式中:w(Si)——硅的质量分数,%;
m——在工作曲线上查取显色液中的硅量,μg;
V——取试液的体积,mL;
V0——试料溶液稀释体积,mL;
m0——称取试样的质量,g。
二、聚环氧乙烷凝聚重量法
1.原理
试样酸溶或碱熔后,用聚环氧乙烷凝聚二氧化硅,沉淀经过滤后,高温灼烧可将有机物除掉。其沉淀是絮状的,凝聚时所要求的酸度为3~10mol/L盐酸,其滤液还可用于对其他组分的测定。
2.试剂及配制
(1)盐酸洗液(10+90)。
(2)聚环氧乙烷溶液(0.05%):称取聚环氧乙烧50mg置于100mL水中溶解,过滤后使用(由于试剂较难溶于水,需要提前半天浸泡处理)。
3.分析步骤
称取0.5000g样品于镍坩埚中,加几滴乙醇润湿样品,加3~4g氢氧化钾,于马弗炉中从低温开始升温至600℃左右保持0.5h。取出冷却后放入200mL烧杯中,加水至坩埚2/5处浸提,用稀盐酸洗出坩埚,加15~20mL盐酸酸化,水浴蒸至体积为15mL以下。冷至室温后,补加10mL盐酸。加0.05%聚环氧乙烷溶液8mL,搅匀,放置数分钟。用1%热盐酸溶液(约80℃)分两次溶解析出盐,每次30~40mL。第一次将其清液以定量快速滤纸过滤。第二次将全部沉淀转入漏斗中,用1%热盐酸溶液冲洗沉淀5、6次,最后擦洗杯壁的沉淀,全部移入滤纸上,滤液收集于250mL容量瓶中,备作其他项目测定。将沉淀连同滤纸放入己恒重的20mL瓷坩埚中,低温灰化,视二氧化硅含量高低在950℃灼烧1~2h,称至恒重。
4.结果计算
分析结果按下式计算硅含量:
矿物加工工程专业实验教程
式中:w(Si)——硅的质量分数,%;
m0——空坩埚质量,g;
m1——坩埚+二氧化硅的质量,g;
m——称取试样的质量,g。
Si——Si原子的摩尔质量,28.086g/mol。
『贰』 钛及钛合金检测哪些项目扩项
检测项目有:
①侍乱化学成分Fe、C、N、H、O、Si及合金元素
②力学性能抗拉、屈服、延伸率、断面收缩率没知、冲击、断裂韧性、高温抗拉、高温屈服、高温延伸率、热暴露、持久、疲劳
③工艺性能弯曲、杯凸、冲杯、蠕变
④组枯谈消织 高倍、低倍、表面无染层
⑤外观 表面、形状、尺寸等
⑥缺陷无损探伤
『叁』 钛合金有什么组成主要成分有哪些钛合金是怎么制成的
钛合金是以钛元素为基础加入其他元素组成的合金。
合金元素根据它们对相变温度的影响可分为三类:①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。③对相变温度影响不大的元素为中性元素,有锆、锡等。
一般金属材料都是冶炼提取的,然后加入 相应的合金元素提高某一方面性能
『肆』 钢铁中的硅如何分析
钢铁中锰
磷
硅化学分析方法
一、试剂
RⅠ、
1+4硝酸,每1000毫升加1%硝酸银20毫升。
RⅡ、
20%过硫酸铵溶液(可用3天)。
R
Ⅲ、
(1+6)过氧化氢。
MnⅠ
:
10克硝酸银溶于1000毫升水中,加浓硝酸10毫升。
MnⅡ:20%过硫酸铵溶液(可用3天)
PⅠ:A
10克硝酸铋,溶于1+7硝酸1000毫升(125毫升硝酸倒入875毫升水中)。
B
30克钼酸铵,45克酒石酸钾钠溶于1000毫升水中,溶解后倒入A中,摇匀,即为PⅠ(可长期使用)
PⅡ、
10克抗坏血酸溶于1000毫升水中,加1%EDTA10毫升。(EDTA:乙二胺四乙酸二钠)。
SiⅠ:
30克钼酸铵,15克无水碳酸钠,先加水200毫升,搅拌至无小汽泡后再加水800ml,溶解完全。
