导航:首页 > 方管焊管 > 焊管机组操作

焊管机组操作

发布时间:2022-10-18 19:01:59

⑴ 直缝焊管焊接速度多大

1m/S左右。

⑵ 高频焊管机的调试技巧请问一下大师,高频励磁电压开到最高了,可是还加不起火,是什么问题

生产流程
生产工艺流程主要取决于产品品种,从原料到成品需要经过一系列工序,完成这些工艺过程需要相应的各种机械设备和焊接、电气控制、检测装置,这些设备和装置按照不同的工艺流程要求有多种合理布置,高频焊管典型流程:纵剪―开卷―带钢矫平―头尾剪切―带钢对焊―活套储料―成型―焊接―清除毛刺―定径―探伤―飞切―初检―钢管矫直―管段加工―水压试验―探伤检测―打印和涂层―成品。
质量影响
高频焊管生产中操作对焊接质量的影响
1 输入热量?
因为焊接工艺的主要参数之一,即焊接电流(或焊接温度)难以测量,所以用输入热量来代替,而输入热量又可用振荡器输出功率来表示:
N = Ep·Ip
式中 N——输出功率,kW;
??Ep——屏压,kV;
??Ip——屏流,A〔1〕?。
当振荡器、感应器和阻抗器确定后,振荡管槽路、输出变压器、感应器的效率也就确定了,输入功率的变化同输入热量的变化大致是成比例的。
当输入热量不足时,被加热边缘达不到焊接温度,仍保持固态组织而焊不上,形成焊合裂缝;当输入热量大时,被加热边缘超过焊接温度易产生过热,甚至过烧,受力后产生开裂;当输入热量过大时,焊接温度过高,使焊缝击穿,造成熔化金属飞溅,形成孔洞。熔化焊接温度一般在1350~1400℃为宜。
2 焊接压力?
焊接压力是焊接工艺的主要参数之一,管坯的两边缘加热到焊接温度后,在挤压力作用下形成共同的金属晶粒即相互结晶而产生焊接。焊接压力的大小影响着焊缝的强度和韧性。若所施加的焊接压力小,使金属焊接边缘不能充分压合,焊缝中残留的非金属夹杂物和金属氧化物因压力小不易排出,焊缝强度降低,受力后易开裂;压力过大时,达到焊接温度的金属大部分被挤出,不但降低焊缝强度,而且产生内外毛刺过大或搭焊等缺陷。因此应根据不同的品种规格在实际中求得与之相适应的最佳焊接压力。根据实践经验单位焊接压力一般为20~40MPa。?
由于管坯宽度及厚度可能存在的公差,以及焊接温度和焊接速度的波动,都有可能涉及到焊接挤压力的变化。焊接挤压量一般通过调整挤压辊之间的距离进行控制,也可以用挤压辊前后管筒周差来控制。
3 焊接速度?
焊接速度也是焊接工艺主要参数之一,它与加热制度、焊缝变形速度以及相互结晶速度有关。在高频焊管时,焊接质量随焊接速度的加快而提高。这是因为加热时间的缩短使边缘加热区宽度变窄,缩短了形成金属氧化物的时间,如果焊接速度降低时,不仅加热区变宽,而且熔化区宽度随输入热量的变化而变化,形成内毛刺较大。在低速焊时,输入热量少使焊接困难,若不符合规定值时易产生缺陷。?
因此在高频焊管时,应在机组的机械设备和焊接装置所允许的最大速度下,根据不同规格品种选择合适的焊速。

⑶ 为什么焊管机组焊管机组要进行调整

因为在生产过程中,机台会遇到偏差的问题,以及拉伤管子。这是需要调机师傅进行调整,才能生存好的钢管。

⑷ 什么是高频焊管

高频焊管是热轧卷板经过成型机成型后,利用高频电流的集肤效应和邻近效应,使管坯边缘加热熔化,在挤压辊的作用下进行压力焊接来实现生产。

工艺流程:
生产工艺流程主要取决于产品品种,从原料到成品需要经过一系列工序,完成这些工艺过程需要相应的各种机械设备和焊接、电气控制、检测装置,这些设备和装置按照不同的工艺流程要求有多种合理布置,高频焊管典型流程:纵剪——开卷——带钢矫平——头尾剪切——带钢对焊——活套储料——成型——焊接——清除毛刺——定径——探伤——飞切——初检——钢管矫直——管段加工——水压试验——探伤检测——打印和涂层——成品。

⑸ 焊管机工作原理是什么冠杰焊管设备

焊管机工作原理主要取决于产品品种,从原料到成品需要经过一系列工序,完成这些工艺过程需要相应的各种机械设备和焊接、电气控制、检测装置,这些设备和装置按照不同的工艺流程要求有多种合理布置。

