⑴ 电渣焊适用于什么焊接
常见的电渣焊是用于箱型梁中间隔板的焊接,熔嘴电渣焊。
在开始焊接时,内使焊丝与起焊槽短路起弧容,不断加入少量固体焊剂,利用电弧的热量使之熔化,形成液态熔渣,待熔渣达到一定深度时,增加焊丝的送进速度,并降低电压,使焊丝插入渣池,电弧熄灭,从而转入电渣焊焊接过程。
(1)核电站用什么方法进行焊接扩展阅读:
电渣焊时电流主要由焊丝或板极末端经渣池流向金属熔池,电流场呈锥形,是电渣焊的主要产热区。锥形电流场的作用是造成渣池的对流,把热量带到渣池底部两侧,使母材形成凹形熔化区。电渣焊渣池温度可达1600~2000℃。
在熔焊的过程中,如果大气与高温的熔池直接接触的话,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
⑵ 激光焊接都能焊接哪些材料
一:金属材料的激光焊接
铝合金的激光焊接
铝及其铝合至激光焊接的主要困难是它对10. 8pon波长的Co2激光束的反射率高。铝是热和电的良导体,高密度的自由电子使它成为光的良好反射体,起始表面反射率超过90%,也就是说,深熔焊必须在小千10%的输人能量开始,这就要求很高的输入功率以保证焊接开始时必需的功率密度,而一且小孔生成。它对光束的吸收率迅速提高,甚至可达到90%。从而使焊接过程顺利进行。铝及其合金焊接时。随着温度的升高,氢在铝中的溶解度急剧增大,溶解千其中的氢成为焊缝的缺陷源。焊缝中多存在气孔,深熔焊时根部可能出现空洞,焊道成形较差。
最近,汽车用铭合金的激光焊接受到关注,进行了许多探讨,已对铝合金车A凶州子了YAG激光焊。通常采用高Si的Al焊丝进行YAG激光焊接。利用3kW光纤传送YAG激光对6 X X X系列的合金进行焊接,尤其探讨了激光束的匹配问题,以及间隙许允度及重力的影响,向上、向下及横向焊接都可以。其他,还进行了各种台金YAG激光的对接、搭接及I形接头焊接试验,比较了其焊接性及各种保护气体下接头的杭拉强度,进行了铸造材和挤出材的YAG激光焊接,探讨了气孔生成及各种焊接条件的影响。
镁合金的激光焊接
Mg合金密度比Al小36%,作为高比强材料受到关注。因此进行了脉冲YAG激光和连续C02激光焊接试验,对于板厚1.8MM的AZ31B-H244合金(3.27%Al, 0.79%Zn)各种缺陷较少的最佳焊接条件为平均功率0.8kW, 5ms, 120Hz, 300mm/s,焦点尺寸0. 42mm,连续C02激光焊接获得了良好的熔透焊缝。还测定了YAG激光焊接区的硬度分布,发现HAZ组织窄,几乎没有软化。
钢的激光焊接
(1)低合金高强度钢
低合金高强度钢的激光焊接,只要所选择的焊接参数适当,就可以得到与母材力学性能相当的接头。HY-130钢是一种典型的低合金高强
度钢‘经过调质处理,它具有很高的强度和较高的抗裂性。用常规焊接方法焊,其焊缝和HAZ组织是粗晶、部分细晶及原始组织的棍合体,接头的韧性和扰裂性与母材相比要差得多,而且焊态下焊缝和HAZ金属组织对冷裂纹特别敏感。激光焊焊接接头不仅具有高的强度,而且其有良好的韧性和良好的抗裂性。其有以下原因。
①激光焊焊缝细、HAZ姐织窄。在冲击试验时,裂故并不沿焊缝砌I AZ姐织扩展,常常是扩展进母材。冲击断口的扫描电镜观察充分说明了这一点,断口上大部分区域是未受热影响的母材,因此整个接头的抗裂性,实际上很大一部分是由母材所提供的。