SiⅡ:10克抗坏血酸溶于1000毫升水中,加40克草酸,溶解后加1%
EDTA10毫升。
二、
溶样
称样(钢样0.200克,生铸铁0.100克)于100毫升锥形瓶中,加RⅠ30毫升,加热溶解后(无原试样)。再加RⅡ5毫升,煮至大气泡,滴
加(1+6)过氧化氢至红色褪去,再过量1滴,稍冷稀释至100毫升,摇匀,(生铸铁用脱脂棉过滤),此液即为分析母液。
三、
发色
Mn:
取母液20毫升,加MnⅠ、MnⅡ各5毫升。大于70℃,加热30秒,530nm
2—3cm比色皿测定。
P:
取母液15毫升,加PⅠ、PⅡ各10毫升。40℃—60℃。加热30秒,680-700nm
2—4cm比色皿测定。
Si:取母液10毫升,加SiⅠ
20毫升,大于60℃,加热30秒后,立即加SiⅡ毫升,摇动5秒,700nm
1cm比色皿测定。
『伍』 钛合金与铝硅合金的界面反应
钛合金与铝硅合金的界面反应主要涉及到以下几个方面:
1. 铝硅合金的氧早旅拆化反应:铝硅合金在高温下容易氧化,产生氧化物,如Al2O3、SiO2等。这些氧化物会覆盖在铝硅合金表面,阻碍钛合金与铝硅合金的结合。
2. 钛合金的氧化反应:钛合金在高温下也容易氧化,产生氧化物,如TiO2等。这些氧化物会覆盖在钛合金表面,阻碍钛合金与铝硅合金的结合。
3. 金属间化合物的形成:在高温下,钛合金和铝硅合金之间可能会发生金属间化合物的形成。这些化合物会改变钛合金和铝硅合金的化陆枣学性质和物理性质,影响镇誉它们的结合。
4. 金属扩散:在高温下,钛合金和铝硅合金之间会发生金属扩散。这会导致两种材料之间的界面变得模糊,影响它们的结合强度。
综上所述,钛合金与铝硅合金的界面反应是一个复杂的过程,需要考虑多种因素的影响。为了获得良好的结合效果,需要选择合适的工艺和材料,以及进行严格的控制和检测。
『陆』 我们厂做铝钛合金要用原子吸收法莱测其中的铁硼锰硅镉铜钛 现在考虑买仪器 想知道石墨和火焰的哪个好用
原吸 ICP在技术和使用上的一些比较
一、原子吸收光谱仪在地质样品分析中的应用
1)火焰类型火焰法可测元素70余种(主要是一些金属元素)
银(Ag),金(Au),锌(Zn),镉(Cd),锂(Li),钠(Na),铷(Rb),铯(Cs),Be,镁(Mg),钾(K),钙(Ca),锶(Sr),钡(Ba),钪(Sc),镧(La),钇(Y),钛(Ti),锆(Zr),铪(Hf),钒(V),铌(Nb),钽(Ta),铬(Cr),钼(Mo),钨(W),锰(Mn),锝(Tc),铼(Re),铁(Fe),钌(Ru),锇(Os),钴(Co),铑(Rh),铱(lr),镍(Ni),钯(Pd),铂(Pt),铜(吵衡春Cu),汞(Hg),硼(B),铝(Al),镓(Ga),铟(In),铊(Tl),硅(Si),锗(Ge),锡(Sn),铅(Pb),磷(P),砷(As),锑(Sb),铋(Bi),硒(Se),碲(Te),铈(Ce),钍(Th),镨(Pr),钕(Nd),钐(Sm),铕(Eu),钆(Gd),铽(Tb),镝(Dy),拦衫钬(Ho),铒(Er),铥(Tm),镱(Yb),镥(Lu),铀(U)我们常测定的元素为金(Au)、银(Ag)、铜(Cu)、铅(Pb)、锌(Zn)、铁(Fe)、钴(Co)、镍(Ni)、锰(Mn)、镉(Cd)。
为了提高测定的灵敏度,获得重现性好和准确高的分析结果,一般应对测定条件进行化。通过实验来选择它的灯电流、狭缝宽度、燃烧器高度、燃气及助燃气流量、积分时间等。下面是部分原子吸收仪器(火焰)的测定条件优化统计:
Z-5000型原子吸收光谱仪(火焰部分)测定条件优化结果表