⑹ 焊管机组的对焊工作如何进行——汉高机械

焊管轧辊设备在复使用的过程中,由制于各部分零件的磨损和变形都有可能会造成相互之间的某种失调,某些螺栓连接可能会出现松动等情况,这些情况的出现和发展,都将加速焊管轧辊设备的损坏,导致故障率的提高,技术保养工作的任务,就是对这些现象预防和出现以后进行及时的排除。
在焊管轧辊的保养工作中,由于不严格遵守操作技术要求,如操作不当,调整工作没有达到技术要求,或者清洁不到位等情况,常常是导致焊管轧辊加速损坏的原因,此外,工作人员的操作技术水平也直接影响着焊管轧辊的使用寿命。
由此不难看出,建立起合理的保养维修制度,严格执行技术保养和操作使用规程,是保证焊管轧辊设备工作可靠和提高其使用寿命的重要途径,因此,在日常的使用中除了要做好焊管轧辊设备相关的保养工作以外,还要注意操作方法是否正确。

⑺ 万急:高频焊接原理

焊管高频焊接原理

作者:江南五里湖
高频焊接起源于上世纪五十年代,它是利用高频电流所产生的集肤效应和相邻效应,将钢板和其它金属材料对接起来的新型焊接工艺。高频焊接技术的出现和成熟,直接推动了直缝焊管产业的巨大发展,它是直缝焊管(ERW)生产的关键工序。高频焊接质量的好坏,直接影响到焊管产品的整体强度,质量等级和生产速度。
作为焊管生产制造者,必须深刻了解高频焊接的基本原理;了解高频焊接设备的结构和工作原理;了解高频焊接质量控制的要点。
1 高频焊接的基本原理
所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢?
集肤效应 是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。
邻近效应 是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。
这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。
2 高频焊接设备的结构和工作原理
了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,排除钢板表面的氧化层和杂质,使钢板完全熔合成一体。
高频发生器 过去的焊管机组上使用高频发生器是三回路的:高频发电机组;固体变频器;电子高频振荡器,后来基本上都改进为单回路的了。调节高频振荡器输出功率的方法有多种,如自耦变压器,电抗法,晶闸管法等。
馈电装置 这是为了向管子传送高频电流用的,包括电极触头,感应圈和阻抗器。接触焊中一般采用耐磨的铜钨合金的电极触头,感应焊中采用的是紫铜制的感应圈。阻抗器的主要元件是磁心,它的作用是增加管子表面的感抗,以减少无效电流,提高焊接速度。阻抗器的磁心采用铁氧体,要求它的居里点温度不低于310°,居里点温度是磁心的重要指标,居里点温度越高,就能靠得离焊缝越近,靠得越近,焊接效率也越高。
近年来,世界上一些大公司开始采用了固态模块式结构,大大提高了焊接可靠性,保证了焊接质量。如EFD公司设计的WELDAC G2 800高频焊机由以下部分组成:整流及控制单元(CRU),逆变器,匹配及补偿单元(IMC),CRU与IMC间的直流电缆,IMC到线圈或接触组件。
机器的两个主要部分是CRU及IMC。CRU包括一个带有主隔绝开关及一个全桥二极管整流器的整流部分(它把交流电转换为直流电),一个带有控制装置及外部控制设备界面的控制器。IMC包括逆变器模块,一个匹配变压器以及一个用于为感应线圈提供必需的无功功率的电容组。
主供电电压(3相480V),通过主隔绝开关被送到主整流器中。在主整流器中,主电压被转换为640V的直流电并且通过母线与主直流线缆相连接。直流电通过由数个并联电缆组成的直流电输送线被送到IMC。DC线缆在IMC单元母线上终止。逆变部分的逆变器模块通过高速直流保险同DC母线以并联方式连接在一起。DC电容也与DC母线连接在一起。
每个逆变器模块构成一个全桥IGBT三极管逆变器。三极管的驱动电路则在逆变器模块内的一个印刷电路板上。直流电由逆变器变为高频交流电。根据具体的负载,交流电的频率范围在100-150KH范围之间。为根据负载对逆变器进行调整,所有逆变器都以并联方式同匹配变压器连接。变压器有数个并联的主绕组,及一个副绕组。变压器的匝数比是固定的。
输出电容由数个并联电容模块组成。电容器以串联方式同感应线圈相连接,因此输出电路也是串联补偿的。电容器的作用是根据感应线圈对无功功率的要求进行补偿,及通过此补偿来使输出电路的共振频率达到所要求的数值。
频率控制系统被设计用来使三极管始终工作在系统的共振频率上。共振频率通过测量输出电流的频率确定。此频率随即被用来作为开通三极管的时基信号。三极管驱动卡向每个逆变器模块上的每个三极管发送信号来控制三极管何时开通,何时关断。
感应加热系统的输出功率控制是通过控制逆变器的输出电流来控制的。上述控制是通过一个用来控制三极管驱动器的功率控制卡完成的。
输出功率参考值由IMC操纵面板上的功率参考电位计给出,或者由外部控制面板输出给控制系统。此数值被传送给系统控制器后,将与由整流单元测量系统测量出的 DC功率数值相比较。控制器包括一个限定功能,它可以根据参考功率值与DC功率测量值的比较结果计算出一个新的输出电流设定值。控制器计算出来的输出功率设定值被送到功率控制卡,此控制卡将根据新的设定值来限定输出电流。
报警系统根据IMC中报警卡的输入信号及IMC,CRU中的各类监视设备发出的信号来工作。报警将显示在工作台上。
