⑴ 铁碳合金的结晶过程
1.
铁碳相图上的合金,按成分可分为三类:
⑴ 工业纯铁(<0.0218% c),其显微组织为铁素体晶粒,工业上很少应用。
⑵ 碳钢(0.0218%~2.11%c),其特点是高温组织为单相a,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%c)、共析钢(0.77%c)和过共析钢(0.77%~2.11%c)。
⑶ 白口铸铁(2.11%~6.69%c),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%c)、共晶白口铸铁(4.3%c)和过共晶白口铸铁(4.3—6.69%c)
2.
共析钢的结晶过程:
共析钢(
wc=0.77%),合金在1点以上为液体(l),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(a),a的数量随温度的下降而增多。温度降到2点时,液体全部结晶为奥氏体。2~s点之间,合金是单一奥氏体相。继续缓冷至s点时,奥氏体发生共析转变,转变成珠光体(p)。727℃以下,p基本上不发生变化。故室温下共析钢的组织为p。
3.
亚共析钢的结晶过程:
合金在1点以上为液体。缓冷至稍低于1点,开始从液体中结晶出奥氏体,冷却到2点结晶终了。在2~3点区间,合金为单一的奥氏体组织,当冷却到与gs线相交的3点时,开始从奥氏体中析出时,就会将多余的碳原子转移到奥氏体中,引起未转变的奥氏体的含碳量增加。沿着gs线变化。当温度降至4点(727℃)时,剩余奥氏体含碳量增加到了wc=0.77%,具备了共析转变的条件,转变为珠光体。原铁素体不变保留了在基体中。4点以下不再发生组织变化。故亚共析钢的室温组织为铁素体+珠光体。
4.
过共析钢的结晶过程
:
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。在2~3点之间是含碳时为合金ⅲ奥氏组织。缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着es线变化。3~4点之间的组织为奥氏体+二次渗碳体。降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。在4点以下,合金的组织不再发生变化。故室温组织为珠光体+二次渗碳体。
5.
过共析钢的结晶过程
:
合金在1点以上为液体,当缓冷至稍低于1点后,开始从液体中结晶出奥氏体,直至2点结晶终了。在2~3点之间是含碳时为合金ⅲ奥氏组织。缓冷至3点时,奥氏体中开始沿晶界析出渗碳体(即二次渗碳体)。随着温度不断降低,由奥氏体中析出的二次渗碳愈来愈多,而奥氏体中的含碳量不断减少,并沿着es线变化。3~4点之间的组织为奥氏体+二次渗碳体。降至4点(727℃)时,奥氏体的成分达到了共析成分,于是这部分奥氏体发生共析反应,转变为珠光体。在4点以下,合金的组织不再发生变化。故室温组织为珠光体+二次渗碳体。
6.
共晶白口铁的结晶过程:
合金在c
点温度以上为液体,当降至c
点时,液态合金将发生共晶转变,结晶出奥氏体与渗碳体的机械混合物,即高温莱氏体。转变是在恒温下进行,其中奥氏体的成分是e点的成分。温度继续下降时,莱氏体中的奥代体将不断析出二次渗碳体,剩余奥氏体的碳浓度不屡减少,并沿着es线变化。1~2点之间的组织为高温莱氏体,是由奥氏体,二次渗碳体和共晶渗碳体组成(a+fe
3
c
ⅱ
+fe
3
c共晶)。当温度降至2点(727℃)时,莱氏体中的奥氏体的含碳量降到了wc=0.77%,发生共析转变,生成珠光体,即高温莱氏体(ld)转变为低温莱氏体(l
'
d),其组织由珠光体、二次渗碳体和共晶渗碳体组成(p+
fe
3
c
ⅱ
+fe
3
c共晶)。
7.