测定
项目 灯电流
(mA) 乙炔流量
(L/min) 空气压力
(KPa) 狭缝宽度
(nm) 燃烧器高度(mm) 积分时间
(s)
Au 5 1.8 140 1.3 5 3
Ag 8 2.0 160 1.3 5 2
Z-8000型原子吸收光谱仪(火焰部分)测定条件优化结果表
测定
项目 灯电流
(mA) 燃气流量
(kg/cm2) 空气流量
(kg/cm2)
Cu 5 0.3 1.6
Pb 5 0.2 1.4
Zn 10 0.3 1.4
Cd 5 0.2 1.4
锦州环境监测中心站的张为人等
2)石墨炉类型石墨炉法可测元素60余种(比火焰法少,也主要是一些金属元素)
铂(Pt),铜(Cu),银(Ag),金(Au),锌(Zn),锂(Li),钠(Na),钾(K),铷(Rb),铯(Cs),铍(Be),镁(Mg),钙(Ca),锶(升耐Sr),钡(Ba),钪(Sc),钇(Y),镧(La),钛(Ti),钒(V),铬(Cr),钼(Mo),锰(Mn),锝(Tc),铼(Re),铁(Fe),钌(Ru),锇(Os),钴(Co),铑(Rh),铱(lr),镍(Ni),钯(Pd),镉(Cd),汞(Hg),硼(B),铝(Al),镓(Ga),铟(In),铊(Tl),硅(Si),锗(Ge),锡(Sn),铅(Pb),磷(P),砷(As),锑(Sb),铋(Bi),硒(Se),碲(Te),镨(Pr),钕(Nd),钐(Sm),铕(Eu),钆(Gd),铽(Tb),镝(Dy),钬(Ho),铒(Er),铥(Tm),镱(Yb),镥(Lu),铀(U)
同样,为了提高测定的灵敏度,获得重现性好和准确高的分析结果,也应通过实验获得测定元素升温程序的优化条件。下面是部分原子吸收仪器(石墨炉部分)的测定条件优化统计:
原子吸收光谱仪(石墨炉部分)测定条件优化结果表
仪器
型号 项目 程序 干燥 灰化 原子化 清除
日立Z-5000 Au 温度/℃ 100-105 105-300 2200 2400
时间/s 35 20 3 4
日立Z-2000 Au 温度/℃ 80-140 300-400 2400 2700
时间/s 40 10 5 4
美国SOLAARM-6 Au 温度/℃ 100 750 1600 2200
时间/s 15 10 1.5 2
日立Z-8100 Au 温度/℃ 200 500 2400
时间/s 20 20 6
美国PE5100 Ag 温度/℃ 120 650 1800 2650
时间/s 20 30 4 5
2、三支队的李勇3、物化探所张勤等4、甘肃有色地质测试中心刘菊琴等5、北京矿冶研究总院李华昌等关于原子吸收测定条件优化的文献还有很多,在这里就不一一列举了。
五、原子吸收光谱仪的发展趋势由于原子吸收是单元素单独测量,不能多元素同时测定。所以在测定多元素时所用时间较长,加上单元素空心阴极灯在测定时的预热时间,造成测定效率比较低。随着仪器技术的发展,如果能突破存在的缺陷,其发展前景仍是十分广阔的。我们可以预测,原子吸收将有以下几个方面的发展趋势:
(1)仪器小型化、多功能化。集成电路的发展为小型化奠定了基础,用户对仪器多功能化的需求成为其发展的动力。
(2)仪器自动化、智能化。现代计算机软、硬件技术的发展,数据库技术和数学方法的运用、自动控制技术的发展使之成为可能。人工对仪器的干预将可能越来越少。如化学计量学方法在AAS中的应用将为解决干扰和多元素同时测定等问题提供一条新途径。
(3)仪器联用技术的发展,将能进一步拓宽AAS分析领域,提高分析速度、灵敏度和选择性。FI在线分离富集技术、原子捕集技术、与色谱仪联用等均有较好的发展前景。