控制及整流器单元(CRU)
逆变器,匹配及补偿单元 (IMC)
直流线缆 输出功率总线,线圈及接触头连接
冷却系统安装在一个自支撑钢框架内,所有部件联结成为一个完整的单元。系统包括:带有电机的循环泵,热交换器(水/水),补偿容器,输出过程端(次输出)压力表,主进水口温度控制阀门,控制阀以及电气柜。主进水口端的热交换器使用未处理的支流水作为冷却用水,次端的热交换器则使用净化后的中性饮用水作为冷却水。未处理的水由恒温阀门控制,它用来测量次输出端的温度。钢框架可以用螺栓固定在门上。
3高频焊接质量控制的要点
影响高频焊接质量的因素很多,而且这些因素在同一个系统内互相作用,一个因素变了,其它的因素也会随着它的改变而改变。所以,在高频调节时,光是注意到频率,电流或者挤压量等局部的调节是不够的,这种调整必须根据整个成型系统的具体条件,从与高频焊接有关联的所有方面来调整。
影响高频焊接的主要因素有以下八个方面:
第一, 频率
高频焊接时的频率对焊接有极大的影响,因为高频频率影响到电流在钢板内部的分布性。选用频率的高低对于焊接的影响主要是焊缝热影响区的大小。从焊接效率来说,应尽可能采用较高的频率。100KHz的高频电流可穿透铁素体钢0.1mm, 400KHz则只能穿透0.04mm,即在钢板表面的电流密度分布,后者比前者要高近2.5倍。在生产实践中,焊接普碳钢材料时一般可选取 350KHz~450KHz的频率;焊接合金钢材料,焊接10mm以上的厚钢板时,可采用50KHz~150KHz那样较低的频率,因为合金钢内所含的铬,锌,铜,铝等元素的集肤效应与钢有一定差别。国外高频设备生产厂家现在已经大多采用了固态高频的新技术,它在设定了一个频率范围后,会在焊接时根据材料厚度,机组速度等情况自动跟踪调节频率。
第二, 会合角
会合角是钢管两边部进入挤压点时的夹角。由于邻近效应的作用,当高频电流通过钢板边缘时,钢板边缘会形成预热段和熔融段(也称为过梁),这过梁段被剧烈加热时,其内部的钢水被迅速汽化并爆破喷溅出来,形成闪光,会合角的大小对于熔融段有直接的影响。
会合角小时邻近效应显著,有利提高焊接速度,但会合角过小时,预热段和熔融段变长,而熔融段变长的结果,使得闪光过程不稳定,过梁爆坡后容易形成深坑和针孔,难以压合。
会合角过大时,熔融段变短,闪光稳定,但是邻近效应减弱,焊接效率明显下降,功率消耗增加。同时在成型薄壁钢管时,会合角太大会使管的边缘拉长,产生波浪形折皱。现时生产中我们一般在2°--6°内调节会合角,生产薄板时速度较快,挤压成型时要用较小的会合角;生产厚板时车速较慢,挤压成型时要用较大的会合角。有厂家提出一个经验公式:会合角×机组速度≮100,可供参考。
第三, 焊接方式
高频焊接有两种方式:接触焊和感应焊。
接触焊是以一对铜电极与被焊接的钢管两边部相接触,感应电流穿透性好,高频电流的两个效应因铜电极与钢板直接接触而得到最大利用,所以接触焊的焊接效率较高而功率消耗较低,在高速低精度管材生产中得到广泛应用,在生产特别厚的钢管时一般也都需要采用接触焊。但是接触焊时有两个缺点:一是铜电极与钢板接触,磨损很快;二是由于钢板表面平整度和边缘直线度的影响,接触焊的电流稳定性较差,焊缝内外毛刺较高,在焊接高精度和薄壁管时一般不采用。
感应焊是以一匝或多匝的感应圈套在被焊的钢管外,多匝的效果好于单匝,但是多匝感应圈制作安装较为困难。感应圈与钢管表面间距小时效率较高,但容易造成感应圈与管材之间的放电,一般要保持感应圈离钢管表面有5~8 mm的空隙为宜。采用感应焊时,由于感应圈不与钢板接触,所以不存在磨损,其感应电流较为稳定,保证了焊接时的稳定性,焊接时钢管的表面质量好,焊缝平整,在生产如API等高精度管子时,基本上都采用感应焊的形式。
第四, 输入功率
高频焊接时的输入功率控制很重要。功率太小时管坯坡口加热不足,达不到焊接温度,会造成虚焊,脱焊,夹焊等未焊合缺陷;功率过大时,则影响到焊接稳定性,管坯坡口面加热温度大大高于焊接所需的温度,造成严重喷溅,针孔,夹渣等缺陷,这种缺陷称为过烧性缺陷。高频焊接时的输入功率要根据管壁厚度和成型速度来调整确定,不同成型方式,不同的机组设备,不同的材料钢级,都需要我们从生产第一线去总结,编制适合自己机组设备的高频工艺。
第五, 管坯坡口
管坯的坡口即断面形状,一般的厂家在纵剪后直接进入高频焊接,其坡口都是呈“I”形。当焊接材料厚度大于8~10mm以上的管材时,如果采用这种“I”形坡口,因为弯曲圆弧的关系,就需要融熔掉管坯先接触的内边层,形成很高的内毛刺,而且容易造成板材中心层和外层加热不足,影响到高频焊缝的焊接强度。所以在生产厚壁管时,管坯最好经过刨边或铣边处理,使坡口呈“X”形,实践证明,这种坡口对于均匀加热从而保障焊缝质量有很大关系。
坡口形状的选取,也影响到调节会合角的大小。
焊接接头口设计在焊接工程中设计中是较薄弱的环节,主要是许多钢结构件的结法治坡口设计不是出自焊接工程技术人员之手,硬性套标准和工艺性能较差的坡口屡见不鲜。坡口形式对控制焊缝内部质量和焊接结构制造质量有着很重要作用。坡口设计必须考母材的熔合比,施焊空间,焊接位置和综合经济效益等问题。应先按下式计算横向收缩值ΔB。
ΔB=5.1Aω/t+1.27d
式中Aω——焊缝横截面积,mm³ ,t——板厚,mm,d——焊缝根部间隙,mm。 找出ΔB与Aω的关系后,即可根据两者关系列表分析,处理数据,进行优化设计,最后确定矩形管对接焊缝破口形式(图2)。

