『壹』 低碳钢拉伸试验中应力应变可分为四个阶段分别是
弹性变形阶段、屈服阶段、强化阶段、缩颈阶段;
1 弹性阶段随着荷载的增加,应变随应力成正比增加。如卸去荷载,试件将恢复原状,表现为弹性变形,与A点相对应的应力为弹性极限。在这一范围内,应力与应变的比值为一常量,称为弹性模量,用E表示。弹性模量反映钢材的刚度,是钢材在受力条件下计算结构变形的重要指标。常用低碳钢的弹性模量E=2.0×105~2.1×105MPa,弹性极限E=180~200MPa。
2 屈服阶段应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。
3 强化阶段抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。屈强比越小,表明材料的安全性和可靠性越高,结构越安全。但屈强比过小,则钢材有效利用率太低,造成浪费。常用碳素钢的屈强比为0.58~0.63,合金钢为0.65~0.75。
4 颈缩阶段材料变形迅速增大,而应力反而下降。试件在拉断前,于薄弱处截面显著缩小,产生“颈缩现象”,直至断裂。通过拉伸试验,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。塑性表示钢材在外力作用下发生塑性变形而不破坏的能力,它是钢材的一个重要性指标。钢材塑性用伸长率或断面收缩率表示。
『贰』 钢材拉伸试验的四个阶段的特点,以及对应指标
钢材拉伸试验的四个阶段:
(1)弹性阶段:这一阶段试样的变形完全是弹性的,全内部写出荷载后,试样将恢复容其原长。此阶段内可以测定材料的弹性模量E。
(2)屈服阶段:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内(图中锯齿状线)波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹,称为滑移线。
(3)强化阶段:试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。
(4)颈缩阶段和断裂阶段,试样伸长到一定程度后,荷载读数反而逐渐降低。