(4)脉冲进样技术因其取样量少而特别适于少量样品及高盐分样品分析,可减少基体效应,并扩大线性范围。悬浮液进样法免去了试样分解过程,可减少元素的污染与损失,提高分析速度和效率。但如何将这些技术推广应用需研究实用的进样装置。
(5)激光是原子荧光光谱分析的理想激发光源。理论技术结果表明原子荧光光谱分析以激光作为激发光源时具有探测单个原子的能力,其灵敏度比空心阴极灯或无极放电灯作激发光源的灵敏度高出几个数量级。激光也可作为原子吸收光谱分析光源。研究更简单和低成本的激光光源是今后应努力的方向。目前,而德国耶拿公司的contrAA原子吸收光谱仪采用了连续光源法,利用一个高能量的氙灯,不用预热并且可液体及直接固体进样分析,采用了氢化物发生器与联用技术。随着科学技术的发展,原子吸收光谱仪的各项功能将越来越完善。
六、原子吸收光谱仪的应用前景说到原子吸收光谱仪的应用前景,我们不得不说说ICP分析技术。不仅仅是因为ICP技术(特别是ICP-MS出现以来)是比较热门的话题,而且在我所的日常分析测试中,ICP技术和AAS技术经常测定某些相同的元素,如既可以用AAS法也可以用ICP法测定Ag、Cu、Pb、Zn、Co、Ni等。下面我分别从四个方面来介绍一下原子吸收仪器与ICP分析仪器的区别及各自优势。
1、检出限 FAAS的检出限为10-6级,石墨炉GFAAS的检出限为10-9级,ICP-AES大部份元素的检出限为10-6级,ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为10-12级(实际的检出限不可能优于你实验室的清洁条件),必须指出:ICP-MS的10-12级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如S、 Ca、 Fe、K、 Se)在ICP-MS中有严重的干扰,也将恶化其检出限。但不管如何,对ICP-MS来说:高基体浓度会导致许多问题,而这些问题的最好解决方案是稀释,正由于这个原因,ICP-MS应用的主要领域在痕量/超痕量分析。在常规工作中,ICP-AES可分析10%总固体溶解量TDS的溶液,甚至可以高至30%的盐溶液,在短时期内ICP-MS可分析0.5%的溶液。当原始样品是固体时,与ICP-AES,GFAAS相比,ICP-MS需要更高倍数的稀释,其折算到原始固体样品中的检出限显示不出很大优势的现象也就不令人惊奇了。
2、样品分析能力FAAS的分析速度为每个样品0.5分钟左右,分析速度是最快的,但只能是一个元素一个元素地测,它的检测范围一般为0.10-20×10-6。GFAAS的分析速度为每个样品需3-4分钟,它也只能是一个元素一个元素地测,它的检测范围一般为0.03-50×10-9。但石墨炉使用的是惰性气体(相对安全),所以晚上可以自动工作,这样保证对样品的分析能力。ICP-AES的分析速度取决于是采用全谱直读型还是单道扫描型,每个样品所需的时间为2或6分钟,全谱直读型较快,一般为2分钟测定一个样品,它可以同时测定多个元素,它的检测范围一般为10-6-10-2。ICP-MS的分析时间为每个样品小于5分钟,在某些分析情况下只需2分钟,它也可以同时测定多个元素,它的检测范围一般为10-12-10-9。
下面根据溶液的浓度举例如下,以供参考:
a.每个样品测定1-3个元素,元素浓度为10-9级,如果被测元素要求能满足的情况下,GFAAS是最合适的。