第六, 焊接速度
焊管机组的成型速度受到高频焊接速度的制约,一般来说,机组速度可以开得较快,达到100米/每秒,世界上已有机组速度甚至于达到400米/每秒,而高频焊接特别是感应焊只能在60米/每秒以下,超过10mm的钢板成型,国内机组生产的成型速度实际上只能达到8~12米/每秒。
焊接速度影响焊接质量。焊接速度提高时,有利于缩短热影响区,有利于从熔融坡口挤出氧化层;反之,当焊接速度很低时,热影响区变宽,会产生较大的焊接毛刺,氧化层增厚,焊缝质量变差。当然,焊接速度受输出功率的限制,不可能提得很高。
国内机组操作经验显示,2~3 mm的钢管焊接速度可达到40米/秒,4~6mm的钢管焊接速度可达到25米/秒,6~8 mm的钢管焊接速度可达到12米/秒,10~16 mm的钢管焊接速度在12米/秒以下。接触焊时速度可高些,感应焊时要低些。
第七, 阻抗器
阻抗器的作用是加强高频电流的集肤效应和相邻效应,阻抗器一般采用M-XO/N-XO类铁氧化体制造,通常做成Φ10mm×(120--160)mm规格的磁棒,捆装于耐热,绝缘的外壳里,内部通以水冷却。
阻抗器的设置要与管径相匹配,以保证相应的磁通量。要保证阻抗器的磁导率,除了阻抗器的材料要求以外,同时要保证阻抗器的截面积与管径的截面积之比要足够的大。在生产API管等高等级管子时,都要求去除内毛刺,阻抗器只能安放在内毛刺刀体内,阻抗器的截面积相应会小很多,这时采取磁棒的集中扇面布置的效果要好于环形布置。
阻抗器与焊接点的位置距离也影响焊接效率,阻抗器与管内壁的间隙一般取6~15 mm,管径大时取上限值;阻抗器应与管子同心安放,其头部与焊接点的间距取10~20 mm,同理,管径大时取大的值。
第八, 焊接压力
焊接压力也是高频焊接的主要参数。理论计算认为焊接压力应为100~300MPa,但实际生产中这个区域的真实压力很难测量。一般都是根据经验估算,换算成管子边部的挤压量。不同的壁厚取不同的挤压量,通常2mm以下的挤压量为:3~6 mm时为0.5t~ t;6~10 mm时为0.5t;10 mm以上时为0.3t~0.5t。
API钢管生产中,常出现焊缝灰斑缺陷,灰斑缺陷是难熔的氧化物,为达到消除灰斑的目的,宝钢等厂家多采取了加大挤压力,增加焊接余量的方法,6mm以上钢管的挤压余量达0.8~1.0的料厚,效果很好。
高频焊接常见的问题及其原因,解决方法:
《1》焊接不牢,脱焊,冷叠;
原因:输出功率和压力太小;
解决方法:1 调整功率;2 厚料管坯改变坡口形状;3 调节挤压力
《2》焊缝两边出现波纹;
原因:会合角太大,
解决方法:1 调整导向辊位置;2 调整实弯成型段;3 提高焊接速度
《3》焊缝有深坑和针孔;
原因:出现过烧
解决方法:1 调整导向辊位置,加大会合角;2 调整功率;3提高焊接速度
《4》焊缝毛刺太高;
原因:热影响区太宽
解决方法:1提高焊接速度;2 调整功率;
《5》夹渣;
原因:输入功率过大,焊接速度太慢
解决方法:1 调整功率;2 提高焊接速度
《6》焊缝外裂纹;
原因:母材质量不好;受太大的挤压力
解决方法:1 保证材质;2 调整挤压力
《7》错焊,搭焊
原因:成型精度差;
解决方法:调整机组成型模辊;
高频焊接是焊管生产中的关键工序,由于系统性的影响因素,至今还需要我们在生产第一线中探索经验,每一台机组都有它的设计和制造差别,每一个操作者也有不同的习惯,也就是说有,机组和人一样,都有自己的个性。我们将这些资料提供给大家,是为了让我们更好得了解高频焊接的基本原理,从而更好地结合自己的生产实践,总结出适合于自己机组的操作规程。