②从接头的硬度和显微硬度的分布来看,激光焊其有较高的硬度和较陡的硬度梯度,这表明可能有较大的应力集中出现。但是,在硬度较高的区域。正对应于细小的组织。高的硬度和细小的组织的共生效应使得接头既有高的强度,又有足够的韧性。
③激光焊焊缝HAZ组织主要为马氏体,这是由干它的焊接速度高、热输入小所造成的。HY-130钢中碳的质量分数很小(约0.1%)。焊接过程中由于冷却速度快,形成低碳马氏体,这种组织的练合性能优于捍条电弧焊和熔化极气体保护焊中产生的针状铁素体和马氏体的混合物。再加上晶粒细小得多,接头性能无疑是优良的。
④HY-130激光焊时,焊桔中的有害元素大大减少,产生了净化效应,提高了接头的韧性。
(2)不锈钢
奥氏体不锈钢由于具有良好的抗腐蚀性,以及高温和低温韧性而获得广泛的应用。这类不锈钢的特点是合金元素含量高,热导性仅为低碳钢的1/3,线膨胀系数大,为低碳钢的1. 5倍。
对Ni-Cr系不锈钢进行焊接时,材料具有很高的能量吸收率和熔化效率。用激光焊焊接时,由子焊接速度快,减轻了不锈钢焊接时的过热现象和线膨胀系数大的不良影响,焊缝无气孔、夹杂等缺陷,接头强度和母材相当。用小功率激光焊焊接薄板,可以获得外观上成形良好、焊缝平滑美观的接头。
不锈钢的激光焊,可用于核电站中不锈钢、核燃料包等的焊接,也可以用于化工等其他行业。
(3)碳素钢
由于激光焊时的加热速度和冷却速度非常快,所以在焊接碳素钢时。随着含碳量的增加,焊接裂纹和缺口敏感性也会增加。
硅钢
硅钢片是一种应用广泛的电磁材料,在轧制过程中为了保证生产线运行的连续性,需要对硅钢薄片进行焊接,但硅钢中Si的质量分数高(约3%李,Si对二Fe其有强烈的固深强化作用,使硅钢的硬度、强度增加,塑性、韧性急剧下降,而且冷轧造成的加工硬化,使强度、硬度进一步增加。硅钢的热导率仅为纯铁的50%,热敏性大,易发生过热使晶粒长大,而且晶粒一旦长大,就很难通过热处理使之细化。目前,工业中采用TIG焊,存在的主要问题是接头脆化,焊态下接头的反复弯曲次数低或者不能弯曲,因而不得不在焊后增加一道火焰退火工序。这样既增加了工艺流程复杂性,也降低了生产效率。
铜及铜合金的焊接
铜及铜合金兵有优良的导电、导热性能,冷、热加工性良好,其有高的扰氧化性和较高的强度。在电气、电子、动力、化工等工业部门中应用较广。
(1)铜及铜合金的分类
铜及铜合金可分为紫铜、黄铜、青铜及白铜等。紫铜为铜含量不小于99.5%的工业纯铜;普通黄铜是铜和锌的二元合金,表面呈淡黄色;凡不以锌、镍为主要组成而以锡、铝、硅等元素为主要组成的铜合金,称为青铜;白铜为含镍量50%的铜镍合金。
(2)铜及铜合金的焊接性
焊接铜和铜合金易产生未熔合与未焊透。故应采用能量集中、大功率的热源并配合预热措施;在工件厚度较薄或结构刚度较小。又无防止变形措施时,焊后很容易产生较大的变形,而当焊接接头受到较大的刚性约束时,易产生焊接应力;焊接铜及铜合金时还易产生热裂纹:
气孔是铜及铜合金焊接时的常见缺陷,紫铜焊缝中的气孔主要是氢气孔。总的来讲铜及其合金焊接具有如下特点。
①铜的导热性和热容量大,焊接输入热量宜大,必要时作适当预热。
②铜及铜合金的线膨胀系数大,凝固时收缩率也较大,因此,焊接变形大,焊件刚度大时易产生裂纹。应采用窄焊道,焊后立即轻轻敲击可细化晶粒,减小残余应力及变形。一些铜合金如黄铜,焊后有时需经270^-560℃退火处理,以消除应力,防止“自裂”现象。
③铜在液态时易氧化,生成的氧化亚铜(Cu20)和铜形成低熔点共晶体,分布在晶界,已引起裂纹。用于焊接的紫铜含氧量,一般应<0.03%,重要件应<0.01%.