b.每个样品测定1-3个元素,元素浓度为10-6级,FAAS是最合适的
c.每个样品5-20个元素,含量为10-6至10-2,ICP-AES是最合适的。
d.每个样品需测4个以上的元素,在10-9及10-12含量,而且样品的量也相当大,ICP-MS是较合适的。
3、仪器使用方面 在日常工作中,从自动化来讲,GFAAS、ICP-AES是最成熟的,可由技术不熟练的人员来应用专家制定的方法进行工作。ICP-MS的操作直到现在仍较为复杂,自1993年以来,尽管在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。GFAAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。FAAS由于使用的是乙炔气体,所以使用的时候必需有人看管。而ICP-MS,ICP-AES,和GFAAS,由于现代化的自动化设计以及使用惰性气体的安全性,可以整夜无人看管工作。
4、运行的费用 ICP-MS开机工作的费用要高于ICP-AES,因为ICP-MS的一些部件有一定的使用寿命而且需要更换,这些部件包括了涡轮分子泵、取样锥和截取锥以及检测器。对于ICP-MS和ICP-AES来讲,雾化器与炬管的寿命是相同的。如果实验室选用了ICP-AES来取代ICP-MS,那么实验室最好能配备GFAAS。GFAAS应计算其石墨管的费用。 大概的估计ICP-AES是GFAAS的两倍,而ICP-MS是ICP-AES的两倍,也就是说ICP-MS是GFAAS费用的4倍。同时考虑到超痕量分析需要一个干净的实验室和超纯的化学试剂,这些的费用不便宜。按费用从少到多排列为FAAS→GFAAS→ICP-AES→ICP-MS。总的来说,ICP的优点是线性范围宽,可多元素同时测定,优势在于效率,但成本高,一般情况下准确度不如AAS法好(百分含量除外,由于AAS测定百分含量需要稀释)。而AAS的优点在于操作简单,分析方法成熟,石墨炉的检出限低,但一个元素一个元素地等,影响分析速度。
下表是AAS、ICP-AES、ICP-MS三种技术的分析性能的简单比较:
AAS与ICP-MS、ICP-AES分析性能的比较表.
方法类型 ICP AAS
ICP-MS ICP-AES GF-AAS F-AAS
检出限级别 10-12 10-6 10-9 10-6
精密度(短期) 1~3% 0.3~2% 1~5% 0.1~2%
可测元素 >75 >73 >50 >68
分析能力 高 高 低 中等
耐盐耐酸性 差(需稀释)好 稍差 好
无人控制操作 能 能 能 不能
运行费用 高 中上 中等 低
可以说,AAS与ICP技术是相互补充的,没有一种技术能满足所有的分析要求,只有某一种技术稍优于另一种技术的地方。我认为从使用者的角度来看,最主要的是根据自己的分析目的和实验室的规模及人员素质情况选择适合本单位用的仪器,而不是说越高档就越好。当然对于一些科研项目(特别是寻找一些化探异常),ICP-MS是必需的。
下面是针对不同实验室建设规模提出的一些仪器配套建议:
一般实验室: AAS(主要指个体实验室)
单位实验室: AAS+ ICP-AES+XRF
科研实验室: AAS+ ICP-AES+ ICP-MS+XRF
至于哪个好用,哪个厂家的好,这个不好回答,要看你们的实际检测要求,不是一个两个指标的对比,是全方面的,总体来说,进口的性能方面要好一些,他们的加工制造水平要强于国内,但他们的价格也要贵不少,维护费用也不低,还是那句话,最合适的才是最好的.