附:API标准关于管子焊接质量的规定
(美国石油学会)API—5L/5CT焊缝标准
API-5CT标准规定:
10.5 压扁试验
10.5.4 第1组试验方法----非整体热处理的管子
试样应在平行板间压扁。在每组压扁试样中,一个试样应在90°位置压扁,另一个试样应在0°位置压扁。试样应压扁至相对管壁相接触为止。在板间距离不小于表 C.23或表E.23规定值时,试样任何部位不应产生裂纹或断裂。在整个压扁过程中,不应出现不良的组织结构、焊缝未熔合、分层、金属过烧或挤出金属等现象。
10.5.5 第1和第2组试验方法----整体热处理的管子
试样应在平行板间压扁,且焊缝处于弯曲程度最大处。由检验人员决定,还应使焊缝位于距弯曲程度最大处90°位置进行压扁试验。试样应压扁至相对管壁相接触为止。在板间距离不小于表C.23或表E.23规定值时,试样任何部位不应产生裂纹或断裂。在整个压扁过程中,不应出现不良的组织结构、焊缝未熔合、分层、金属过烧或挤出金属等现象。

API-5L标准规定:
6.2.2 压扁试验验收标准
压扁试验验收标准如下:
a) 钢级高于A25级的电焊钢管以及规格小于12-3/4的激光焊钢管。
1)对于规定壁厚等于或大于0.500in(12.7mm),且钢级为X60或更高钢级的钢管原始外径(OD)的三分之二的焊缝应不出现开裂。对所有其他钢级和规定壁厚的钢管,压扁到钢管原始外径的1/2时,焊缝不应出现开裂。
2)对D/t大于10的钢管继续压扁到钢管原始外径(OD)的三分之一,除焊缝之外不应出现焊缝或断裂。
3)对所有D/t的钢管,继续压扁,直到钢管的管壁贴合为止,在整个压扁试验过程中,不得出现分层或过烧金属的现象。
b)对A25钢级的焊接钢管,压扁到钢管原始外径的四分之三焊缝应不出现开裂。继续压扁到到钢管原始外径的60%,除焊缝之外的金属应不出现焊缝或断裂。
注1:对于所有压扁试验,规格小于2-3/8的钢管,焊缝包括熔合线两侧各1/4in(6.4mm)范围内的金属,规格不小于2-3/8的钢管焊缝包括熔合线两侧各1/2in(12.7mm)范围内的金属
注2:对于经过热减径机的电焊钢管,在热减径前进行压扁试验,压扁试验的原始外径由制造厂确定。其他情况下,原始外径为规定外径。

表C.23 电焊管压扁试验板间距离
钢级 D/t 最大板间距离mm
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子规定外径,mm。
t——管子规定壁厚,mm。
(a) 如果压扁试样失效于12或6点位置,压扁试验应继续进行,直到剩余试样在3或9点位置失效。12或6点位置上的早期失效不应作为拒收依据。
(b) 见A.5(SR11)。压扁应至少为0.85D。