④铜在液戊时能溶解大量的氢,在凝固冷却过程中,溶解度大大减小。氢还能和氧化亚铜反应,生成水蒸气,因而引起气孔。
由于铜的热导率高(超过铁的热导率3倍以上),线膨胀系数大(比钢的线膨胀系数大30%),凝固收缩率值大(比钢大1倍),液态时对氧的活性高。氢在其中的溶解度大等原因。铜的焊接是相当困难的。铜的性质决定了它在焊接过程中产生强烈的应力和变形、焊缝形成气孔和裂纹的倾向高。由于其导热率高,所以铜焊接时必须要用集中的强热源(如激光、电子束、离子束等)。此外,同在高温时的塑性低和热导率高要求采用预热。铜的焊缝具有显著的多孔的特点,这是由于在金属冷却和结晶过程中有气体从其中析出而造成的,铜的熔点比较低
而热导率高,大大地加速了焊接时冷却和结晶过程,这妨碍了在常规下的电弧焊。弧柱中卷入的或溶解的气体从焊缝金属或近缝区析出。残留在金属中的气体可能在金属中造成气体的过饱和熔液或造成气孔。过饱和熔液的形成会导致裂纹。因为铜在高温下的塑性低。气体从过饱和熔液吸出时的压力可能使铜产生破坏。合金元素对气体在液态铜中的溶解度有影响。研究表明,A1, S1, Zn可以减少黄铜焊缝中的多孔性,而Ma反而增加多孔性。前苏联的科学家研究表明Zr, Ti, Be, Cr也能降低铜焊缝中的多孔性。电阻焊时由于黄铜的电阻率低、热导率高,因而很难形成稳定的焊接熔池而实现理想焊缝,甚至无法焊接,激光焊时由于铜及铜合金对激光具有其强烈的反射作用,一般情况下也较难实现连续深熔焊。
耐热合金的激光焊接
许多镍基和铁基耐热合金都可以进行脉冲和连续激光焊接,且都可以获得好的激光焊缝。通过对铁基合金M-152和航空发动机中使用的三种镍基耐热合金(FK33. C263. N75)的激光焊接表明,接头力学性能与母材几乎相当。
Dop-14合金和Gop-26合金是两种宇航用铱基耐热合金,它们具有很高的熔点,具有优良的高温强度和抗氧化性,用激光对其进行焊接时,缝晶粒很细,可以消除金属针在晶界偏析所产生的热裂现象,获得无裂纹的焊缝,而用常规的钨极氢弧焊则是难以办到的。异种金属的激光焊接异种金属的激光焊接是指两种不同金属的激光熔焊。异种金属是否可焊及接头的强度,取决于两种金属的物理性质,如熔点、沸点等。若两种材料的熔、沸点接近,能形成较为牢固连接激光焊接的参数范围较大,熔区可以形成良好的合金结构,激光焊接的参数范围较大。
激光焊接可以在许多类异种金属之间进行,研究表明,铜一镍、镍一钦、钦一钥、低碳钢一铜等异种金属在一定条件下均可以进行激光焊接。
⑶ gh4169用于核电中主要用于哪些部位
GH4169沉淀硬化型变形高温合金
GH4169特性及应用领域概述:
该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能良好。能够制造各种形状复杂的零部件,在宇航、核能、石油工业及挤压模具中,在上述温度范围内获得了极为广泛的应用。
GH4169相近牌号:
Inconel 718、UNS NO7718(美国)、NC19FeNb(法国)、W.Nr.2.4668(德国)
GH4169金相组织结构:
该合金标准热处理状态的组织由γ基体γ'、γ"、δ、NbC相组成。
GH4169工艺性能与要求:
1、因GH4169合金中铌含量高,合金中的铌偏析程度与治金工艺直接有关。
2、为避免钢锭中的元素偏析过重,采用的钢锭直径不大于508mm。
3、经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。
4、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。
5、合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。
GH4169主要规格:
GH4169无缝管、GH4169钢板GH4169、圆钢、GH4169锻件、GH4169法兰、GH4169圆环、GH4169焊管、GH4169钢带、GH4169直条、GH4169丝材及配套焊材、GH4169圆饼、GH4169扁钢、GH4169六角棒、GH4169大小头、GH4169弯头、GH4169三通、GH4169加工件、GH4169螺栓螺母、GH4169紧固件。
⑷ 秦山核电站是怎样建造的
秦山核电站,是我国第一座自行设计建造的核电站。连接位于杭州湾畔的海盐县。1985年3月20日开始动工,1991年并网发电。秦山核电站的建设者们,凭着自己的智慧和创新精神,克服了种种困难,完成了举世瞩目的核电站建设工作。
建立一座核电站,是一个需要由100个包含着大量设备、部件、仪器、仪表和管线的系统综合组成的大工程,仅反应堆、一回路、二回路等主辅系统就有30多个,再加上相配套的控制、检测等,共有170多个系统。其中设备就有5000台,仪表9000多个,阀门10000多个、管线几百千米。
核能专家童鼎昌全面负责核电站的核心设备——原子核反应堆本体和反应堆厂房等设计。在他的组织下,克服了近百个技术难题,工程师和工程技术人员经过了不知多少个不眠之夜,把国外经验与中国的具体实践相结合,采用过滤——蒸发——离子交换三级工艺流程,使排放的废水放射性浓度指数比国外同类指标还低。
为了确保秦山核电站的安全,不使辐射物质有半点漏出,核岛底板2万多平方米的大面积混凝土不能出现丝毫裂缝。核电站技术人员克服种种困难,于1985年6月浇灌完毕,两年之后不见裂缝,使一些外国专家为之惊叹。
安全壳筒体的施工,也是技术难度很大的工程。安全壳厂房呈圆柱形简体,穹顶柱高62.5米,壁厚1米。它是核岛的第三道屏障,质量要求相当高,工程技术人员采用张法预应力混凝土安全壳的结构形式,获得圆满成功。
1986年,秦山核电站进入了施工的关键性时刻一焊接贯通压力壳、蒸汽器、主泵反应堆的主管道。主管道直径86厘米,壁厚7厘米,一个焊口就要用1100多根总重量15千克的焊条,而管两端的焊接误差不得超过0.5毫米。这是一项难度很大技术。世界上只有法、美、日等国家能够独立施工。中国工程技术人员和上海核工院联合攻关,花了一年半的时间,获得了15000多个数据,摸索出最佳焊接技术。到1989年10月25日,16个主回路管道全部焊完,一次性合格率为99.23%。经国际原子能机构运行前评审团全面检查,焊接质量全部优秀。
经过四年的艰苦奋战,秦山核电站终于在1990年年底并网发电。秦山核电站的建成,将给东南沿海地区的经济发展插上腾飞的翅膀。
⑸ 二十世纪,中国秦山核电站反应堆主管道的焊接情况是什么样的
1986年,中国秦山核电站进入了施工的关键性时刻一焊接贯通压力壳、蒸汽器、主泵反应堆的主管内道。主管道直容径86厘米,壁厚7厘米,一个焊口就要用1100多根总重量15千克的焊条,而管两端的焊接误差不得超过0.5毫米。中国工程技术人员和上海核工院联合攻关,花了一年半的时间,获得了15000多个数据,摸索出最佳焊接技术。到1989年10月25日,16个主回路管道全部焊完,一次性合格率为99.23%。经国际原子能机构运行前评审团全面检查,焊接质量全部优秀。
⑹ 核电站是怎么发电的
答:核电站分为裂变核电站和聚变核电站两种,目前世界上运行的核电站全部是裂变核电站。利用聚变发电目前虽已点火实验成功,但由于还有许多技术上的困难需要解决,估计大约2050年前后才能投入商业运营。
若想用裂变原子能发电,首先要将核燃料浓缩。核燃料指的是“铀235”。大自然中的天然铀中,铀235只占0.7%,大部分是不能使用的铀238。为了将铀235浓缩,可以使用离心机将铀238分离出来。当铀235浓缩到5%到20%,就可以制成与香烟头那么大的燃料块,装入外径10毫米内径8毫米的细长锆合金管(因为锆可以透过热核反应所必需的中子,其他金属大都不能让中子透过),制成燃料棒备用。如果把铀235浓缩到80%以上,就可以制造原子弹了。