亚共晶白口铁的结晶过程
:
合金在1点温度以上为液体,缓冷至稍低于1点温度,开始从液体中结晶出奥氏体。1~2点温度之间组织为液体和奥氏体。继续缓冷,结晶出的奥氏体量不断增多,而液体量不断送还减少,奥氏体的含碳量不断沿ae骊变化,液体的硕深度沿ac骊变化。温度缓冷
至2点(1148℃)时,奥氏体的含碳量为e点的成分,液体的碳浓度为c点的浓度,于是这部分液体发生共晶转变。在2~3点温度区间,随着温度的不断下
降,奥氏体的含碳量沿es线变化,并不断析出二次渗碳体。因此2~3点温度区间内的组织为奥代体、二次渗碳体和高温莱氏体(a+fe
3
c
ⅱ
+ld)。缓冷至3点(727℃)时,wc=0.77%的奥氏体发生析转变,转变为珠光体。最后室温组织为珠光体、二次渗碳体和低温莱氏体(p+fe
3c
ⅱ
+l
'
d)。
8.
过共晶白口铁的结晶过程:
合金在1点温度以上为液体。当温度缓冷至稍低于1点时,从液体中开始结晶出一次渗碳体(fe
3
c
ⅱⅰ
)。温度不断下降,结晶出的一次渗碳体不断增多,剩余液体量相对减少。同时,液体的碳浓度沿着cd骊不断变化,至2点时,乘余液液wc=4.3%,于是发生共晶转变,形成高温莱氏体。此时的组织为一次渗碳体+高温莱氏体。随后继续冷却时的转变情况与共晶白口铁相同,最终组织为一次渗碳体+低温莱氏体。白口铁因有共晶转变,所以组织中出现了莱氏体基体,莱氏体的存在,使得白口铁硬度很高,脆性很大,所以实际生产中很少直接使用,一般用用炼钢原料。
⑵ 铁碳合金的结晶过程
共析钢( Wc=0.77%),合金在1点以上为液体(L),当缓冷至稍低于1点温度时,开始从液体中结晶出奥氏体(A),A的数量随温度的下降而增多。
温度降到2点时,液体全部结晶为奥氏体。2~S点之间,合金是单一奥氏体相。继续缓冷至S点时,奥氏体发生共析转变,转变成珠光体(P)。727℃以下,P基本上不发生变化。故室温下共析钢的组织为P。
分子构成
铁碳合金中合金相的形成,与纯铁的晶体结构及碳在合金中的存在形式有关。纯铁有三种同素异构状态:912℃以下为体心立方晶体结构,称α-Fe;912~1394℃为面心立方晶体结构,称γ-Fe;1394℃以上,又呈体心立方结构,称δ-Fe。在液态,在低于7%碳范围,碳和铁可完全互溶;在固态,碳在铁中的溶解是有限的,并且溶解度取决于铁(溶剂)的晶体结构。
以上内容参考:网络-铁碳合金
⑶ 简述含碳量1.2%的铁碳合金的结晶过程
如图:碳质量分数为1.20%的④号合金。合金在1~2点间按匀晶过程转变为单相奥氏体后,冷到3点,开始从奥氏体析出二次渗碳体,又称先共析渗碳体,直到4点为止。这些先共析渗族体多沿奥氏体晶界呈网状分布,随着温度的下降及先共析渗碳体的不断析出,奥氏体碳质量分数沿ES线降低。当温度到达4点(727℃)时,奥氏体中碳的质量分数降为0.77%,因而在恒温下发生共析转变,奥氏体转变为珠光体。最后得到的组织是网状的二次渗碳体和珠光体。
⑷ 何谓铁碳合金试举例说明
铁碳合金,是以铁和碳为组元的二元合金。例如碳钢和铸铁,就是一种工业铁碳合金材料。
1、铸铁主要由铁、碳和硅组成的合金的总称。在这些合金中,含碳量超过在共晶温度时能保留在奥氏体固溶体中的量。