表E.23 电焊管压扁试验板间距离
钢级 D/t 最大板间距离in
H40 ≥16
<16 0.5D
D×(0.830-0.0206 D/t)
J55、K55 ≥16
3.93~16
<3.93 0.65D
D×(0.980-0.0206 D/t)
D×(1.104-0.0518 D/t)
M65
N80(a)
L80
C95(a)
P110(b)
Q125(b) 全部
90~28
90~28
90~28
全部
全部 D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.074-0.0194 D/t)
D×(1.080-0.0178 D/t)
D×(1.086-0.0163 D/t)
D×(1.092-0.0140 D/t)
D——管子规定外径,in。
t——管子规定壁厚,in。
(a)如果压扁试样失效于12或6点位置,压扁试验应继续进行,直到剩余试样在3 或9点位置失效。12或6点位置上的早期失效不应作为拒收依据。
(b)见A.5(SR11)。压扁应至少为0.85D。

⑻ 螺旋焊管的检验工艺

原材料检验——校平检验——对接焊检验——成型检验——内焊检验——外焊检验——切管检验——超声波检验——坡口检验——外形尺寸检验——X射线检验——水压试验——最终检验
为保证产品质量,我们制定了完善的质量计划,现场工作程序及检验、试验计划。 本项目的防腐要求与国内其它项目相比有较大不同,其主要区别在于:
·内防腐材料国内一般采用水泥砂浆,本项目采用无毒环氧涂料(厚度0.4mm)。
·外防腐涂层电火花试验电压国内一般为3000伏,最高不超过5000伏,本项目为10千伏。针对以上要求,我们着重抓好以下二方面的工作:
·严格打砂工作程序以保证除锈质量,并在1小时内完成内外底漆的喷涂,这是保证防腐质量的根本。
·在制定防腐工艺时我们特别要求玻璃丝布首先浸透环氧煤沥青涂剂,半机械滚缠,并对玻璃丝布由人工用滚筒推平的方法操作,以保证外涂层的均匀细密。
·内外防腐的管子,放在露天堆场达4个月检验,内涂层没有黄色麻点等不良现象,外防腐层电火花试验仍可达10千伏的要求。 下面,我把螺旋焊管与直缝焊管技术特性做一个简单的比较:
·材料的冶金性能
直缝埋弧焊管是用钢板生产的,而螺旋焊管是用热轧卷板生产的。热轧带钢机组轧制工艺具有一系列的优点,具有获得生产优质管线钢的冶金工艺能力。例如,在输出台架上装有水冷却系统以加速冷却,这就允许使用低合金成分来达到特殊的强度等级和低温韧性,从而改进钢材的可焊性。但这一系统在钢板生产厂基本没有。卷板的合金含量(碳当量)往往低于相似等级的钢板,这也提高了螺旋焊管的可焊性。
更需要说明的是,由于螺旋焊管的卷板轧制方向不是垂直钢管轴线方向(其夹解取决于钢管的螺旋角),而直缝钢管的钢板轧制方向垂直于钢管轴线方向,因而,螺旋焊管材料的抗裂性能优于直缝钢管。
·焊接工艺
从焊接工艺而言,螺旋焊管与直缝钢管的焊接方法一致,但直缝焊管不可避免地会有很多的丁字焊缝,因此存在焊接缺陷的机率也大大提高,而且丁字焊缝处的焊接残余应力较大,焊缝金属往往处于三向应力状态,增加了产生裂纹的可能性。
而且,根据埋弧焊的工艺规定,每条焊缝均应有引弧处和熄弧处,但每根直缝焊管在焊接环缝时,无法达到该条件,由此在熄弧处可能有较多的焊接缺陷。
·强度特点
管子在承受内压时,通常在管壁上产生两种主要应力,即径向应力δY和轴向应力δX。焊缝处合成应力δ=δY(l/4sin2α+cos2α)1/2,其中,α为螺旋焊管焊缝的螺旋角。
螺旋焊管焊缝的螺旋角一般为50-75度,因此螺旋焊缝处合成应力是直缝焊管主应力的60-85%。在相同工作压力下,同一管径的螺旋焊管比直缝焊管壁厚可减小。
根据以上特点可知:
A?螺旋焊管发生爆破时,由于焊缝所受正应力与合成应力比较小,爆破口一般不会起源于螺旋焊缝处,其安全性比直缝焊管高。
B.当螺旋焊缝附近存在与之相平行的缺陷时,由于螺旋焊缝受力较小,故其扩展的危险性不如直焊缝大。
C.由于径向应力是存在于钢管上的最大应力,所以焊缝处于垂直应力这一方向时承受最大载荷。即直缝承受的载荷最大,环向焊缝承受的载荷最小,螺旋缝介于二者之间。
·静压爆破强度
经有关对比试验,验证了螺旋焊管与直缝焊管的屈服压力与爆破压力实测值和理论值基本吻合,偏差接近。但无论是屈服压力还是爆破压力,螺旋焊管均低于直缝焊管。爆破试验还显示出螺旋焊管爆破口的环向变形率明显大于直缝焊管。由此证实,螺旋焊管的塑性变形能力优于直缝焊管,爆破口一般只局限于一个螺距内,这是螺旋焊缝对裂口的扩展起了有力的约束作用所致。
·韧性和疲劳强度
管道发展的趋势是大口径、高强度。随着钢管直径的加大、所用钢级的提高,产生韧性断裂尖稳扩展的趋势越大。根据美国有关研究机构的试验表明,螺旋焊管与直缝焊管虽然同为一个级别,但螺旋焊管具有较高的冲击韧性。
输送管线由于输量的变化,在实际操作过程中,钢管是承受随机交变载荷的作用。了解钢管的低循环疲劳强度,对判断管线的使用寿命具有重要的意义。
按测定结果,螺旋焊管的疲劳强度与无缝管和电阻焊管相同,试验的数据与无缝管和电阻管分布在同一区内,而比一般的埋弧直缝焊管要高。
·现场可焊性
现场的可焊性主要是由钢管的材质和端口配合尺寸公差决定的。
考虑到钢管安装施工的要求,钢管加工生产的连续性的和外形几何尺寸的一致性尤为重要。
