㈠ 锻件20钢的膨胀系数是多少
锻件20钢的膨胀系数指的是在不同温度下该材料线膨胀的程度。一般来说,当温度升高渗顷时,物体的体积会随之扩大,这就是线膨胀。20钢是一种低碳钢,其线膨胀系数与其他钢材有所不同丛档陆。根据工程技术数据,锻件20钢的线膨胀系数大约为11.7×10^-6/℃ (摄氏度),这意味着当温度每升高1℃时,锻件蠢闷20钢的长度会增加0.00117毫米(约为1.17微米)左右。线膨胀系数对于一些高精度测量和加工要求比较严格的工业领域来说是一个非常重要的参数,需要特别注意。
㈡ 陶瓷产品在烧成时遭受热应力破坏的原因有哪些如何避免
现以自清洁陶瓷中卫生陶瓷的烧成为例,我们使用的是隧道窑快速烧成技术。隧道窑是一种气流作逆向水平流动的横焰式陶瓷加热设备,制品在隧道窑中要先后经过预热带、烧成带、急冷带、缓冷带及快冷带等过程(如图5)。为保证隧道窑各带中温度分布的均匀性,并使其烧成周期尽可能缩短,应首先在改进坯、釉料配方的基础上改进烧成方法,使窑炉断面呈低矮、扁平悬顶结构,优化卫生陶瓷产品的造型、结构设计,以便在快烧过程中保证产品质量。
图5 快烧隧道窑的结构和气流流动示意图
5.1 坯釉烧成过程中所发生的物理化学变化
坯釉的烧成是一个由量变到质变的复杂过程。在整个烧成过程中坯釉在窑内经受温度与气氛变化的同时,伴随着失重、收缩以及密度、颜色、强度、硬度等物理特性的变化,自身发生显著的质变化学变化。根据坯釉的烧成过程中所发生的物理化学变化特征,可以将烧成分为五个阶段,见表6。
表6 坯釉在烧成过程中的物理化学变化
阶段名称 温度范围 主要作用
物理变化 化学变化
低温阶段 室温~300℃ 排除机械水、吸附水,质量减轻,气孔率增加
氧化分解阶段 300~1000℃ (一)质量减轻
(二)气孔率增加
(三)硬度与机械强度增加 (一)氧化反应:
1.碳素及有机物氧化;2.硫化铁氧化
(二)分解反应:
1.结晶水分解排除;2.碳酸盐分解;3.硫酸盐分解;4.氢氧化铁分解
(三)晶型转变:
1.石英的晶型转变;
2.氧化铝的晶型转变
玻化成瓷阶段 1000℃ (一)强度增加
(二)气孔率降低,直到最小值
(三)体积收缩,相对密度增大
(四)色泽增白 (一)继续氧化、分解(主要是碳素和硫酸盐)
(二)固相熔融形成液相
(三)形成新的结晶——莫来石
(四)对在还原气氛下烧成的制品高价铁还原成低价铁,并形成低铁硅酸盐
高温保温阶段 保持烧成温度 (一)玻璃相进一步增多,莫来石晶体进一步发育成长
(二)晶体扩散,固相、液相分布更为均匀
冷却阶段 烧成温度~室温 (一)液相凝固
(二)白度、光泽度增加
(三)硬度、机械强度增加 石英晶型转变:
1.冷却至573℃时,α-石英→β-石英
2.冷却至270℃时,α-方石英→β-方石英
5.2 烧成制度
5.2.1 快烧隧道窑烧成带截面温度分布及其均衡
通常,由预热带向烧成带的转换温度为900~950℃ ,此后窑内的传热方式便既有对流传热又有辐射传热,在高温带窑内温差超过15℃时就有可能导致桔釉、针孔、釉泡及至变形等欠烧或过烧缺陷,故在烧成带更应采取必要的温度均衡借施。为了减少烧成带的温差,首先应确定适宜灼窑炉断面结构。为了使来自窑墙和窑顶火焰的热辐射作用得到相互补充,应在窑顶与被烧制品的上边缘之间选择上部烧嘴的最佳位置,并应通过改进烧嘴结构避免窑内局部温度过高。
5.2.2 快烧隧道窑急冷带截面温度分布及其均衡
从烧成温度到800℃,由于坯体内液相尚处于热塑性状态,故可实施快速冷却。这样既可防止坯体中因液相析晶、晶体长大而影响制品的机械性能又可防止制品因釉面析晶而失去光泽,同时还可满足快烧需要,缩短烧成周期[6]。但是,如果急冷速度过快会导致窑内局部温度过低、温差太大,可能引起处在窑内不同部位的制品或制品的不同部位结晶程度的差异,急冷过快还可能超过窑具所能承受的冷却应力极限,影响到窑具的使用寿命。为了防止急冷带温差过大可采取如下措施:
l)由于急冷带传热主要是对流传热,因此它具有与预热带相似的窑炉断面,而且在隧道窑的急冷带设置“屏障”有助于遏制来自高温烧成带的热辐射作用。
2)通过设置在制品上方和下方的多个喷孔向急冷带横向鼓人冷风或低温热风可达到预期急冷效果。但为避免窑内局部过冷,应注意喷孔的合理选位及其结构形状设计。
3)在窑体急冷带设置分散、可变的热风抽出系统可减少热风向烧成带的流动,并利于窑炉断面温度的分布。
5.2.3 快烧隧道窑缓冷带和终冷带截面温度分布及其均衡
当制品冷却到800℃以下时,坯体中液相已基本凝结为脆性固态而失去其热塑性,制品只能靠弹性抵抗热应力;尤其是卫生陶瓷制品,在冷却到573℃时还会发生石英的晶型转变并导致坯体体积发生急剧变化(体积收缩),会产生一定破坏应力,故在常规烧成中这一阶段宜采用缓冷工艺。但是,在卫生陶瓷快速烧成的冷却阶段,如果坯体中的温度分布愈均衡则愈有利于制品安全、快速地通过这一关键阶段。为缩短冷却时间并保证窑炉冷却带截面温度分布均衡,可采取如下几项措施:
l)在冷却带的起始阶段,为减少自然升力对热气流分布和截面温度均匀的影响,窑顶可设计为具有较小间隙的低矮、扁平悬顶结构。
2)在急冷后采用较缓慢、均匀的冷却(如图5中所示),它有利于石英晶型转变的顺利完成。
3)在冷却带中、后期增设上、下冷风鼓人和热风抽出装置(如图5中所示),这既有利于截面温度均匀又利于实现快速烧成。
5.2.4 快烧隧道窑对装窑方式、窑车台面结构及窑具的要求
关于料垛的码放,原则上应尽量减小料垛和窑顶、窑墙及窑车台面间所形成的外:履道与料垛中的内通道之比[7]。首先应省通过采用平吊顶以便减小顶部外通道,然后通过合理码放制品来减小顶部间隙,优化装窑密度并可采用“上密下疏”的码装方式,亦可采用混装方式并将热容较大的制品置于上部,由此使上、下温差减小。窑车台面结构应采用轻质或中空、耐热、保温材料制作,窑具宜采用轻质、薄壁、抗热震性能好、荷重软化温度高的耐火材料,窑具与产品质量比控制在2.0以内。
㈢ 14米长钢材,温度从17度降到2度,既温差15度,会缩短多少厘米
不会有几厘米,只有几毫米。
钢材可以是按10-20*10^-6的系数进行计算,取平均按15。
14000*(17-2)*15*10^-6
=3.15毫米
㈣ 钢的热膨胀系数是多少
1,钢质材的膨胀系数为:1.2*10^-5/℃
长度方向增加:100mm*1.2*10^-5*(250-20)=0.276mm* H7G$^bc8
宽度方向增加:200mm*1.2*10^-5*(250-20)=0.552mm
2,普通碳钢、马氏体不锈钢的热膨胀系数为1.01, 奥氏体不锈钢为1.
普通碳钢1米1度1丝,即1米的钢温度升高1℃放大0.01mm,而不锈钢为0.016mm。
钢筋和混凝土具有相近的温度线膨胀系数(钢筋的温度线膨胀系数为1.2×10^(-5)/℃
t混凝土的温度线膨胀系数为1.0×10^(-5)~1.5×10^(-5)/℃)
(4)钢材温差膨胀系数怎么换算到扩展阅读
热膨胀系数与材料的化学组成、结晶状态、晶体结构、键的强度有关。组成相同,结构不同的物质,膨胀系数不相同。通常情况下,结构紧密的晶体,膨胀系数较大;而类似于无定形的玻璃,往往有较小的膨胀系数。键强度高的材料一般会有低的膨胀系数。
材料发生相变时,其热膨胀系数也要变化。纯金属同素异构转变时,点阵结构重排伴随着金属比容突变,导致线膨胀系数发生不连续变化。
简单金属与非铁磁性金属组成的单相均匀固溶体合金的膨胀系数介于内组元膨胀系数之间。而多相合金膨胀系数取决于组成相之间的性质和数量,可以近似按照各相所占的体积百分比,利用混合定则粗略计算得到。
物体由于温度改变而有胀缩现象,其变化能力以等压(p一定)下,单位温度变化所导致的体积变化,即热膨胀系数表示热膨胀系数α=ΔV/(V*ΔT)
式中ΔV为所给温度变化ΔT下物体体积的改变,V为物体体积。热膨胀系数在较大的温度区间内通常不是常量。