① 胡克定律是什么
胡克定律 低碳钢的应力-应变曲线。胡克定律描述的仅为原点到屈服点之间的那一段陡峭的直线。 1. 最大强度 2. 屈服强度 3. 破坏点 4. 应变硬化区 5. 颈缩区胡克定律(Hooke's law),又译虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与变形量(应变)之间成线性关系。满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。 从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。 许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其伸长量(应变)通过常系数E(称为弹性模量)与拉应力 σ 成正比 胡克定律用17世纪英国物理学家罗伯特·胡克的名字命名。胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。两年后他公布了谜底是:ut tensio sic vis,意思是“力如伸长(那样变化)”,这正是胡克定律的中心内容。 胡克定律仅适用于特定加载条件下的部分材料。钢材在多数工程应用中都可视为线弹性材料,在其弹性范围内(即应力低于屈服强度时)胡克定律都适用。另外一些材料(如铝材)则只在弹性范围内的一部分区域行为符合胡克定律。对于这些材料需要定义一个应力线性极限,在应力低于该极限时线性描述带来的误差可以忽略不计。 还有一些材料在任何情况下都不满足胡克定律(如橡胶),这种材料称为“非胡克型”(non-hookean)材料。橡胶的刚度不仅和应力水平相关,还对温度和加载速率十分敏感。 胡克定律在磅秤制造、应力分析和材料模拟等方面有广泛的应用。 弹簧方程 胡克定律能精确地描述普通弹簧在变形不太大时的力学行为。胡克定律应用的一个常见例子是弹簧。 在弹性限度内,弹簧的弹力 F 和弹簧的长度变化量 x 成线性关系,即: F = kx 式中k 是弹簧的劲度系数(或称为倔强系数),它由弹簧材料的性质和几何外形所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反,这种弹力称为回复力,表示它有使系统回复平衡的趋势。满足上式的弹簧称为线性弹簧。 胡克定律的张量形式 若要对处于三维应力状态下的材料进行描述,需要定义一个包含81个弹性常数的四阶张量cijkl 以联系二阶应力张量σij 和应变张量(又称格林张量)εkl。 由于应力张量、应变张量和弹性系数张量存在对称性(应力张量的对称性就是材料力学中的剪应力互等定理),81个弹性常数中对于最一般的材料也只有21个是独立的。 由于应力的单位量纲(力/面积)与压强相同,而应变是无量纲的,所以弹性常数张量cijkl 中每一个元素(分量)都具有压强的量纲。 对于固体材料大变形力学行为的描述需要用到新胡克型固体模型(neo-Hookean solids)和Mooney-Rivlin型固体模型 国内用户可能无法正常浏览参考资料参考资料: http://zh.wikipedia.org/w/index.php?title=%E8%83%A1%E5%85%8B%E5%AE%9A%E5%BE%8B&variant=zh-cn
② 1t的钢板等于多少m2
1t的钢板等于约等于0.9m²到1m²之间。
以下是详细解释:
钢板的密度大约为7.8吨/立方米,这是一个重要的物理参数,用于计算钢板的体积。知道了密度,我们可以根据质量计算出钢板的体积。假设我们有一块质量为1吨的钢板,那么它的体积就是质量除以密度。钢板的厚度是一个变量,会因不同生产工艺和实际需求而变化。如果我们知道钢板的厚度和长度、宽度,就能进一步计算出其面积。理论上,若不考虑不规则形状和其他影响因素,一般的钢板厚度和长宽比在合理范围内时,大约每吨钢板等于约等于0.9m²到1m²之间。具体的数值取决于钢板的实际规格和尺寸。实际情况下钢板的形状和制造工艺会影响这个计算结果。另外请注意,此处的换算仅适用于普通钢材的估算,特殊钢材的密度可能会有所不同,因此计算结果也会有所偏差。在进行精确计算时,还需要考虑其他因素如钢板的精确度、表面状况等。
③ 6米长的不锈钢管一端受力后的变形量怎么算
钢管的长度你没给出来,很明显的钢管形变量和钢管长度是有直接关系的。
这种情况内的弯曲形变公式是容:(力x长度)/(3x弹性模量x截面二次轴距)
力 20kg x 9.81 m/s2 =196.2 N
长度 ????
弹性模量 就按普通的钢铁算,等于210000 N/mm2
环形截面的截面二次轴距等于 π x (大圆直径四次方减去小圆直径四次方)/ 64,得 335710.6 mm4
如果钢管长度是1米,可以算出形变是0.927毫米
如果长度0.5米,形变是0.116 毫米