『柒』 硅含量检测方法
氢氟酸转化分光光度法。在检测硅含量是,采用的方法是氢氟酸转化分光光度法在沸腾的水浴锅上加热已酸化的水样,并用氢氟酸把非活性拿滚山硅转化为氟硅酸,然后加入三氯化铝或者硼酸,除了掩蔽备芹过剩的氢氟酸外,还将所有的氟硅酸解离,使硅成为活性硅,即可进行检测。硅是非金属元素。消中符号Si。灰色无定形的固体或晶体,有光泽。
『捌』 如何辨别TC4钛合金
TC4钛合金也称为Ti-6Al-4V钛合金,是一种常见的钛合金。以下是辨别TC4钛合金的几种方法:
1. 标识符号:TC4钛合金的国际标识符号为Ti-6Al-4V,可以在材料表面上找到这个标识符号。
2. 磁性测试:TC4钛合金是非磁性的,可以使用磁性测试来辨别。
3. 颜色:TC4钛合金的颜色通常为灰色或银色,但是这种方法不是非常可靠,因为其他钛合金也可能具有相似的颜色。
4. 化学烂清成分测试:可以使用化学成分测试来确宴孙定TC4钛合金的成分是否符合标准。
需要注意的饥祥前是,为了确保准确性,最好将辨别TC4钛合金的任务交给专业人士来完成。
『玖』 钛合金检测标准是什么
钛合金检测范围
钛合金管、钛合金棒、钛合金螺丝、钛合金烤瓷牙、钛合金丝、钛合金板等。
钛合金检测项目
力学性能指标:延伸率、拉伸性能、断面收缩率、冲击性能、断裂韧性、高温抗拉性能、高温延伸率、持久性能、屈服强度、抗拉强度拉断荷重、应力松弛检测、压缩试验、剪切试验、扭转试验等。
化学性能指标:腐蚀性能、高倍组织、化学成分分析、成分检测、氢含量、化学成分检测、金相组织、夹杂物检测等。
其他性能指标:机械性能、高温性能、导电性能、物理性能、低温性能、切削性能、锻造性能、铸造性能、导热性能、耐磨性能、抗蚀性、抗氧化性、热膨胀性、金属断裂分析、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、耐久性、弹性模数等。
百检钛合金检测标准
GB/T 1181-1998过盈配合螺纹
GB/T 2965-2007钛及钛合金棒材
GB/T 3620.1-2016钛及钛合金牌号和化学成分
GB/T 3620.2-2007钛及钛合金加工产品化学成分允许偏差
GB/T 3621-2007钛及钛合金板材
GB/T 3622-2012钛及钛合金带、箔材
GB/T 3623-2007钛及钛合金丝
GB/T 3624-2010钛及钛合金无缝管
GB/T 3625-2007换热器及冷凝器用钛及钛合金管
GB/T 23604-2009 钛及钛合金产品力学性能试验取样方法
GB/T 6611-2008 钛及钛合金术语及金相图谱
GJB 2914-1997 航天高压气瓶用tc4钛合金管材规范
GB/T 3623-2007钛及钛合金丝
GB/T 4698.2-2011海绵钛、钛及钛合金化学分析方法 铁量的检测
GB/T 5168-2008α-β钛合金高低倍组织检验方法
GJB 2218-1994 航空用钛和钛合金棒材及锻胚规范
GJB 3763A-2004 钛及钛合金热处理
HB 7750-2004 钛合金零件真空热处理
QJ 2917-1997 钛及钛合金金相检验方法
『拾』 钛合金的硬度
钛合金硬度其实相对不是很高,一般加工完毕后硬度基本在250~350HV左右,钛合金的密内度一般在4.51g/cm3左右,仅容为钢的60%,一些高强度钛合金超过了许多合金结构钢的强度。
因此钛合金的比强度(强度/密度)远大于其他金属结构材料,可制出单位强度高、刚性好、质轻的零部件。飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。
使用温度比铝合金高几网络,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。
钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;
对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。
钛合金在低温和超低温下,仍能保持其力学性能,低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。