螺旋焊管的生产是基本上在同一工况条件下稳定的连续流程:而直缝焊管制作工序是分段的,包括整板/压头/预卷/点焊/焊接/精整/组对等多道工序过程。这是螺旋焊管生产区别于直缝焊管生产的重要特征。
稳定的生产工况非常便于焊接质量的控制和几何尺寸的保证。由于螺旋焊管管型规整、焊缝均匀分布,相对于直缝焊管,螺旋钢管有非常好的管口椭圆度和端面垂直度,保证了现场钢管焊接组对时的组对精度。
·对输送介质流动特性的影响
输送管线中的压降和管子的长度、流体粘滞系数、流体速度、流体阻力系数都成正比,而和管子的内径成反比。而流体阻力系数既与雷诺数有关,又与管子内壁表面的粗糙度有关。经测定,管子内壁表面的粗糙度所起的影响要比局部隆起的面积(如螺旋形的焊缝或纵长的焊缝、甚至包括内环形焊缝)所起的影响大十倍。
·生产与管理
螺旋焊缝钢管的生产能体现出优质高效的优势。一台螺旋焊管机组的生产量相当于5-8台直缝焊管设备,如何使多台卷管设备生产线都能够达到同一制作标准,即按统一的生产工艺规范和质量保证体系生产以满足焊接质量要求与管道制造等级将是一项繁重的工作。
多头生产势比增加工程管理与质量监督的工程量。多台直缝卷管机组及相应的焊接设备,其操作人员的操作技能、质量意识、分布的点和控制程序的差异将带来生产管理、计划进度、检查验收、交付协调等方面的诸多困难,极易造成管理与协调上的忙乱和生产厂家与施工单位的质量推诿。
·质量保证
按照螺旋焊管生产标准的规定,螺旋焊缝钢管的主要检验/控制项目包括:
外形尺寸:钢管外径、壁厚、椭圆度、弯曲度、管端垂直度、
长度外观质量:焊缝余高、错边、钢管表面、分层、夹杂、焊缝缺陷判定
化学成分
焊接接头拉伸试验
静水压试验
酸蚀检验
无损检验
而直缝焊管没有相应的生产标准。
一般螺旋焊管机组均采用在线连续检验方式来保证焊缝的的焊接质量,这是螺旋焊管生产区别于直缝焊管生产的另一重要特征。连续检验有利于焊接缺陷的监控、焊接质量的稳定、焊接等级的保证。
由于生产工艺的限制,直缝焊管极难实现连续不间断检验。这将使焊接隐患与质量问题的出现机率增加,甚至影响将来管线运行的整体工作可靠性。
·生产资质
螺旋焊管生产厂家应持有国家颁发的工业产品生产许可证。许可证制度要求螺旋焊管的生产厂家首先应通过国家认定的权威检定机构的审查考核,具备相应的生产手段、检验设备,质量保证体系运行良好有效,产品应符合国家标准的等级和质量规范的要求,经国家工业产品生产许可证办公室确认后发证。所以螺旋焊管生产厂家均有较为完善的质量保证体系和质量控制的运作程序。
直缝焊管生产厂家没有工业产品生产许可证的要求。
·价格分析
由于热轧卷板的材质技术性能和生产技术工艺要求较高,故一方面国内符合标准的生产厂家比钢板生产厂家要少,另一方面其生产工艺和品质等级决定其市场价位亦高于热轧钢板。这是螺旋焊管的市场售价高于直缝焊管的主要原因。对于钢管销售价格的组成,材料价格是主导甚至是决定性因素。
认真考察螺旋焊管与直缝焊管的价格差异,螺旋焊管的价位略高于直缝焊管是由于生产主材的价格差异所致。然而钢管制作仅只是项目工程的一部份,若考虑到工程整体质量、项目综合造价等因素,螺旋焊管仍具有整体优势。
定尺长度与价格
生产定尺长度管比通常长度管的成材率下降幅度较大,生产企业提出加价要求是合理的。加价幅度各企业不尽一致,一般为基价基础上加价10%左右。定尺长度应在通常长度范围内,是合同中要求的某一固定长度尺寸。但实际操作中都切出绝对定尺长度是不大可能的,因此标准中对定尺长度规定了允许的正偏差值。若标准中无倍尺长度偏差及切割余量规定时,应由供需双方协商并在合同中注明。倍长尺度同定尺长度一样,会给生产企业带来成材率大幅度降低,因此生产企业提出加价是合理的,其加价幅度同定尺长度加价幅度基本相同。
等离子切割烟尘
等离子在切割工件过程中会产生大量的化金属蒸气、臭氧、氮氧化物烟尘,会严重污染周围环境。解决烟尘问题的关键是如何把等离子烟尘全部吸入到除尘设备中,从而防止空气污染。
而对于螺旋焊管等离子切割,除尘的难点是:
1、等离子枪的喷嘴在切割时空气同时向两个反方向吹出,从而使烟尘从螺旋钢管的两端冒出,而安装在螺旋钢管的一个方向的吸气口是很难将烟尘很好回收。
2、吸入口外围冷空气从机器空隙外进入吸入口且风量很大,使螺旋钢管内烟尘和冷空气的总量大于除尘器吸入的有效风量,从而切割烟尘彻底吸收变得不可能完成。
3、由于切割部位距离除尘吸入口较远,到达吸入口处的风力难以抽动烟尘。
为此,吸尘罩的设计原则是:
1、除尘器吸入的风量要大于等离子切割所产生的烟尘和管道内部空气的总量,应该是在螺旋钢管内部形成一定量的负压腔,而且尽量不让外界的空气大量进入螺旋钢管,才能有效地将烟尘吸进除尘器。
2、在螺旋钢管切割点以后的位置将烟尘堵住,吸入口处尽量避免冷空气进入螺旋钢管内部,在螺旋钢管内部空间形成一个负压
将烟尘挡板安装在螺旋钢管内部随行小车上并置于等离子枪切割点大约500mm处,在螺旋钢管切断后停留一下,达到将烟尘全部吸收。注意烟尘挡板需准确定位在切断后的位置。此外为使支撑烟尘挡板的随行小车与螺旋钢管转动相互吻合,必须让随行小车的走轮角度与内辊角度保持一致。
对于直径大约800mm的大口径螺旋焊管等离子切割,可以采用该方法;对于直径小于800mm,管径小烟尘不能从出管方向冒出,不必安装内部挡板。但在成型器烟尘吸入口处,必须有遮挡冷空气进入的外部挡板。