2、碳钢是含碳量在0.0218%~2.11%的铁碳合金。也叫碳素钢。一般还含有少量的硅、锰、硫、磷。一般碳钢中含碳量较高则硬度越大,强度也越高,但塑性较低。
铁碳合金中合金相的形成与纯铁的晶体结构和合金中碳的存在形式有关。纯铁有三种异构态:912℃以下的体心立方晶体结构,称α-Fe;面心立方晶体结构来自912~1394℃,称为γ-Fe;体心立方结构在1394℃,也叫δ-Fe。
在液态下,碳和铁在低于7%碳的范围内完全可溶;在固态下,碳在铁中的溶解度是有限的,溶解度取决于铁(溶剂)的晶体结构。
(4)铁碳合金的熔晶是什么扩展阅读:
铁碳合金由含碳量不同被分为碳钢、铸铁两大类材料,铸铁具有良好的铸造性能,属于脆性材料,具有较高的强度和硬度。碳钢具有一般的铸造性能,但其综合力学性能优于铸铁。
因此,对于结构复杂、静载荷较大的零件,应选用铸铁。对于形状复杂、具有一定力学性能、能承受一定动载荷的零件,可考虑采用碳钢或合金钢。
⑸ 铁碳合金中的基本结构、基本相、组织是什么 金属材料与热处理中的铁碳合金的基本组织与性能
铁碳合金(iron—carbon alloy)
以铁和碳为组元的二元合金.铁基材料中应用最多的一类——碳钢和铸铁,就是一种工业铁碳合金材料.钢铁材料适用范围广阔的原因,首先在于可用的成分跨度大,从近于无碳的工业纯铁到含碳4%左右的铸铁,在此范围内合金的相结构和微观组织都发生很大的变化;另外,还在于可采用各种热加工工艺,尤其金属热处理技术,大幅度地改变某一成分合金的组织和性能.
铁碳合金中合金相的形成,与纯铁的晶体结构及碳在合金中的存在形式有关.纯铁有三种同素异构状态:912℃以下为体心立方晶体结构:称α-Fe;912~1394℃为面心立方晶体结构,称γ-Fe;1394~1538℃(熔点),又呈体心立方,称δ-Fe.在液态,在低于7%碳范围,碳和铁可完全互溶;在固态,碳在铁中的溶解是有限的,并且溶解度取决于铁(溶剂)的晶体结构.与铁的三种同素异构物相对应,碳在铁中形成的固溶体有三种:α固溶体(铁素体)、γ固溶体(奥氏体)和δ固溶体(8铁素体).这些固溶体中,铁原子的空间分布与α-Fe、γ-Fe和δ-Fe一致,碳原子的尺寸远比铁原子为小,在固溶体中它处于点阵的间隙位置,造成点阵畸变.碳在γ-Fe中的溶解度最大,但不超过2.11%;碳在α-Fe中的溶解度不超过0.0218%;而在δ6-Fe中不超过0.09%.当铁碳合金的碳含量超过在铁中的溶解度时,多余的碳可以以铁的碳化物形式或以单质状态(石墨)存在于合金中,可形成一系列碳化物,其中Fe3C(渗碳体,6.69%C)是亚稳相,它是具有复杂结构的间隙化合物.石墨是铁碳合金的稳定平衡相,具有简单六方结构.Fe3C有可能分解成铁和石墨稳定相,但该过程在室温下是极其缓慢的.
工业上获得广泛应用的碳钢和铸铁就是铁碳合金,含碳低于2.11%的铁碳合金称为钢,含碳高于2.11%的合金称为铸铁.在碳钢和铸铁中除碳之外,还含有硅、锰、硫、磷、氮、氢、氧等一些杂质,这些杂质是在冶炼过程中由生铁、脱氧剂和燃料等带入的.这些杂质对钢铁性能产生影响.