核电站的核心是核岛,就是核燃料燃烧并产生热量的地方。简称“堆”。核燃料是自身就会发热的物质,越是堆在一起,发热就越快越多。核电站的原子反应堆分为“水堆”和“气堆”,水堆使用普通水或重水作热交换介质,气堆使用氦气或液态钠、液态锂作热交换介质,气堆的工作温度约为850°C。由于水堆工作温度低,技术上易于实现,也相对安全,世界的核电站绝大多数是水堆。水堆又分使用重水的“重水堆”和使用普通水的“轻水堆”。由于“重水堆”能生产制造核弹用的材料钚239,同时重水堆体积太大,为了防止核扩散,所以重水堆属国际原子能机构严格限制使用的原子反应堆。世界的核电站大多是轻水堆。
轻水堆根据核岛内水的工作压力分,又分“沸水堆”和“压水堆”两种。“沸水堆”优点是结构简单,工作压力低(70个大气压6.86MPa、285°C),所以相对比较安全。缺点是:由于使用从核岛里直接引出来的蒸汽推动汽轮机工作,这蒸汽有较强的放射性,所以汽轮发电机组必须屏蔽起来,人不能靠近。另外由于只能使用5%以下的低浓缩度燃料,所以燃料利用率低(发同样多的电,沸水堆比压水堆要多用一倍的燃料)。正因为沸水堆有以上缺点(主要是成本高、经济性差),世界上早期运行的核电站大多沸水堆,目前的大多是压水堆。
压水堆的基本结构是:先用6厘米厚的镍钒锰钛不锈钢板焊一个大圆筒,上边半球形的顶也是用同样的不锈钢焊接而成。外边敷上一层铅板和厚厚的钢筋混凝土,就制成了核岛的安全壳。核岛的内部有压力容器和热交换器,压力容器内部主要放置核燃料棒组件和控制反应速度的控制棒。100万千瓦的电站大约放置燃料棒组件400多组,每组燃料棒组件由直径1厘米长6米的核燃料棒289根排成17乘17的方形,这些核燃料棒能发热的寿命为三年,每年换掉三分之一。
核燃料棒组件放置在核岛的压力容器的底部,上部放置数量几乎相等的石墨制成的十字形控制棒(老款)或双层不锈钢管内装银铟镉合金(新款)管状控制棒,如果将控制棒全部插或套入核燃料棒组件之间,由于核燃料棒组件与组件之间被控制棒隔开或隔离,控制棒把核燃料棒放出的热中子几乎全部吸收,所以原子反应就几乎停止了,只能微量地发一点点热,若将控制棒从核燃料棒之间逐步提起,原子反应也就逐步变强,产生的热量逐步增多。调整控制棒的位置就能控制原子反应的速度。整个核岛的压力容器内充满了水(加硼砂的普通纯水)。
正常工作时,核岛的压力容器内的温度为330°C,相应水的压力为155个大气压(15.2 MPa)。因为压力很高,水虽然已经高到330度,但就是沸腾不了,所以叫“压水堆”。 由于核岛压力容器内的水有极强的放射性,为了安全,不能直接用它形成的蒸汽来推动汽轮机工作,要用这压力容器内的高温高压水,通过主水泵循环,到核岛内热交换器里去“烫”第二回路的水,将第二回路的水烫成100多个大气压的没有放射性的高温蒸汽,再用这个蒸汽去推动汽轮发电机组发电,以下的工作原理就和火电厂的发电原理没有区别了。
⑺ 核电厂建造阶段特殊工艺有哪些
当所达到的质量取决于所使用的工艺过程,且不能通过对成品的检查和试验来验证时(例如在焊接、热处理和无损检验中使用工艺),必须根据有关的规范、标准、技术规格书、准则的要求或其它特殊要求,制定一些措施并形成文件,以保证这些工艺由合格的人员、按照认可的程序和使用合格的设备,按现有的标准来完成。(HAF003)
1.焊接
2.表面处理(喷沙、油漆、酸洗、钝化)
3.压线(电气)
4.无损检验(NDE)
5.弯管
⑻ 什么是核电焊接
按照核电标准要求进行的焊接施工。
核电焊接要求来自法国RCC-M体系。具体要求有相关设计院转化的技术规格书,是安装单位的施工指导和监理方的监控依据。
⑼ 核电站需要用到哪些专业焊接技术以及探伤技术哪些设施需要在核电站现场焊接