⑼ 焊管机组的对焊工作如何进行——汉高机械

,单纯的这样问真都不好帮你解答的,因为一般焊缝焊接开裂的原因很多,帮你简单说明一下,你看看能否自己分析:
1、首先需要明确焊缝开裂属于冷裂纹还是热裂纹
2、如果是热裂纹,那么要注意焊前预热相关措施了。
3、如果是冷裂纹,那么注意焊后的后热,热处理等措施了。
4、对于有再热裂纹敏感的,则需要再热输入有补加的无损检测了。
所以,焊缝开裂的原因和母材材质,板厚等都有影响的。
望~~,。

⑽ 一般高频直缝焊管机组的生产流程都有那些

高频焊管机组生产流程基本上是:原料—开卷—剪切焊接—活套—校平—成型—焊接刮疤—冷却—精整—测速—矫直—切管—落料—成品。由于扬州新飞翔焊管机械型号的不同,配置的不同,可能会有稍微的不一样。

阅读全文

与焊管机组操作相关的资料

热点内容
不锈钢腐蚀总什么意思 浏览:275
通风管弯头怎么算 浏览:46
螺旋焊管尺寸偏差 浏览:461
怎么检测钢筋笼长度视频 浏览:615
慈溪本地模具设计培训哪里比较好 浏览:100
世界上最坚硬的物质是什么钢材 浏览:891
螺丝焊接怎么标注 浏览:531
钢管刷什么漆比较仿古 浏览:591
钛合金和金哪个坚硬 浏览:522
钛钢焊接一天多少钱 浏览:781
郫都区钢材市场在哪里 浏览:840
410材质是什么钢管 浏览:664
景观水池深度多少需要做护栏 浏览:938
铝合金磨金相腐蚀用什么 浏览:971
二十五的钢板一平方多少公斤 浏览:224
做钢材生意怎么跑业务 浏览:868
302不锈钢板一平方多少钱 浏览:616
钢材表面的黑色粉末是什么 浏览:866
五英寸蛋糕模具等于多少寸 浏览:396
厚的方钢管如何焊接 浏览:30