碳钢一般按含碳量、用途、质量和冶炼方法分类.按含碳量可分为:低碳钢(C
⑹ 铁碳石金的共晶组织是
奥氏体和渗碳体两种晶体。铁碳合金中的共晶点是含碳量恰好为4.30%的铁碳合金,其温度是1148度,是铁碳合金中发生重要的共晶转变的成分点,只有该点成分的合金,在该温度下,才能够发生共晶转变,转变为完全不同的两个相,其两相统称为莱氏体。共晶一般就是指合金从液态冷却至某一定温度,同时凝固成两种或两种以上品体的结晶过程。共晶成分的合金液在共晶转变温度发生共晶反应,产生共晶组织。
⑺ 铁碳合金的基本相有那些它们的晶格类型是什么
铁碳合金的基本相有三种:
铁素体:代号F,是碳在阿尔法铁中形成的固溶体,体心立方结构,即bcc晶格。
奥氏体:代号A,是碳在德尔塔铁中形成的固溶体,面心立方结构,即fcc晶格。
渗碳体:代号Cem,是铁与碳形成的化合物,分子式Fe3C,复杂的晶体结构。
⑻ 铁碳合金的基本相有那些它们的晶格类型是什么
铁碳合金的基本相有三个即:
1、铁素体:代表符号f,即碳在体心立方晶格"尔发"铁中形成的固溶体。
2、奥氏体:代表符号a,即碳在面心立方晶格"伽马"铁中形成的固溶体。
3、渗碳体:代表符号cem,即碳与铁形成的化合物fe3c。
⑼ 铁碳合金的成分与性能
铁碳合金
铁碳合金是钢和铁的总称,是工业上应用最广泛的合金。铁碳合金是以铁为基本元素,以碳为主加元素组成的合金。在液态时,铁和碳可以无限互溶。在固态时,碳溶于铁中形成固溶体。当含碳量超过碳在铁中的固态溶解度时,则出现金属化合物。此外,还可以形成由固溶体和金属化合物组成的机械混合物。
下面分述铁碳合金在固态下出现的几种基本组织。
● 铁素体
铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。它仍保持的体心立方晶格,其溶碳能力很小,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.02%。
由于铁素体含碳量很低,其性能与纯铁相似,塑性、韧性很好,伸长率δ=45%~50%。强度、硬度较低,σb≈250MPa,而HBS=80。
● 奥氏体
奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。
● 渗碳体
渗碳体是铁与碳形成的金属化合物,其化学式为Fe3C。渗碳体的含碳量为ωc=6.69%,熔点为1227℃。其晶格为复杂的正交晶格,硬度很高HBW=800,塑性、韧性几乎为零,脆性很大。
在铁碳合金中有不同形态的渗碳体,其数量、形态与分布对铁碳合金的性能有直接影响。
● 珠光体
珠光体是奥氏体发生共析转变所形成的铁素体与渗碳体的共析体。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片装珠光体。用符号P表示,含碳量为ωc=0.77%。其力学性能介于铁素体与渗碳体之间,决定于珠光体片层间距,即一层铁素体与一层渗碳体厚度和的平均值。
● 莱氏体
莱氏体是液态铁碳合金发生共晶转变形成的奥氏体和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用符号Ld表示。在低于727℃时,莱氏体是由珠光体和渗碳体组成,用符号Ld’表示,称为变态莱氏体。因莱氏体的基体是硬而脆的渗碳体,所以硬度高,塑性很差。
⑽ 铁碳合金中共晶转变的成分
铁碳合金中共晶转变的成分为Fe和Fe3C。铁碳合金,是以铁和碳为组元的二元合金。铁基材料中应用最多的一类——碳钢和铸铁,就是一种工业铁碳合金材料。钢铁材料适用范围广阔的原因,首先在于可用的成分跨度大,从近于无碳的工业纯铁到含碳4%左右的铸铁,在此范围内合金的相结构和微观组织都发生很大的变化;另外,还在于可采用各种热加工工艺,尤其金属热处理技术,大幅度地改变某一成分合金的组织和性能。合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变铁碳合金在一定温度下结合出了Fe和Fe3C两种不同的晶体。