按核电站工作原理分析,由于它是利用原子分裂产生热能的原理加热液体,再加热水形成高温高压蒸汽推动涡轮高速运转带动发电机转动产生巨大电能。从焊接角度来看,核裂变产生巨大热量加热液体的装置应该是耐高温高压的容器和循环管道,将热量传递给水,形成高温高压蒸汽一系列装置也无非是耐高温高压的压力容器和循环管道,此外还一定有对工作人员安全防护装置,这些装置的焊接大都和一般场合相仿,没有什么问题的。
从以上 分析可知,核电站比较需要的是有操作耐高温耐高压 (厚板)容器管道技术经验的技工。探伤技术,只要能方便移动的探伤设备,探伤准确度比较高比较可靠的都可以使用,目前超声波技术已经相当成熟,可以推荐。另,磁粉探伤可以及时灵活地检查裂缝,在复杂节点受力处要定期检查,以保安全。
那些设施须在现场焊接,掌握基本原则-----将焊接构件解剖分解后,尽可能在车间里完成元件和成套的总成,在内场工作条件较好,焊接质量比较容易保证。然后将他们分类形成配套的运到电站工地,不要混乱。在现场焊接的尽量减少,一般是形成 构件后运输困难 的,必须在现场对接的,尺寸要现场确定的,有特殊原因的才在现场焊接。
声明:本人没有从事过核电站工作,上述意见纯属个人构思,万勿轻信。
⑽ 管道自动焊具有哪些优点
优点一、功率大,工作效率高。管道自动焊功率较大,虽然型号不同,但是工作效率还是较高的。
优点二、操作简单,容易维修。管道自动焊技术已经得到了全面的提升,机器的操作也是非常简单,最主要的就是不容易出现故障,即便是有故障,简单的进行维修就可以继续使用。
优点三、节能性更强。自动焊机器可以减少一半的焊接站数,使用起来也能够减少耗能,这样就可以很轻松的提高利益。
焊接过程的机械化和自动化,是近代焊接技术的一项重要发展。它不仅标志着更高的焊接生产效率和更好的焊接质量,而且还大大改善了生产劳动条件。手工电弧焊过程,主要的焊接动作是引燃电弧、送进焊条以维持一定的电弧长度、向前移动电弧和熄弧,如果这几个动作都由机器来自动完成,则称为自动焊。
(10)核电站用什么方法进行焊接扩展阅读
焊接种类
1、焊条电弧焊:
原理—用手工操作焊条进行焊接的电弧焊方法。利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。
主要特点—操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强。
2、埋弧焊(自动焊):
原理—电弧在焊剂层下燃烧。利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材而形成焊缝。
主要特点—焊接生产率高;焊缝质量好;焊接成本低;劳动条件好;难以在空间位置施焊;对焊件装配质量要求高。
3、二氧化碳气体保护焊(自动或半自动焊):
原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。
主要特点—焊接生产率高;焊接成本低;焊接变形小;焊接质量高;操作简单;抗风能力差;不能焊接易氧化的有色金属。
4、MIG/MAG焊(熔化极惰性气体/活性气体保护焊):
MIG焊原理—采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。
主要特点—焊接质量好;焊接生产率高;无脱氧去氢反应;抗风能力差;焊接设备复杂。
5、钨极惰性气体保护焊
原理—在惰性气体保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝,形成焊缝的焊接方法。
主要特点——适应能力强;焊接生产率低;生产成本较高。
6、等离子弧焊
原理—借助水冷喷嘴对电弧的拘束作用,获得高能量密度的 等离子弧进行焊接的方法。
主要特点—能量集中、温度高,可以得到充分熔透、反面成形均匀的焊缝;电弧挺度好,等离子弧基本是圆柱形。所以,等离子弧焊的弧长变化对焊缝成形的影响不明显;焊接速度比氩弧焊快;能够焊接更细、更薄加工件;设备复杂,费用较高。